
id178915

A COMPREHENSIVE STUDY ON OPENWISP
FOR EVOLVING INFRASTRUCTURE NEEDS

ALICIA PALLAROL ISÁBAL

Thesis supervisor: LEANDRO NAVARRO MOLDES (Department of Computer Architecture)

Degree: Bachelor Degree in Informatics Engineering (Information Technologies)

Bachelor's thesis

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

18/10/2023

Abstract

This thesis explored OpenWISP as a tool for network infrastructures in general and for

Hahatay, a northern Senegalese community, in particular. Since OpenWISP, while a powerful

platform for network engineers, presents complexities and a non-trivial usage curve, a deep

understanding of an organisation’s needs was required to assess its value. In response to

this gap between the technical application and OpenWISP’s capabilities, a guide was

developed, offering a walkthrough of this platform and showcasing its functionalities.

Furthermore, a Technical Design Document proposing a module marketplace for OpenWISP

has also resulted from this work from observed lacks in both centralisation and the

community-driven nature of this software.

Resum

Aquesta tesi ha explorat OpenWISP com una eina per a infraestructures de xarxa en general i

per a Hahatay, una comunitat del nord del Senegal, en particular. OpenWISP, tot i ser una

plataforma potent per enginyers de xarxes, presenta complexitats i una corba d'ús no trivial,

per la qual cosa, es requeria una comprensió profunda de les necessitats de les

organitzacions per avaluar el seu valor. En resposta a aquesta diferència entre l'aplicació a

nivell tècnic i les capacitats d'OpenWISP, s’ha desenvolupat una guia que ofereix un tutorial

d'aquesta plataforma tot mostrant les seves funcionalitats. A més, un Technical Design

Document (Document de Disseny Tècnic) que proposa un mercat de mòduls per a

OpenWISP també ha estat el resultat d'aquest treball per la manca observada tant en la

centralització com en la naturalesa impulsada per la comunitat d'aquest programari.

2

Resumen

Esta tesis ha explorado OpenWISP como una herramienta para infraestructuras de red en

general y para Hahatay, una comunidad del norte del Senegal, en particular. OpenWISP, a

pesar de ser una plataforma potente por ingenieros de redes, presenta complejidades y una

curva de uso no trivial, por lo cual, se requería una comprensión profunda de las

necesidades de las organizaciones para evaluar su valor. En respuesta a esta diferencia

entre la aplicación a nivel técnico y las capacidades de OpenWISP, se ha desarrollado una

guía que ofrece un tutorial de esta plataforma mostrando sus funcionalidades. Además, un

Technical Design Document (Documento de Diseño Técnico) que propone un mercado de

módulos para OpenWISP ha sido también resultado de este trabajo por la carencia

observada tanto en la centralización como en la naturaleza impulsada por la comunidad de

este software.

3

Acknowledgements

I want to thank my parents, my sister and Pau for supporting me at all times and under all

circumstances. They have rowed by my side, and without them, I would not have been able

to write this document.

I also want to thank Pilar, Anani and her family. Even with some distance during the

elaboration of this document, they always felt close at heart, and with their warmth, they

made everything easier.

Moreover, I want to thank Sergio Giménez for his availability, his help, and all the important

information and points of view he has given me of Hahatay. And to the network people at

KaWo, for their inspiration for the guide.

On a more academical note, I want to thank Leandro Navarro, the thesis director, for his

guidance along with the aid provided by Pedro Vílchez and Federico Capoano, the

networking, and OpenWISP experts I had the pleasure to meet during this process. They all

provided me with fundamental help for carrying out this thesis.

Finally, I want to thank myself, because even at the most intense moments, I did not stop

trying.

4

Index

Abstract 2
Acknowledgements 4
1 Introduction 8

1.1. Background and Context 8
1.2. Problem Statement 9
1.3. Scope and Objectives 10

2 Literature Review and Market Analysis 12
2.1. Existing Solutions and Technologies 12
2.2. Comparison and Evaluation of Solutions 14
2.3. Identification of Gaps and Opportunities 16

3 Methodology 19
3.1. Methodological Approach 19

3.1.1. Introduction to the Methodology 19
3.1.2. Research Design 20
3.1.3. Data Collection, Analysis and Validation 20

3.2. Detailed Tasks and Execution 22
3.2.1. Initial tasks 22
3.2.2. Final tasks 26

3.3 Initial budget 30
3.1.1 Personnel costs 30
3.1.2 Generic costs 31
3.1.3 Other costs 33

3.4. Planning and Timeline 35
3.4.1. Initial Schedule and Planning 35
3.4.2. Deviations and Adjustments 36
3.4.3. Impact on Objectives and Costs 37
3.4.4. Final Planning and Timeline 39

4 Sustainability report 41
4.1. The Project Put into Production (PPP) 41
4.2. The Lifespan 42
4.3. Risks 43
4.4. Conclusions 44

5 OpenWISP and Organisations: Customisation and Network Optimisation 45
5.1. Specific needs of Hahatay 46
5.2. Customisation: User Roles and Network Policies 46

5.2.1. User roles 46
5.2.2. Authentication and Access 48
5.2.3. Monitoring and Data Collection: 49
5.2.4. Network Policies 50

5.3. Optimisation: Channel Selection, Traffic Management, and VLAN Implementation 51
5.3.1. Channel Selection 51

5

5.3.2. Traffic Management 52
5.3.3. VLAN Implementation 53

5.4. Best Practices and Challenges 55
6 Ubiquitous Access and User-Centred Design 57

6.1. Ensuring Comprehensive Network Coverage 58
6.2. Design of the User Guide 61

6.2.1. Outline of the guide 62
6.2.2. Testing environment to familiarise with OpenWISP: 63
6.2.3. Other considerations on the guide 64

7 Evaluations, Iterative Improvements and Proposal 65
7.1. Preliminary Evaluations and Lessons 65

7.1.1. Objectives of Simulations 65
7.1.2. Overview of Results 65
7.1.3. Lessons Learned 67

7.2. Cost and Benefit Analysis 68
7.3. Adapting and Refining the Network Over Time 71

7.3.1. Key Performance Indicators (KPIs): 72
7.3.2. Evaluations and feedback 73
7.3.3 Other considerations 73

7.4. OpenWISP Enhancement Proposal (OEP) 74
7.4.1. Detailed Enhancement Proposal 74
7.4.2. Potential Impact and Importance 75

8 Conclusion and Future Directions 77
8.1. Key Findings 77
8.2. Recommendations for Further Work 78
8.3. Closing statements and personal conclusion 79

Bibliography 80
Appendix A 86
Appendix B 127

6

List of figures:

1. Gantt diagram with the initial planning 35

2. Gantt diagram with the final planning 39

3. Graph representing Hahatay’s areas 68

List of tables:

1. Comparison of existing solutions 14

2. Annual and hourly salary for the different roles in this project 30

3. Hour distribution for the different task groups and the responsible roles for each one 30

4. Summary of amortisation of hardware components required in this thesis 31

5. Personnel and generic costs 32

6. Incidental budget calculation 33

7. Summarization of contingencies and incidents 34

8. Budget summary 34

9. Hour distribution for the different task groups and the responsible roles for each one

according to the final planning 37

10. Summary of amortisation of hardware components required in this thesis according to

the final planning 38

11. Graph representing Hahatay’s areas according to the final planning 38

7

1 Introduction

1.1. Background and Context

This document is a Bachelor’s Thesis for a Computer Engineering Degree, specialisation in

Information Technologies.

This thesis is done in the Facultat d’Informàtica de Barcelona of the Universitat Politècnica

de Catalunya (UPC), and Leandro Navarro Moldes is the supervisor.

The primary motivation behind this thesis is that there are many inequalities in this

globalised world. One of them is the existence of a digital divide. The digital divide is defined

by Tien and Fu (2008) as a “technology capacity gap that exists between those who are

‘information-rich’ and those who are ‘information-poor’”.

The divide manifests in two primary challenges: the infrastructure and the literacy in different

economic communities (Chetty et al., 2018). For this reason, the different non-governmental

organisations (NGOs) fighting to end these inequalities follow different strategies.

Some organisations, such as Close the Gap, focus on the infrastructure issue as they work

on bridging the digital divide (Close the Gap, n.d.). They offer donated second-hand

technological devices to different projects ranging from educational to medical, and social

projects.

There are other organisations with a different strategy for fighting the divide, more centred

on the second problem above mentioned such as the NGO Team4Tech. Their projects help

8

teachers and staff gain digital literacy so that they can ultimately transfer the knowledge to

students (Team4Tech, n.d.).

At UPC’s Center for Development and Cooperation, several associations and initiatives are

working on the earlier described matters. One of these associations later to be discussed is

AUCOOP (Associació D’Universitaris per la Cooperació in Catalan, which translates as

University Students for Cooperation Association).

1.2. Problem Statement

Both this thesis’ author and director are members of AUCOOP. This association works with

different entities and NGOs that either propose different issues that the association

translates into projects or directly propose a project in which the association could take part.

The projects are in developing areas both local and international and can be related to

schools, hospitals or even bigger communities like whole towns. This association works on

both the main digital divide issues: the infrastructure, as they bring hardware components of

all kinds, upgrade and set up of networking systems, etc.; and the literacy, as they provide

training for teachers and staff involved in the projects.

One recurrent setback to these projects’ development is related to the arduity and

sometimes complexity behind the Wi-Fi coverage and connectivity management, set up and

monitoring. For example, there is an important area to cover or there are many users whose

credentials need administration.

9

In the case of Hahatay, a northern Senegalese community where AUCOOP has a project,

their infrastructure would benefit from having more network monitoring tools. Moreover, they

would benefit of a user management systems in order to avoid usage abuses.

In addressing these challenges, open-source software emerges as a key solution. Why?

Open-source solutions offer several advantages including cost-effectiveness, flexibility and

adaptability, community support, and an inherent transparency that fosters trust. Such

attributes are especially vital when resources are limited and adaptability is essential.

And when discussing open source solutions, OpenWISP emerges as a promising tool.

Originating in 2008 from the Italian project ProvinciaWi-Fi (Barcelo et al., 2012), this

open-source network management system offers capabilities that could simplify the tasks

associated with Wi-Fi management. The goal of this project is to deeply explore the potential

and intricacies of OpenWISP in cooperation contexts specifically, emphasising its potential

benefits and applicability.

1.3. Scope and Objectives

The endgame of this project, making a comprehensive Study on OpenWISP for Evolving

Infrastructure Needs is a rather general aim. For this motive, it is crucial to define a scope

with smaller objectives and sub-objectives, specific requirements and potential risks so that

there is a better-centred point. The first scope we will be fixing is that the central

organisation looked up is the above-mentioned Hahatay community.

The theoretical objectives of this thesis are:

● Understanding the needs of an organisation setting up Wi-Fi with any network

infrastructure. Thus, the sub-objectives are:

10

○ Gain perspective on different Wi-Fi infrastructure contexts within

organisations and cooperation projects. These often include challenges such

as coverage issues in physically challenging terrains, network congestion with

high user loads, security concerns in environments with limited IT expertise,

hardware limitations due to budget constraints, and the complexities of

maintenance and troubleshooting in remote locations.

○ Learn about common hardware used in cooperation projects or at the

Hahatay community with a particular emphasis on OpenWISP.

○ Analyse the information to extract specific needs and issues.

● Finding meaningful solutions to the previously mentioned needs:

○ Explore different open-source software related to bridging the digital divide

other than OpenWISP.

○ Determine the different strategies to solve most of the previously identified

issues by using OpenWISP, if possible.

The practical objective of this thesis is, for each solution found in the theoretical part, to

make sure that it is a feasible option for a cooperation project; thus the sub-objectives are:

● OpenWISP architecture analysis: Familiarise and document the core components and

structures of OpenWISP to form a foundation for subsequent tasks.

● Configuration and troubleshooting: Attempt to enforce configurations on devices,

detailing the process and challenges faced.

● Design principles for network setup: Using the foundational knowledge of OpenWISP,

propose potential setups and configurations that might optimise network

performance and ensure wide access.

● Recommendations and future framework goal: Offer insights derived from the

experience for future endeavours, alongside a suggested framework for technical

evaluations and simulations.

11

Based on the insights and solutions derived from these objectives, this thesis will provide a

guide to optimise Wi-Fi infrastructure using open-source tools tailored for cooperation

projects.

2 Literature Review and Market Analysis

2.1. Existing Solutions and Technologies

There are many initiatives focused on the digital divide related to networking, specifically

Wi-Fi connectivity, but also many initiatives attending different aspects of the Wi-Fi

infrastructure trying to facilitate different processes.

The Bottom-up Broadband for Europe project (Barcelo, 2014), for example, serves as a

foundational initiative in the journey to combat the digital divide. While not a direct technical

solution, it aimed to champion the need for open/free networks, laying the groundwork and

emphasizing the importance of sophisticated tools and systems to truly eradicate

connectivity disparities. Its ethos is reflected in subsequent developments and solutions like

Guifi Net.

It is worth mentioning Guifi·Net (Fundació Guifi·net, n.d.) since it is a local initiative, however,

while it serves as a prominent example of community-driven networks, the focus of this

thesis narrows down to software platforms that offer comprehensive network management

capabilities.

The first technical solution under consideration is LibreMesh: “a modular framework for

creating OpenWrt-based firmware for wireless mesh nodes” (LibreMesh, n.d.). This is a

12

project originated by a group of free network activists back in 2013; the intention was to

create a common solution for the deployment of free mesh networks. Such networks are

particularly valuable in areas where traditional infrastructure might be lacking or too

expensive to deploy.

Another solution is the already mentioned OpenWISP, the cornerstone software of this

thesis. This software platform automates and facilitates network management (OpenWISP,

n.d. -d). It provides some interesting tools as it uses open standards, software tools, and

low-cost hardware and was intended to provide users with Internet access.

A more well-known technology is Eduroam, a well-known service among research and

education communities around the world (NSRC, 2017) as a roaming access provider. It

makes credential management seamless from both the users’ and the institutions’ points of

view.

Yet another example is MikroTik RouterOS, a Linux-derived operating system tailored for

router-based computers, emphasising user-friendliness and adaptability in network

administration. Originating in 1995 for wireless ISPs, it has grown in global prominence. It is

a versatile tool that offers many features with stable and quality-controlled routing

capabilities. However, while it offers a myriad of capabilities, it operates on a licensable

model, segmented into different "Levels", requiring payment for full access (Sumarno et al.,

2019).

The presented solutions differ significantly in their scope and application. While each offers

unique advantages, it is essential to understand their inherent features, usability, cost or

13

pricing, scalability, flexibility and the level of community support they receive. These aspects

will be crucial when considering their suitability for cooperation projects.

2.2. Comparison and Evaluation of Solutions

As previously discussed, it is very important to be aware of the differences among the

existing solutions. To illustrate and explain these differences, we find the following table,

Table 1, where we will deep dive into the strengths, weaknesses, and unique selling points of

each software tool. Guifi Net and Bottom-up Broadband for Europe are more of an

infrastructure-based tool and a foundational initiative, for this reason they are excluded from

this comparison:

LibreMesh OpenWISP Eduroam MikroTik
RouterOS

Main features - Network
segmentation
- Layer 2 roaming
in set areas
- Smart gateway
selection with
redundancy
- Compatibility for
various scenarios
- Single firmware
for all network
types

- Network
management:
new nodes,
different
network
configurations,
mesh networks
and wireless
access points
and firmware
upgrades
- Connectivity
and Security:
creation of VPN
tunnels, RADIUS
authentication,
captive page
- Monitoring
and
Notifications:
low
maintenance,
web and email
notifications,
network
topology
visualization

- Federated
authentication
- Secured
network
- Single SSID
across
participating
institutions
- Wide
geographic
coverage

- Routing
firewall
- Wireless
access point
- Backhaul links
- Hotspot
systems
- VPN servers
- Bandwidth
management
- Application
filtering

14

Usability - Open source
- Modularity
- Feature
complexity
- Need for deep
technical
knowledge

- Open source
- User-friendly
interface
- Feature
complexity
- Need for deep
technical
knowledge

- Easy to
connect
- User-friendly
interface
- Reliable
performance
- Initial set-up
complexity
- Inconsistent
availability in
different
institutions

- Ease of use
- Versatile and
multi-functional
- Stability and
quality control
- Licensing
model

Cost Free Free Free 6 levels with
different
functionalities
available each.
Ranging from
free at level 0
and 1 to $250 at
the top level

Scalability - Can grow with
added nodes.
- Suitable for
decentralised
networks.

- Enables the
managing of
multiple access
points and
routers.
- Designed for
varying
locations and
scales.

- Global
roaming service
scalable across
institutions
worldwide.
- High
scalability with
multiple
institutions
connected

- Supports
small to large
networks.
- Ability to
handle
thousands of
users.

Community
support

- Active
community of
enthusiasts and
developers.
- Lacks
commercial
support
structure.

- Supported by
an active
community.
- Offers
commercial
support
options.

- Supported by
academic
institutions
globally.
- Centralised
and regional
operational
support
centres.

- Active user
forum and Wiki.
- Official training
and
consultancy
services
available.

Table 11: Comparison of existing solutions.

Let’s delve into a deeper comparison to evaluate each solution:

● Eduroam's strength lies in its federated authentication system, making it seamless

for academic users to access Wi-Fi in participating institutions globally. This creates

1 Source: own elaboration, content created according to LibreMesh (n.d.-a and n.d.-b), OpenWISP
(n.d.-a, n.d.-b and n.d.-c), Incommon (n.d.), NSRC (2017), Sumarno et al. (2019) and MikroTik (n.d.).

15

a robust, collaborative global Wi-Fi network. However, its specific focus on academic

institutions may limit its application in diverse contexts, especially in areas without

solid academic infrastructures such as the one at Hahatay.

● LibreMesh and OpenWISP serve different primary purposes, even if there is some

overlap. LibreMesh focuses on creating a mesh network with seamless roaming,

smart gateway selections, and more. Its strengths are in deploying mesh networks in

challenging environments, like rural areas or places with sparse infrastructure.

OpenWISP, on the other hand, is more about network management. It is about making

it easy to manage, configure, and monitor networks.

● It is necessary to acknowledge the robustness of MikroTik RouterOS’s

comprehensive features that place it on par with solutions like OpenWISP. The fact

that it is not open source can be considered both an advantage and a disadvantage.

On the one hand, commercial solutions often come with more structured support and

possibly more polished user experiences. On the other hand, the essence of this

thesis leans towards open source due to its adaptability, customisability, and the

philosophy of community-driven development.

While these existing solutions offer an array of features and cater to varied needs, it is

evident that each solution has its strengths, niches, and limitations. Identifying gaps within

these technologies can pave the way for enhanced or hybrid solutions that address specific

challenges in the context of bridging the digital divide.

2.3. Identification of Gaps and Opportunities

Among the various solutions explored, OpenWISP stands out for its open-source nature,

comprehensive network management capabilities, and adaptability to diverse scenarios. The

choice of focusing on OpenWISP is deliberate. In the panorama of available solutions,

OpenWISP's unique blend of features, open-source nature and adaptability positions it as a

16

promising tool to address connectivity challenges. While other solutions present their own

merits, OpenWISP's features and philosophy are particularly aligned with the goals of

bridging the digital divide in a community-driven manner.

While each solution possesses its unique strengths and limitations, OpenWISP, being central

to this thesis, showcases some evident gaps that merit attention:

1. Technical expertise requirement: While OpenWISP is powerful, it might demand a

certain degree of technical proficiency for installation, configuration, and ongoing

management.

2. Integration and compatibility: OpenWISP might not seamlessly integrate with all

hardware types or existing networking solutions.

3. Scalability challenges: While OpenWISP can handle multiple access points and

routers, it might face challenges as the network scales or when integrating with other

network architectures.

4. Community and support: As with many open-source solutions, real-time support

might be lacking, relying heavily on community forums or available documentation.

5. Customisation and features: There might be features that specific communities or

setups need that OpenWISP currently does not offer.

6. Knowledge transfer and continuity: This main point relates to the first one, because

of the technical knowledge required, organisations or communities might face

challenges if their primary OpenWISP operator leaves or is unavailable.

As with any technology, each identified gap presents a canvas for innovation. For OpenWISP,

these gaps translate to opportunities that can redefine its applicability and efficiency:

1. Developing comprehensive training programs or user-friendly documentation tailored

for individuals without a technical background could help to bridge the knowledge

divide.

17

2. Creating plugins or extensions that make OpenWISP compatible with a wider range

of devices. A collaboration with hardware manufacturers or the community to ensure

smoother integration could solve this.

3. Enhancing the scalability features of OpenWISP. Research a hybrid model where

OpenWISP can work in tandem with other solutions when scaling could help with this

issue.

4. Establishing a dedicated support team where entities can offer professional support

for OpenWISP deployments.

5. Creating a platform within OpenWISP where developers can offer custom modules

with their own features, enhancing the system's overall capability. A marketplace or a

feature-request forum could be beneficial.

6. Developing a mentorship or training program to ensure that knowledge about

OpenWISP operation and management is passed on and shared among multiple

individuals in a community or organisation. This ensures continuity and reduces

dependency on a single individual.

Throughout this chapter, we have explored a myriad of software tools and solutions that aim

to address the digital divide, emphasizing their unique features and potential shortcomings.

OpenWISP, with its open-source nature and comprehensive network management

capabilities, emerges as a promising contender in this space. Given the scope and objectives

of this research, the following chapters delve deeper into the possibilities presented by the

identified gaps and opportunities associated with OpenWISP, aiming to further its potential

as a tool for bridging digital disparities.

Specifically, the degree of technical proficiency required for installation, configuration, and

management is tackled with a guide. And to elaborate it in the most relevant way for any

organisation, the different needs OpenWISP serves are discussed.

18

3 Methodology

3.1. Methodological Approach

3.1.1. Introduction to the Methodology

Kanban was the chosen methodology for this project as it is a visual aid and the objectives

set can be achieved with some parallelising. Moreover, as this is a research project where

there can be multiple paths this methodology offered enough flexibility.

This methodology (David James Anderson, 2010, pp. 13–16, 113–120, 139–144) is based

on cards, those cards represent tasks or, in general, pieces of work. The cards are placed in

different columns according to their state. For this project, the defined states are:

● To Do: The list of tasks pending. There are no limits on this column.

● Development: Ongoing tasks. This column has a limit of 6 cards.

● Quality assurance: Finished tasks that need a review to be declared as done. This

column has a limit of 3 cards.

● Done: Tasks that are finished and up to the standards of the project so that the work

related to them can be included in the documentation. This column has no limits.

The limits on columns are key to implementing this method as restrictions on cards’ states

before being done help control multitasking in the possible parallelisation mentioned above.

To apply this methodology, we used the app Trello with its board for the project with the

columns mentioned earlier as lists in Trello jargon. This application allows adding tasks and

subtasks inside them, so it was easy to monitor the performance and attainment of the

goals.

19

3.1.2. Research Design

The nature of this thesis, which focuses on OpenWISP in organisations, needed an in-depth

understanding of the underlying needs, challenges, and contexts that numbers alone could

not provide. As such, a qualitative research design was chosen for the following reasons:

1. Depth and Detail: Qualitative research allows for a deeper dive into the complexities

of setting up and customising a network system, understanding not just the "how"

but also the "why" behind each decision and challenge.

2. Contextual Understanding: Given the unique context of Hahatay, it is crucial to

capture the specific needs, preferences, and challenges that the stakeholders

(students, staff, administrators and other community members) face. Qualitative

methods, like interviews or observations, can provide such context-rich insights.

3. Iterative Nature: The process of implementing a network system is not linear.

Feedback loops, testing, and revisions are integral. Qualitative research, being

flexible, allows for such iterative processes and helps in capturing the evolution of

the research and the reasons for any changes or adjustments.

4. Capturing Subjectivity: Understanding user experiences, satisfaction levels, and

preferences is inherently subjective. Qualitative research is adept at capturing such

subjectivities, making it an ideal choice for a user-centric project like this.

3.1.3. Data Collection, Analysis and Validation

As a research project, it is worth mentioning the general data gathering and processing

procedures.

As per the sources of data:

● OpenWISP Documentation: Comprehensive review and extraction of relevant

information from OpenWISP's official documentation, focusing on customisation

options, modules, user role definitions, and network optimisation strategies.

20

● Academic Journals and Papers: To support the study, peer-reviewed journals and

papers were consulted. These provided insights on network optimisation strategies,

ubiquitous access, user-centred design principles, and more.

● Involved parties: I had direct information of the current infrastructure and its needs

directly from people directly involved in Hahatay by videoconferences.

As per the data analysis:

● Literature Review: Systematic review of academic journals, papers, and other credible

sources to gain insights into existing strategies, best practices, challenges, and

trends in the realm of network systems and optimisation.

● OpenWISP Documentation Study: Detailed study of OpenWISP's documentation to

comprehend its functionalities, customisation options, and best practices. Special

emphasis was placed on areas directly relevant to the needs of communities, such as

user role definitions and network usage policies.

To mention specific techniques for this data analysis:

● Thematic Analysis: Data, especially feedback and observations, was analysed to

identify recurring themes or patterns. This helped in understanding common

challenges, user preferences, and areas of improvement.

● Document Review: All documented data, be it code, reports, or visual documentation,

was periodically reviewed to obtain insights, learn from past experiences, and inform

future actions.

As per the validation, a GitHub repository was maintained for all developed code. However,

all the writing and reporting was stored on Google Drive, including theoretical frameworks,

design plans, user feedback, and other relevant data. For the writing process, OpenAI's

ChatGPT was consulted to ensure polished content and the best written expression

possible.

21

Additionally, weekly meetings were scheduled with the project director to review the progress

and decide the approach for the goals and tasks.

3.2. Detailed Tasks and Execution

In this section, there is a description of all tasks that carried out throughout the project.

However, since the project changed from the initial planning, to aid coherence, we discuss

this in two sections, one for the initial tasks and the other one for the actual tasks carried out

and the necessary adjustments.

Tasks are grouped and have subtasks so it is easier to temporally plan. Additionally, if in the

description is not specified the dependencies of precedence it is implied that there are not

any. Finally, some tasks or groups of tasks are not changed, those are only detailed in the

initial tasks section.

3.2.1. Initial tasks

As a thesis, since it is not a small project, the first tasks are related to project planning (PP).

This first set of tasks require a computer with an Internet connection, a Google account to

document it and meetings with the thesis director.

● PP1 - Contextualisation and project scope: the definition of the project and its scope

with its proper contextualisation will take 30 hours.

○ Gaining familiarity with the terms and specific vocabulary of the field.

○ Reaching an agreement on the focus of the project: schedule a meeting to

discuss the scope of the project with the thesis director.

○ Studying the current state-of-the-art: investigating different projects similar to

this very one.

22

● PP2 - Temporal planning: the definition of tasks and situating them over a Gantt

diagram will take 25 hours. Aside from the previously mentioned resources, it will

also need the software Asana and Instagantt for the Gantt diagram.

● PP3 - Budget and sustainability: budgeting and analysing the sustainability of this

project will take 30 more hours.

● PP4 - Integration: it is needed to merge the previously described tasks coherently. As

we want to be thorough, this will take 20 hours and it will require that the 3 previous

tasks are already completed.

● PP5 - Meetings: a weekly meeting is scheduled with the thesis director. Since there

are 18 weeks, this task will take 20 hours taking into account that in some moments

the meetings can be more frequent.

This project needs a research base to find meaningful solutions, for this reason, there is an

essential set of tasks focused on the groundwork (GW). All groundwork tasks share the

need for a computer and Internet access.

● GW1 - Understanding the needs of AUCOOP in general and in Senegal specifically

with the Wi-Fi set-up. This task with its subtasks will take 30h.

○ GW1.1 - Interviewing at least two members of an organisation such as the

AUCOOP association. With participation in the Hahatay project if possible.

This needs an arrangement with the people at the association.

○ GW1.2 - Investigating the hardware and software used in past projects.

● GW2 - Assessing the strengths and weaknesses of the software and hardware used

by the association in the past. Analysing the information to extract the potential of

the current infrastructure or the need for improvement of the current state. This task

will take 25h. To start this task it is required that GW1 is initiated, not necessarily

finished.

23

● GW3 - Research solutions to the previously mentioned needs. This task and its

subtasks will take 40 hours since this task requires a deep investigation. This task

needs GW1 and GW2 to be finished since we need the conclusions of that part to put

the focus properly on this task.

○ GW3.1 - Study different open-source software to assist with those needs.

○ GW3.2 - Determine three possible solutions that can be implemented.

Once we have the solutions defined, we will start with the hands-on part. This practical part

will involve repeating the same task iterations for each of the 3 different solutions. This set

of tasks related to experimentation (EX) with their subtasks will also require a computer and

also an access point, and some other hardware as well as software, to be determined,

depending on the solutions found:

● EX1 - Designing and preparing a demonstration simulating a real scenario where the

solution defined in GW3 can be used, for this reason, the first iteration of this task

can start once a solution is determined but not necessarily all of them, except for the

last iteration that needs the last solution of GW3 and therefore needing the task GW3

to be finished. Since solutions may differ and are not yet defined, preparations can

vary, including hardware acquisition or requesting access to specific devices for

specific software. Each iteration is estimated to require 30 hours.

● EX2 - Carrying out the demonstration of the solutions identified in EX1. Due to the

potential variability of solutions, specific subtasks and resources cannot be specified,

but an access point is expected to be necessary since this is a Wi-Fi project. The

dependencies in this task come from the different iterations. Each iteration will be

identified as task tag_iteration number, so the first iteration of EX1 would be EX1_1,

for EX2 the dependencies are at the iteration level so for the second solution EX2_2

needs that EX1_2 is finished. For each iteration, this task is expected to need 30h.

24

● EX3 - Evaluating if it is a viable solution taking into account the metrics of simplicity

in deployment in comparison with the previous and cost/need of maintenance.

Evaluate the quality and impact of the solution. The different solutions might need

different resources for the measurements of this task. The estimation is that for each

iteration this task will take 20h. The dependencies follow the model of EX2, so EX3_1

needs that EX2_1 is finished to start.

Since there are 3 iterations, we have that EX1 will take 90 hours with EX1_1, EX1_2 and

EX1_3 lasting 30 hours each. For EX2 the total is 105 hours and for EX3 60 hours.

Another important task is the conclusion drawing (C):

● C - Conclusion: analysing the results from the experimentation to summarise the

study. It will require a computer, with Internet access and it is dependent on the

definitive ending of all experimental iterations so we have the broader picture. This

task will take 15 hours.

There is one task that can be done during the whole project as it has no dependencies and it

is key for the success of this project, the documentation (D) task:

● D - Documenting all processes and events and integrating all collected information. It

will take 65 hours and the resources required are a computer and Internet access to

write the document in Google Drive.

Finally, a task that will not be seen on paper is the oral defence of the thesis, which will take

place in June. This task will take the remaining hours we have left to dedicate, and the

resources needed are information resources such as who is to be the Tribunal, to prepare for

questions. We will exclude this part from the upcoming tables and Gantt diagram since, as

mentioned, it will not be documented.

25

3.2.2. Final tasks

From the initial tasks we maintain the whole set of the project planning (PP). But we will

extend it with one additional task:

● PP6: - Stakeholder Engagement and Feedback Collection: Schedule and conduct

more meetings with external stakeholders related to Hahatay to monitor the progress

and check new findings. Estimate: 10 hours.

As for the Groundwork (GW), it is crucial to understand the context of the community at

Hahatay, for this reason, we are maintaining GW1 and GW2, however, GW3 tasks changed

and GW4 has appeared:

● GW3 - Familiarise with OpenWISP’s architecture and find links to the most important

weaknesses at Hahatay’s Wi-Fi infrastructure. This task and its subtasks are planned

to take 20 hours.

○ GW3.1: Checking the demo offered at OpenWISP’s web page and familiarising

with the modules and artefacts that compose the platform.

○ GW3.2: Studying its functionalities and matching them with the needs at

Hahatay.

● GW4 - Immersion in an OpenWISP's Practical Deployment. Learn in a practical

environment about OpenWISP. Participate in a project where OpenWISP is being

used. This can be done with the celebration of the 2023 Battle Mesh at Calafaou

(Barcelona), which is an annual convention on free networking (Wireless Battle Mesh,

n.d.). This can provide an insight on the capabilities of OpenWISP. The task and its

subtasks are estimated to take 30 hours.

○ GW4.1 - Active Participation: engaging hands-on in the OpenWISP setup

process at some preparatory activities of the convention. This provided a

real-world understanding of its deployment, challenges, and nuances. This

task requires prior basic knowledge of OpenWISP but does not necessarily

26

need in-depth experience. To participate it is possible that a router and an

Ethernet cable are required.

○ GW4.2 - Networking and Interactions: making connections with professionals

and enthusiasts in the free network realm, specifically related to OpenWISP.

This can provide first-hand insights from those experienced with free

networks and OpenWISP.

Moreover, we should take into account that this work although focused on Hahatay should

be available to other institutions or communities. For this reason, we also have within

Groundwork:

● GW5 - Understanding Local User Profiles: Gather insights into the typical user profiles

in Hahatay and also in a general setting. Their digital behaviour, the devices they use

so that the needs can be tailored to the users. This task is planned to take

approximately 10 hours.

● GW6 - Research on network policies and link them with the previous user profiles.

Figure out how they can accommodate the needs of Hahatay. This task is planned to

take take approximately 15 hours.

The hands-on section is the most different one. Experimentation (EX) has changed to

OpenWISP Functionality Exploration (OE) since a deep dive into OpenWISP's capabilities,

limitations, and potential customisations is essential for understanding how it can be

tailored to specific needs, leading up to the formulation of a guide. Except for the first task,

the rest of the tasks from this group will require having the Groundwork done.

● OE1 - Set up and deploy OpenWISP in a test environment: explore its modules,

features, and potential areas of customisation. This task is planned to take 40 hours.

● OE2 - Tailoring OpenWISP for Specific Needs: Attempt to tailor OpenWISP's

functionalities to align with the needs identified during the groundwork phase. This

task will take 25 hours. It can be done parallel to the previous task but as mentioned,

27

it requires the groundwork tasks completed, so that the tailoring makes sense. This

task is planned to take 30 hours.

● OE3 - Document challenges, solutions, and limitations found at OE1 and OE2, so it

will be parallel to the previous task of this same group. It is planned to take 5 hours.

● OE4 - Loop of Iterative Refinement: Include a regular refinement of the guide to

ensure that new information is integrated seamlessly. This task it is planned to take 5

hours and can be parallel to OE3.

As the planning phase progresses, a recurring theme emerges: the technical intricacy of

OpenWISP. While OpenWISP offers a powerful set of tools, there's an underlying concern

about the technical expertise required to effectively operate it, especially within the context

of Hahatay. Acknowledging this, it becomes apparent that the culmination of our

groundwork and exploration tasks can be channelled into creating a comprehensive

resource. By doing so, we can bridge the knowledge gap and assist users in navigating

OpenWISP's complexities. This realisation leads to the Guide Formation (GF) tasks.

● GF1 - Conceptualizing the Guide: structure the guide based on the identified

challenges, solutions, and tailored functionalities while ensuring relevance and

feasibility. This task and its subtasks are planned to take 15 hours. It does not need

the exploration tasks completed, since ideas on how to structure the guide and its

contents are likely to come to mind during those tasks.

○ GF1.1 Decide the chapters, sections, and subsections of the guide focusing

on the user experience.

○ GF1.2 Review its relevance against already existing guides and OpenWISP’s

documentation.

● GF2 - Drafting the Guide: Begin drafting, including practical examples, diagrams, and

any relevant code or configuration snippets. It is planned to take 45 hours.

28

● GF3 - Review and Refinement: Share the draft with peers, professionals, or the thesis

director for feedback and make necessary adjustments. It is planned to take 20

hours.

● GF4 - Finalizing and Publishing (5 hours): Prepare the guide for publishing, either

online or as an Annex to the thesis. It is planned to take 5 hours.

Given the deep engagement with OpenWISP throughout the project, an inevitable outcome is

the identification of areas for potential enhancement or modification. A task focused on an

OpenWISP Enhancement Proposal (OEP) is in charge of formalising these insights into

structured proposals.

● OEP1 - Idea Generation: Drawing from experiences, feedback, and iterative

refinements, identify potential areas within OpenWISP that can benefit from

improvements, modifications, or entirely new features. This is planned to take 5

hours.

● OEP2 - Technical Assessment: Evaluate the feasibility of these ideas. Understand

their implications, dependencies, and potential impacts on the existing architecture

and functionalities of OpenWISP. This task is planned to take approximately 5 hours.

● OEP3 - Proposal Drafting: Formulate a comprehensive proposal detailing the idea.

This should include the problem statement, the proposed solution, benefits, potential

challenges, and a high-level design or approach for its implementation. The

estimated time for this is 15 hours.

The tasks of Conclusion (C) will remain the same, but the estimation of the Documentation

(D) task increased by 10 hours. This is due to the fact that writing a guide involves a greater

deal of revision because of the amount of text.

29

3.3 Initial budget

In this section, the economic impact of the project is analysed and discussed. Firstly the

costs are identified as whether they are related to personnel, generic or indirect. We are

going to refer to the tasks in the task definition section.

3.1.1 Personnel costs

To identify the human resources cost, it is mandatory to define different roles for the people

going to take part in this project. For each worker, we will multiply the salary per hour by the

time involved in the different activities.

We can recognise 3 types of personnel with different salaries: the Project Manager,

Researcher and Technical Writer. All are performed by the researcher Alicia Pallarol Isábal,

the Project Manager role, however, will be played by the GEP tutor and Thesis Director.

● Project Manager (PM): has the responsibility to plan, execute and monitor the

progress of the thesis. It is summarised in the Project Planning (PP) tasks.

● Researcher (R): has the responsibility to do all the research work related to this

thesis: Groundwork (GW), Experimentation (EX) and Conclusion (C) task groups.

● Technical Writer (TW): has the responsibility to document all the work done by the

other two roles.

The different annual costs can be found in Table 2 and in Table 3 we can see the estimated

hours for each role and the different task groups defined.

Role Gross Annual
Salary (€)

Gross Annual Salary +
Social Security (€)

Hourly Salary (€)

Project Manager 41 052 55420.2 26.64

Researcher 32 847 44343.45 21.32

Technical Writer 38 884 52493.4 25.24

30

Table 22: Annual and hourly salary for the different roles in this project. Wage with social

security contribution calculated by multiplying by 1.35 the gross salary. Hourly salary is

calculated by dividing the annual salary by the hours, days and months worked yearly

assuming a 40-hour work week.

Name Estimated Hours PM R TW Resources Cost

Project planning 125 125 0 0 Laptop 3330

Groundwork 95 0 95 0

Laptop,
Access Point,
Ethernet cable 2025.4

Experimentation 255 0 255 0 Laptop 5436.6

Conclusions 15 0 15 0 Laptop 319.8

Documentation 65 0 0 65 Laptop 1640.6

Total 555 125 365 65 12752.4
Table 33: Hour distribution for the different task groups and the responsible roles for each

one. Using the hourly salaries in Table 2. The total hours exclude the hours needed for the

oral defence.

3.1.2 Generic costs

To illustrate the project's economic cost, the amortisation of the resources employed needs

to be included. Specifically, the hardware resources, since all the software utilised for the

thesis is open source.

We will discuss the amortisation of the researcher’s laptop and the hardware needed for

experimentation. The laptop is a Lenovo ThinkPad T440p, it will be used for the complete

560 hours estimated for the project development. Specifically, we will be working 126 days

an average of 6.3 hours a day for the 560 hours total of the defined tasks.

3 Source: own elaboration according to the initial task definition.

2 Source: own elaboration according to the information at Project Manager, Information Technology
(IT) (2023), Technical Writer Salary in Spain (2023) and Research Scientist Salary in Spain (2023).

31

As for the rest of the Hardware needed, it will be provided by the AC department of the

university and will be used in the Experimentation group of tasks, for one of the iterations of

the EX1 and EX2. A complete iteration of the Experimentation group is 85 hours, but without

EX3, those items will be used for 65 hours, since each iteration without EX3 lasts 35 days,

the hours per day are 1.85. The access point price is 20€ and the Ethernet cable is 2.69€.

The formula for the amortisation is as follows:

𝐴𝑚𝑜𝑟𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑟𝑖𝑐𝑒 * 1
𝑌𝑒𝑎𝑟𝑠 𝑜𝑓 𝑢𝑠𝑒 * 1

𝐷𝑎𝑦𝑠 𝑜𝑓 𝑤𝑜𝑟𝑘 * 1
𝐻𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 * 𝐻𝑜𝑢𝑟𝑠 𝑢𝑠𝑒𝑑

In Table 4 we find a summary of the amortisation for the hardware.

Hardware Resource
price (€)

Years
of use

Days of
work

Hours
per day

Hours
used

Amortisation
(€)

Lenovo Thinkpad
T440p

1150 10 126 6.3 560 81.13

Access point 20 4 35 1.85 65 5.02

Ethernet cable 2.69 5 35 1.85 65 0.54

Table 44: Summary of amortisation of hardware components required in this thesis.

There are other generic costs we need to take into account:

● Electric cost: according to Red Eléctrica de España (REE) (n.d.) the most expensive

price for the kWh as of the 13th of March of 2023 is 0.127€/kWh. This price will be

our reference for the calculation of electricity. We will only count the electric cost of

the Laptop since the access point and the Ethernet cable consume so little energy

(5W for the access point) and are used for a small amount of time that we are

discussing a 0.05€ cost.

As for the laptop, the average consumption is 100W since it is an old laptop, so for

560 hours, we will be using 560kWh and the cost for that will be 71.12€.

4 Source: own elaboration.

32

● Workspace, Internet and water: since the researcher lives in a residence hall in

Barcelona, the rent of the workspace is 560€ with furniture, Internet and water

included and those prices cannot be segregated from the rent. Since this project is 5

months long, the total cost of the workspace, furniture, Internet and water is 2800€.

We do not have any cost related to software as we are going to use open-source software for

all tasks from documentation to experimentation. Moreover, all meetings with the Thesis

Director will be held through the online platform Jitsi Meet, which means there will not be

any travel expenses.

In Table 5 we can find a summary of the direct and indirect costs:

Personnel costs (€):
12752.4

Generic costs Amount (€)

Amortisation of Lenovo Laptop 81.13

Amortisation of Access Point 5.02

Amortisation of Ethernet cable 0.54

Electricity 71.12

Workspace 2800

Total personnel + generic costs (€):
15710.21

Table 55: Personnel and generic costs.

3.1.3 Other costs

There are two very important costs to take into account:

● Contingencies: it is essential to be prepared for unforeseen circumstances, this

accounts for the planning but also the budgeting. For this reason, it is reasonable to

set up a fund to confront the different risks. Since the consequence of our main risks

is having to adjust timing but at the same time all work will be based on a single and

5 Source: own elaboration.

33

old laptop, both personnel and general costs need a proportional margin. From Table

4 we have that the combined cost of personnel and general is 15710.21€ so the

margin for contingencies should be the 15% of that combination: 2356.54€.

● Incidental costs: according to our Risk Analysis in Table 6 we have a numerical

evaluation of these obstacles with the impact in hours and in its cost (€) depending

on the role that would need to work and the salary, the likelihood of that happening

(risk) and also the cost that each possibility will be added to the budget accounting

to the risk:

Possible Incident Impact (hours) Risk
(%)

Estimated
cost (€)

Cost accounting to
risk (€)

Deadlines 30 25 725 181.25

Lack of experience 20 40 426.4 170.56

Poor software
maintenance

15 10 319.8 31.98

Deficient documentation 5 10 126.2 12.62

Total (€):
396.41

Table 66: Incidental budget calculation. The cost estimations for the incidents depending on

roles are as follows: in deadlines, 5 hours will need to be dedicated by the Project Manager

to reorganise, 10 hours by the Researcher and 15 hours by the Technical Writer; as for the

lack of experience and poor software maintenance, all the hours are linked to the

Researcher. Finally, for the deficient documentation, all 5 hours are accounted to the

Technical Writer.

Table 7 summarises the other costs:

6 Source: own elaboration.

34

Cost name Amount (€)

Contingencies 2356.54

Incidents 396.41

Total (€):
2752.95

Table 77: Summarization of contingencies and incidents.

Table 8 summarises the complete budget:

Cost name Amount (€)

Personnel costs 12752.4

Generic Costs 2957.81

Other costs 2752.95

Total (€):
18463.16

Table 88: Budget summary.

3.4. Planning and Timeline

The approximate duration of this project is 550 hours distributed in 35 weeks: from

mid-February to mid-October. This gives almost 16 hours weekly dedicated to the project,

which will imply a little above 3 hours a day.

3.4.1. Initial Schedule and Planning

The initial planning, in a Gantt diagram can be found in Figure 1. It follows the tasks

described in the Initial tasks section.

8 Source: own elaboration.
7 Source: own elaboration.

35

Figure 19: Gantt diagram with the initial planning.

3.4.2. Deviations and Adjustments

The planning in Figure 1 showed some tasks and times that do not correspond to the Final

tasks. This is due to a few reasons.

1. Change of direction: while starting to look at OpenWISP, it was evident that a

not in-depth analysis would not lead to findings or implementations. For this

reason, it was decided to focus on this software platform.

9 Source: own elaboration.

36

2. The opportunity to get involved in the Battle Mesh came along, and it seemed

like a great learning opportunity that could lead to huge advancements in the

understanding of the platform. However, while this deviation provided more

perspectives and also contacts, it did take time away from the writing and

structuring of the thesis.

Taking into account all of this, the decision to move the date from June to October was

made.

3.4.3. Impact on Objectives and Costs

These changes impacted objectives as initially they were more general and included finding

various solutions among different platforms. However, the learning outcomes have not

changed.

About the cost, the amount of hours dedicated to each section changed, so it has been

necessary to make some minor adjustments found in Table 9, Table 10 and Table 11:

Name Estimated Hours PM R TW Resources Cost (€)

Project planning 135 135 0 0 Laptop 3596.4

Groundwork 130 0 130 0

Laptop,
Access Point,
Ethernet cable 2771.6

OpenWISP
Functionality
Exploration 80 0 80 0

Laptop,
Access Point,
Ethernet cable 1705.6

Guide
Formation 85 0 85 0 Laptop 1812.2

OpenWISP
Enhancement
Proposal 25 0 25 0 Laptop 533

Conclusions 15 0 15 0 Laptop 319.8

Documentation 80 0 0 80 Laptop 2019.2

Total 545 135 330 80 12757.8

37

Table 910: Hour distribution for the different task groups and the responsible roles for each

one according to the final planning. Using the hourly salaries in Table 2. The total hours

exclude the hours needed for the oral defence. This is a correction from Table 3 with the new

hour distribution.

Hardware Resource
price (€)

Years
of use

Days of
work

Hours
per day

Hours
used

Amortisation
(€)

Lenovo Thinkpad
T440p

1150 10 175 3.11 545 115.16

Access point 20 4 70 3 210 5

Ethernet cable 2.69 5 70 3 210 0.67

Table 1011: Summary of amortisation of hardware components required in this thesis

according to the final planning. This is a correction from Table 4 with the new hour

distribution.

Personnel costs (€):
12757.8

Generic costs Amount (€)

Amortisation of Lenovo Laptop 115.16

Amortisation of Access Point 5

Amortisation of Ethernet cable 0.67

Electricity 7.12

Workspace 5040

Total personnel + generic costs (€):
17925.75

Table 1112: Personnel and generic costs according to the final planning. This is a correction

from Table 5 with the new hour distribution.

12 Source: own elaboration.
11 Source: own elaboration.
10 Source: own elaboration according to the final task definition.

38

These new updated tables follow the calculation rules, for the amortisation, for example, as

in the initial budget. Also, the “other costs” described at section 3.1.3 will remain the same to

compute the global budget since its concepts are Contingencies and Incidents for a total of

2752.95€. The electricity costs were miscalculated in the initial budget, so we need to

correct them: for a 100W laptop running 545 hours we get 54.5 kWh and for the 5W access

point 1.5kWh which is a total of

The updated total is 20678.70€ with the original budget at 18463.16€. So this project went

2215,54€ over budget, mainly due to the rent since there was a huge addition of months for

the workspace.

Luckily, we had a margin of contingency of 2356.54€ so even though it was pretty tight, the

cost overrun of the workspace fits into the total initial estimation.

3.4.4. Final Planning and Timeline

The new planning can be found in Figure 2 in the form of a Gantt diagram, scaled to weeks.

39

Figure 213: Gantt diagram with the final planning.

13 Source: own elaboration.

40

4 Sustainability report

It is essential that as a society we start integrating a sustainability dimension with all its

implications (economic, social and environmental) in all professional processes: from

academic to industrial. It is not enough to think of the economic aspect.

For this reason, it is crucial to analyse the sustainability impact of this thesis. From the

economic implication that we already discussed a little bit with the amortisation, but also the

social impact this project has, reflecting on how we can serve others and improve others’

welfare; finally, we can not forget the consideration for the environment: we need to take into

account the footprint of our project, how can we lessen the environmental impact.

In this report the sustainability is discussed following the sustainability matrix provided for

the grading of the thesis and therefore containing a section on the Project Put into

Production (PPP), the lifespan and the risks.

4.1. The Project Put into Production (PPP)

It is very interesting to have the PPP analysed under different perspectives:

● Environmental: It is very difficult to quantise the environmental impact of a thesis like

this in terms different from the kWh. This is because this project uses little hardware

and does not require big cloud storage solutions, for example. In section 3.4.3 the

budget was estimated taking into account the kWh and we had 545 hours of usage of

a laptop, 210 hours of usage of an access point and Ethernet cable, however, the

Ethernet cable consumption is negligible. For the laptop we are estimating 100W

because it is an old computer and for the access point around 5W. For the laptop it

would be 54.5kWh and for the access point 1.05kWh. Moreover, this thesis could

41

have been done with almost half of the time for the access point, which could have

saved energy.

● Economic: For the budget there was a big time deviation that with the costs of the

amortisation and rent, for example made a big difference. However, it fitted in the

budget of the contingency plan. It is explained in section 3.4.3.

● Social: Personally, realising that this project even with the little amount of hardware is

more than 50 times what a fridge consumes, is surprising. It is difficult to think about

this since we use computers as tools for what we want to achieve, they are an

extension of ourselves sometimes. Nonetheless, a platform such as OpenWISP

proves to make networking infrastructures more efficient, however, this fact is not

that good because it could cause a rebound effect implying that the infrastructures

are bigger because of their improved efficiency. Balancing this information during the

elaboration of the thesis has been rather overwhelming because as engineering

students we are taught that efficiency is the goal, but when it comes to the real world,

efficiency may just mean more consumption thanks to better resource management.

4.2. The Lifespan

In this section the discussion also focuses on the same parameters as the previous one:

● Environmental: The resources used on the lifespan are the same ones as for the PPP.

As also discussed, the impact of the efficiency increase will be at a first glance good

for the global footprint, since with the same resources the footprint will be less or

even less resources will be needed. However, there is a personal concern on the

rebound effect.

● Economic: The costs of the project on its lifespan are the same ones as for the PPP.

Even the updates and adjustments have been researched and they do not imply the

use of further resources.

42

● Social: Communities in need of OpenWISP tools can benefit from this thesis’ work

since it helps to bridge the knowledge gap required to operate OpenWISP. All kinds of

organisations can get a grasp of the possibilities it has to offer so that they can

deploy it. The content of the guide provides the information needed to know what

direction to take when intending to deploy OpenWISP and this usage curve is at the

very minimum flattened.

4.3. Risks

There are plenty of risks worth analysing from the same points of view we have been using::

● Environmental: for the project, a risk is the use of inefficient hardware. New

computers, for example, consume less power. However, we could have also deployed

the testing environments in real servers instead of a having virtual machines in a

laptop, which clearly would have had a bigger footprint, so we had some balance.

● Economic: scenarios compromising the viability of the project include inadequate

planning, lack of resources, lack of time, lack of expertise and technical challenges.

All of those could have set back the project for more time that would have not fit in

the contingency plan. To mitigate these risks it is important to have support so that it

is possible to gain in planning skills. Planning involving allocating extra time taking

into account the possible impact of the lack of expertise and also having a flexible

methodology that allows the project to evolve according to the difficulties faced.

● Social: since OpenWISP is an open source platform, there is no risk involving a

vendor lock-in. However, for network administrators, the risk could be to have a

problem that no one in the community has been before or that the community does

not really help you out. These scenarios could be risky for the project but could be

mitigated through consistent participation and involvement with the community.

43

4.4. Conclusions

We are members of UPC, a public university located in a fully developed country, a welfare

state; we have the responsibility to look at the globalised world and take into account that

world issues, even if they are geographically far from home, are matters that involve us. They

involve our consumption models, the way we interact with others and how we, as humans,

want progress to look. Everything.

After writing this report, it is easier to look into future situations where it will be easier to

recognise the best approach in terms of environmental, economic and social sustainability.

But it is necessary that we develop these realisations earlier in life, in order to start making

the best possible solutions quickly.

Finally, sustainability, as a concept, could be more integrated in the contents of all degrees,

specially technical degrees because it makes professionals get in touch with the society

from other points of view other than just technology and having the most amount possible of

points of view helps us to understand others, the world and even ourselves better.

44

5 OpenWISP and Organisations: Customisation

and Network Optimisation

The first thing we need to evaluate the relevance of OpenWISP for organisations is an

analysis on what the different features network infrastructures in most organisations need.

In this section some of the most important features will be discussed, specifically the

features related to customisation and optimisation, because the foundation of a robust and

resilient network not lies just in the hardware.

The customisation aspect ensures that a network aligns with the unique needs of its users

and administrators, catering to specific user roles, policy enforcement, and any necessary

automation. Optimisation, on the other hand, is about enhancing the network's efficiency,

ensuring smooth traffic flow, and selecting the best channels for communication.

OpenWISP as a modular platform, offers great detail as per customisation and optimisation

so in this section, we will be discussing the user roles, policies, channel selection and best

practices in general.

One of OpenWISP's primary features is its capability to manage multiple organisations. With

Hahatay in mind, we will only be using one, so in the following sections we will be discussing

within an organisation, assuming we only have one, the most important topics to keep in

mind when discussing network optimisation and customisation and their relation to

OpenWISP.

45

5.1. Specific needs of Hahatay

The most remarkable network infrastructure related needs Hahatay has are related to the

user management. This is because at the starting point of this project, it was possible that

while in a class, for example, someone passing by could use up the bandwidth not allowing

the class to carry on properly.

Looking into this, the first idea was to look up for how to implement VLANs, however, once

seeing that OpenWISP has RADIUS support it was really worthy to explore its potential.

Moreover, at Hahatay, coverage is also an issue since the buildings are built with mud bricks

and the material seems to complicate the signal transmission and reception, which is a topic

interesting to investigate further.

As any other network, in Hahatay having an efficient and secure network are also

requirements and all mentioned matters are discussed in the upcoming sections.

5.2. Customisation: User Roles and Network Policies

The first thing in discussion when talking about customisation is the relevance of user roles

and policies. Distinct user roles ensure that individuals have access to the resources they

require without compromising the network's security. Policies, meanwhile, set the stage for

consistent and streamlined network operations.

5.2.1. User roles

The implementation of user roles, often via mechanisms like Role-Based Access Control

(RBAC)(Fortinet, n.d.). RBAC essentially is a system of arranging access to network

46

resources based on the roles of individual users within an organisation, and it offers several

significant advantages. Firstly, it bolsters security measures by ensuring that potential

threats from human errors are limited.

Consider a scenario where an employee in marketing is compromised through a phishing

attack; the risk is significantly mitigated if their role does not grant them access to sensitive

company data.

Furthermore, RBAC simplifies the task for network administrators. Instead of individually

adjusting access for every user, they can modify permissions based on roles, leading to a

streamlined process that ensures users get timely access to the network resources

necessary for their tasks.

Since having roles is so significant, our first contact with OpenWISP functionalities will be

related to this. The platform distinguishes between two primary user contexts: 'network

administration', which involves individuals responsible for setting up, monitoring, and

maintaining the network, and 'end-users', who primarily connect to and use the network.

The network administration as a user context is related to the permissions each individual

can have according to their role in the network administration. The end-users, on the other

hand, go hand-in-hand with OpenWISP’s integration with RADIUS, a networking protocol, to

manage the authentication, authorization, and accounting for these end-users. RADIUS

makes it easier to manage user access to the network.

All these advantages would be very beneficial for Hahatay: imagine a scenario where a

volunteer needs access to specific network resources for an event. With RBAC, their access

47

can be easily managed and restricted once the event concludes. And for the end-users, it

could help to segment the network, so there are no usage abuses.

Let’s dig deeper now into the network administration users: it is possible to have different

roles, as groups and then assign those groups to specific people, for example:

● Administrator: this role has a high level of access, it has a broader oversight and

organisational structuring. It can add users, groups, all kinds of configurations, etc.

Essentially, manages the network from the organisation side rather than the technical

one.

● Technician/operator: this role interacts more frequently with the system, its

permissions are related to operational tasks. For this reason, it has a great deal of

access.

● Auditor: this role can view settings and logs, but not make changes. It can be useful

for evaluations of the network.

The creation of each role or adapting them to different policies is a pretty straightforward

process in OpenWISP. No roles are predefined aside from the Administrator and the Operator,

all the permissions can be changed for all roles.

5.2.2. Authentication and Access

The end-users can be created in batches, from a .csv file, for example, and there is also the

possibility to create groups for different users. The groups can have different custom

“Checks” as they mention in OpenWISP where different aspects of the connection can be

limited, for example, the daily traffic or the daily surfing time.

48

The actual connection for the end-users, using RADIUS, is done with a captive portal

package named Coova-Chilli, this package is the one that does the Accounting, Authorisation

and Authentication (OpenWISP, n.d-e).

The users can self-register using their mail or social accounts. Furthermore, paid plans can

be implemented and be shown at the self-registration to have different limits to their

connections. These payments are done via PayPal.

In the case of Hahatay, it may be helpful to manage the day-to-day users at the highest level.

However, it could also be helpful to have a self-registration option designed just for visits

and, parallelly, the recurrent users are created externally so that it is easier to manage in

terms of the groups they belong to and the limits.

So a day-to-day user could self-register and use this account temporarily while his or her

long-term account is being created by the network operator, for example. Or a new network

administration role could be created with user management permissions just to manage

new registrations.

Some examples of groups of users that could be created are: staff, students, teachers and

guests. Each one could and should have different limits.

5.2.3. Monitoring and Data Collection:

OpenWISP can be configured to track user activity logs. If that were the case, it would record

the following information for each user: username, IP address, MAC address, connection

start time, connection end time, data usage, and visited URLs.

49

This data can be used to monitor user activity and identify potential security threats. For

example, if a user is spending a lot of time on a particular website, it might be good to

investigate further to see if they are visiting a malicious site.

Additionally, it can be used to comply with regulations: OpenWISP can be used to collect the

data that is needed to comply with legal regulations.

5.2.4. Network Policies

At Hahatay, as in any network, it is important to define on paper, with proper documentation,

the definition of network administration roles and permissions, end-user roles as well as the

justification behind the collected data.

This is important because there can be changes in the technical staff. Having

well-documented policies ensures that the new staff member can quickly understand the

network's setup speeding up the training and onboarding process, allowing them to get

up-to-speed faster and start managing the network faster.

Moreover, over time, as networks evolve and grow, decisions are made for specific

reasons—maybe to address certain challenges or requirements. Documenting these reasons

can provide context for future decisions.

It can also help to standardise processes: clear documentation can help in standardizing

certain processes, ensuring that best practices are always followed. Also, if any issues arise

or if there's a need for audits, having clear documentation can provide clarity on what was

done, when, and why.

50

Finally, as technology and user needs evolve, periodically reviewing the documented policies

can help identify areas for improvement or changes.

5.3. Optimisation: Channel Selection, Traffic Management, and

VLAN Implementation

After discussing the policies and user roles, it is time to discuss the optimisations possible

with OpenWISP.

5.3.1. Channel Selection

The channel used is an important item in terms of performance. For this reason, the channel

selection should be discussed as a means of improving the Quality of Service (QoS). QoS are

all the tools that according to Fortinet (2023), “control traffic and ensure the performance of

critical applications”.

The selection of the channel should be a mindful one, taking into account the suitability for

different environments (outside/inside) and the possible interferences with other networks.

In Hahatay this topic is rather relevant since, as we mentioned, the buildings are built out of

mud bricks. Currently, this is causing issues related to interference and signal degradation so

it is important to keep the channels in the 2.4GHz band. Low-frequency waves transmit

better through a wall according to Intel (n.d.).

As the most used channels for Wi-Fi are the 2.4GHz we should also be mindful about the

possibility of their overlapping. For this reason, in dense areas, it would be good to make

sure that we are using the non-overlapping 1, 6 and 11 channels (Cisco Meraki, 2020).

51

In OpenWISP automatic channel selection, from version 2.0.0 does not exist. For this reason,

the only way to change the channel is to manually change the values of the channel at each

device. Since there is no possibility to enable automatic selection, a Wi-Fi analyser tool could

be used to find out the state of the network to select the most appropriate channels at any

given time. For example, the famous Wireshark can be a Wi-Fi analyser (Wireshark, n.d.). It

can be installed on any device connected to the network to evaluate this, for example.

5.3.2. Traffic Management

Given the distinct user roles, it is imperative to balance user demands with available

bandwidth. Even with each user having a defined role, it is important to delve further into

Quality of Service (QoS).

We mention the possibility of limiting network usage, and in terms of traffic management,

setting up policies with those limits comes with pros and cons. Pros:

● Reduced congestion: It can help to reduce congestion and improve performance.

● Fairness: It can help to ensure that all users have a fair share of the bandwidth.

● Cost savings: It can help to reduce the cost of the network.

Cons:

● Reduced user experience: It can negatively impact the user experience.

● Increased administration: It can require additional administration.

OpenWISP offers some modules that can assist in understanding network traffic patterns,

which can further inform optimisation strategies. The monitoring module includes traffic and

bandwidth usage charts. We will provide more details on what the monitoring module offers

in chapter 5.

52

There is a third possibility to enforce QoS with OpenWISP by using 3rd party software such

as Quagga (Quagga, n.d.). However, we are not going to delve deeper into them due to the

issues that 3rd party services bring to the table with QoS, some of the issues are:

● Complexity: The configuration is highly challenging and there is no straightforward

solution or straightforward integration.

● Cost and vendor lock-in: They can be expensive and if they are not, the platform may

lock the deployment into that vendor's platform. This can make it difficult to switch to

a different QoS solution in the future.

● Performance: They can add latency and overhead to the network traffic, which can be

a problem for applications that require low latency, such as Voice over IP (VoIP) and

video streaming.

● Security: They can introduce security risks to the network because these services

often have access to sensitive network traffic data.

5.3.3. VLAN Implementation

According to IBM (2023) a VLAN, which is a logical broadcast domain, splits up groups of

network users on a real physical network onto segments of logical networks.

It has plenty of benefits, let’s highlight some (University of Wollongong, 2008):

● Ease of administration: VLANs focus on devices separated in the network. For this

reason, a change of location does not imply the need to reconfigure the end stations.

● Confinement of broadcast domains: With VLANs the need for deployed routers on

the network containing broadcast traffic is significantly reduced since the flooding of

a packet is restricted to the interfaces in the same VLAN. Actually, this confinement

significantly reduces traffic. In some cases this traffic can arrive unwillingly, however,

with a VLAN this traffic is avoided.

53

VLANs enhance both security and management efficiency. By segmenting the network,

VLANs allow for more organised oversight, making them highly powerful for settings like

Hahatay where distinct groups like faculty, students, administration and guests may require

differentiated network access. Specifically, in Hahatay's context, VLANs could be

instrumental in allocating higher bandwidth to classrooms during active sessions, ensuring

uninterrupted lessons.

OpenWISP cannot currently configure VLANs within the platform. However, there are a few

ways to work around this. One way is to use a third-party VLAN management tool. There are

a number of these tools available, and they can be used to configure VLANs on a variety of

devices. The general way to integrate a 3rd party service for VLANs in OpenWISP would be

by using the netjsonconfig protocol. The netjsonconfig is according to OpenWISP (n.d. -b) “a

python library that converts NetJSON DeviceConfiguration objects into real router

configurations that can be installed on systems like OpenWRT, LEDE or OpenWisp Firmware”.

The third-party VLAN management tool would need to be able to send and receive

netjsonconfig messages. Once the third-party VLAN management tool can communicate

with the OpenWISP controller, it will be able to use the netjsonconfig protocol to manage

VLANs on the OpenWrt devices that are managed by OpenWISP. OpenWRT is a Linux-based

firmware used in devices such as routers, access points, for example (OpenWRT, 2023b).

However, given that all of Hahatay's routers and network devices operate on an OpenWrt

backend, VLANs can be directly configured by accessing the individual OpenWrt interfaces

on these devices. The process is straightforward, primarily requiring uci (Unified

Configuration Interface) commands to add the VLAN to the devices and then assign the

VLAN to a switch port. According to OpenWRT (2023a) uci “is a system to centralize the

54

configuration of OpenWrt services”. To do this, it is required to edit the switch port

configuration which is different depending on the model.

5.4. Best Practices and Challenges

Building a culture rooted in best practices is essential, especially in complex infrastructures

like Hahatay. The following best practices can enhance network performance and security:

● Regular Updates: Always keep OpenWISP and any other integrated systems

up-to-date to benefit from the latest security patches and features.

● Backup and Recovery: Establish a routine for backing up configurations, user data,

and essential settings. It is also essential to discuss the importance of having a

disaster recovery plan.

● Monitoring and Alerts: Set up monitoring tools to keep an eye on network health,

usage patterns, and system metrics. Utilize alert mechanisms to get informed about

potential issues before they escalate.

● User Training: Ensure that users -especially those in administrative or technical roles-

receive adequate training on the system. This not only empowers them but also

reduces the risk of misconfigurations due to human error.

● Documentation: Maintain comprehensive documentation on the network setup,

configurations, and any custom solutions implemented. This assists in

troubleshooting and is invaluable during handovers or staff transitions.

There are also plenty of security best practices:

● Password Policies: Emphasize the importance of strong, unique passwords.

Consider periodic password changes.

● Implementing correctly the Role-Based Access Control (RBAC): Ensure users have

only the access they absolutely need.

55

● Regular Audits: Periodically review user roles, privileges, and system access to

ensure no inadvertent security lapses.

● Firewalls and Intrusion Detection: Implement and regularly update firewall rules.

Consider intrusion detection systems to detect unauthorized access attempts.

● Physical Security: While much of the discussion might be about digital security, it is

crucial to mention the importance of securing the physical hardware and access

points.

There are also a set of challenges linked to the setting up of an infrastructure:

● Scalability: As the network grows or user demands increase, there might be

challenges in scaling up the infrastructure or managing a larger user base.

● Interoperability: If integrating with other systems or platforms, like the mentioned 3rd

parties, there might be challenges in ensuring seamless operation.

● Technical expertise: While OpenWISP is designed to be user-friendly, certain

advanced features or troubleshooting might require a deeper technical

understanding. An operator of the network must be consistently reachable for issues

that may come up.

● External threat landscape: The external threat environment is dynamic, with new

vulnerabilities and challenges emerging regularly. So staying updated and proactive

is a constant challenge.

● User resistance: Especially in established environments, there might be resistance

from users in adapting to new systems or policies.

56

6 Ubiquitous Access and User-Centred Design

A consistent and comprehensive network is necessary in bridging the digital divide and

fostering digital inclusivity. It forms the backbone for seamless learning and enhanced

educational opportunities.

Take, for instance, online tests. In schools, where resources are scarce, uninterrupted online

tests become a lifeline for assessment. A reliable network ensures that students can

complete their tests without disruptions, thereby enabling fair evaluation and reducing

educational disparities.

Moreover, a consistent network allows teachers to access educational materials, conduct

research, and employ multimedia tools effectively. This enriches the learning experience,

making it more engaging and informative for students. For instance, a teacher in a remote

village can bring global knowledge into their classroom, broadening horizons that might

otherwise remain constrained.

The fact is that reliable networks facilitate administrative tasks. The efficiency increase can

be transformative, freeing up resources for educational improvements.

All in all, not only in schools but in all kinds of organisations, a consistent and

comprehensive network transcends being just a technological necessity. It becomes the

bridge that connects people to a world of opportunities.

57

6.1. Ensuring Comprehensive Network Coverage

In organisations with many facilities or huge ones, there can be many areas to cover by a

network. Hahatay, by being not only a school but a community, also has many facilities and

areas, for instance, a cultural house, a women’s centre and a school.

These different facilities will have different sets of walls, doors, furniture, etc. For this reason,

a Site Survey is needed. A Site Survey, according to Cuevas (2020) is a comprehensive

evaluation of wireless networks and their relationship with the physical environment of a

network. Their purpose is to gather precise information in order to determine the number

and placement of access points required to ensure efficient and uniform coverage

throughout the space.

For example, they identify potential sources of interference that could negatively impact the

performance of the wireless network, like microwaves or other electronic devices. Radio

frequency signals can be influenced by various obstacles, such as different types of objects

and materials, which can disrupt the signals and cause reduced coverage.

So by conducting a Site Survey, it is possible to gain a detailed understanding of how

wireless signals behave and propagate in their environment, enabling to optimise the

wireless network setup for optimal performance.

Since there are many spaces to be covered by the network, Hahatay already has in place a

mesh network to cover the most area possible. A mesh network is a Wi-Fi system that

prevents dead zones and provides uninterrupted Wi-Fi (TP-Link, n.d.). The main difference

with traditional routers is that in mesh networking, there are multiple access points instead

of broadcasting Wi-Fi from just one.

58

In heterogeneous scenarios, from University Campuses to military settings, mesh networks

have proven their efficiency. When one unit connects to the modem, that unit becomes the

main hub, while the other units, the nodes, capture and relay the signal from the router. This

node-to-node relay system facilitates redundancy and adaptability, ensuring robust

connectivity, even in terrains with variability. Data can navigate alternative paths around

obstructions or interference, thanks to this architecture.

Furthermore, the self-healing nature of mesh networks allows nodes to dynamically adjust

routing, maintaining uninterrupted connections. The result is a scalable and adaptable

wireless network that conquers connectivity challenges in diverse physical landscapes,

providing a strong and reliable signal.

Although you can not directly set up mesh networks with OpenWISP -it is required to

configure the mesh from the OpenWrt system- its controller can connect with the mesh to

centrally manage all the devices in the mesh network. This includes things like configuring

SSIDs, assigning users, and monitoring network performance.

Moreover, the OpenWISP controller can be used to automatically update the firmware on all

the devices in the mesh network. This ensures that all the devices are running the latest

security patches and bug fixes. Additionally, it can be used to troubleshoot issues since the

controller can provide information about the status of the network, such as which devices

are connected and how much traffic is being generated.

As mentioned, in Hahatay they are already using all devices with OpenWrt, which is the only

requirement to run OpenWISP.

59

Finally, it is essential to discuss scalability. To achieve it, in any circumstance, it is necessary

to build a flexible network infrastructure. This means investing in hardware and software

solutions that can adapt to growing demands. For example, opting for cloud-based services

can provide scalability on demand, reducing the need for frequent and costly hardware

upgrades.

Periodic network audits are another crucial element in maintaining an optimal network.

These audits should encompass technical assessments as well as a thorough examination

of how the network aligns with changing educational requirements. By regularly assessing

performance and identifying potential bottlenecks or areas that require improvement,

organisations can proactively address issues before they become impediments to learning.

Feedback from the community at Hahatay is invaluable. Their insights can shed light on user

experiences and pinpoint challenges that may not be apparent through technical

assessments alone. Encouraging open communication and actively soliciting feedback

ensures that the network is aligned with the real-world needs of its users.

Budgeting for network upgrades is also critical. For this we need to recognise that

technology evolves rapidly, and allocating resources for updates and improvements is

essential to keep the network current and capable of supporting educational goals

effectively.

Lastly, investing in training for all members of the community is vital. With new technologies

and tools continually emerging, ensuring that the community has the knowledge and skills to

make the most out of these resources optimally is key to the long-term success of the

network and, ultimately, the quality of education and other services provided.

60

6.2. Design of the User Guide

One of this thesis goals is the compilation of a guide that complements OpenWISP

documentation, the guide can be found in the Appendix A. It was conceived as a digital

guide, because although it follows an academic format with references, it also contains links

within the text that are not referenced because they lead to OpenWISP’s documentation on

specific topics.

In this section the design principles followed to write the guide are explained. Starting with

the fact that user-friendly documentation is indispensable for any technological system,

especially in self-managed environments like Hahatay. It bridges knowledge gaps, enhances

usability, and empowers diverse users. Clear guides streamline support, reducing disruptions

to the educational process.

The goal for a user guide taking the example of Hahatay was that not only specialised

networking professionals in Hahatay’s community were able to deploy OpenWISP, but that

other technicians can also understand its potential and be a part of it.

Our assessment of existing OpenWISP documentation revealed several challenges,

including:

● The fact that the architecture is just explained in a photograph. It is difficult to

understand how the different components work with each other.

● Since there have been different versions and it is still under development, the

releases of new versions complicate the documentation, which in many cases is not

updated.

● Without the proper understanding of the architecture, how the modules work and

interact is not trivial nor straightforward.

61

● Even though the Dashboard on the graphical interface is straightforward, the

possibilities OpenWISP offers for managing networks in organisations’

infrastructures are not clear.

● There is a mailing list, but there is no place centralised that contains all the

documentation for the modules and functionalities. So users are dependable on the

answers of the community.

6.2.1. Outline of the guide

Before outlining the guide, we should emphasise that we tried to make the guide inclusive,

including the various important topics relevant for all kinds of organisations as described in

chapter 5 and also supporting users to troubleshoot common issues themselves, fostering

self-reliance.

Moreover, if the end goal of the guide is to be usable, it should have frequent reviews, in

order to adapt to updates. As technology evolves and the needs of Hahatay's community

change, the user guide must remain updated. Regular, continual revisions are not just best

practices but crucial to ensuring that the guide's content aligns with real-world requirements

and remains user-friendly. By maintaining the guide's currency, we ensure its longevity and

relevance.

The methodology for navigating all the requirements included meetings with stakeholders at

Hahatay and iterative revisions to actually make it user-friendly. The iterative revisions,

involved fellow students with a deep networking knowledge but unfamiliar with the guide's

content, ensuring a fresh perspective that helps identify potential issues.

To achieve all the described the outline of the guide includes these main chapters:

62

A. OpenWISP architecture: A chapter discussing the architecture of OpenWISP.

B. Customisation: A chapter discussing the topics covered in chapter 5 in relation to

OpenWISP’s capabilities and adaptability.

C. Network optimisation: A chapter discussing optimisations that are allowed with

OpenWISP.

D. User design: A chapter discussing ways to make the network usage and

management as user-friendly as possible.

E. Case study: A chapter discussing how to evaluate an OpenWISP set up.

6.2.2. Testing environment to familiarise with OpenWISP:

In order to elaborate the guide a test environment was created. The aim of this

experimentation was to simulate a small network infrastructure to assess the complexity of

the whole process and to realise the features worthy of attention to the guide.

To do so, we used a virtual machine with Debian 11 as the operating system to set up the

server and at the beginning we connected to it virtual machines running OpenWRT as

devices, on a last instance we were also able to connect a router. The tutorials and

documentation were always followed with the focus on simulating a production

environment, for this reason we set up the server with Ansible. Ansible is a tool to automate

different configurations and orchestrate workflows, among others (Ansible, 2019).

We were able to explore the different items of the OpenWISP Dashboard and see all the

default values and possibilities. However, we were not able to apply configurations on the

devices.

63

With our test environment the content compilation for the guide is more meaningful and

directly addresses what a network administrator wanting to deploy OpenWISP for her or his

own infrastructure would come across. The outcomes of this environment testing are further

discussed in section 7.1.

6.2.3. Other considerations on the guide

To add relevance to the guide for organisations that may use it, targeted trainings, such as

workshops for specific roles like operators or administrators, should be offered. These

sessions, open to all interested community members, can foster understanding and

confidence in using the technology.

64

7 Evaluations, Iterative Improvements and

Proposal

The journey of improving and refining technological systems, like OpenWISP, is a continuous

cycle of evaluation, adaptation, and innovation. In this section, we will explore the measures

taken to understand OpenWISP's strengths, areas of improvement, and the efforts to

optimise it for broader applications. Through simulation, a cost-benefit analysis, and

observing its adaptability over time, we aim to build a comprehensive understanding of the

system's evolution. These evaluations not only facilitate enhancements in OpenWISP but

also provide valuable lessons for similar platforms in the realm of community networks,

especially the one at Hahatay.

7.1. Preliminary Evaluations and Lessons

7.1.1. Objectives of Simulations

The objectives of simulations described at section 6.2.2 were to experiment with

OpenWISP's functionalities to know how they would fit into a real deployment. Specifically,

the functionalities that could improve Hahatay’s infrastructure. Also, the hope was to

understand better OpenWISP’s architecture from the experimentation.

7.1.2. Overview of Results

For overviewing the results, it is needed to note the intention of trying a production

environment using virtual machines (VMs) posed some inherent limitations. VMs, sharing

resources with the host machine, might not mirror the performance of real-world

deployments. Additionally, nuances in virtual network interfaces and hardware emulation can

65

introduce discrepancies from actual setups. This isolation of VMs can also sometimes

prevent seamless communication with other systems.

The qualitative highlights are:

● Tutorial: The basic set-up of the server is a process with a curated tutorial at the

GitHub repository.

● Documentation: There is no straightforward documentation on how to integrate the

different modules, the controller and the API.

● Communication in Virtual Environments: Setting up communication between virtual

machines and ensuring they successfully connect to each other can be a nuanced

task. In our simulations, initial challenges were encountered due to network

configurations within the virtual environment. Once addressed, we were able to

successfully establish communication. This underscores the importance of detailed

setup and configuration, especially when virtual environments are used to replicate

real-world scenarios.

● Security Concerns: When setting up and experimenting with network systems,

security can often become an unforeseen challenge. For instance, ensuring that

communication between different VMs is encrypted or securing the OpenWISP server

from potential breaches.

● User Experience: The dashboard of the OpenWISP controller was deeply explored

with during the simulations. In general, the different tabs were clear: Home, Devices,

Configuration, Users & Organizations, Geographic Info, CAS & Certificates, RADIUS,

Monitoring, IPAM, Firmware, Network Topology, Subscriptions and Help. When

looking at the general picture, the dashboard is very intuitive. However, when entering

into detailed specification or configuration of, for example, a particular device, there

are many checkboxes without context on what they are exactly. If there are

66

checkboxes, usually there also exists an “Advanced Mode (JSON)” where you can

add the configuration parameters with the values. However, there is little

documentation and very hard to find the different parameters.

7.1.3. Lessons Learned

There have been many lessons learned on the OpenWISP simulations:

● Ansible, a popular automation tool used for configuration management and

application deployment, plays a very important role. Once Ansible’s dynamic and how

it interacts with the modules are figured out, it makes everything very smooth.

● While using VMs for the OpenWISP simulations, one challenge encountered was

related to Network Address Translation (NAT) configurations, particularly when trying

to establish concurrent Secure Shell (SSH) sessions to different VMs. NAT is a

method used in networking that allows a device to modify IP address information in

packet headers while in transit, enabling one IP address to represent multiple internal

IP addresses. The VMs, operating behind the NAT, required unique port forwarding

rules to ensure successful incoming SSH connections. Misconfigurations or overlaps

in these port assignments lead to connectivity challenges, highlighting the

importance of meticulous network setup in virtual environments.

● OpenWISP has a lot of potential since it offers a wide range of features, moreover it

is still under development, which means that further features could be included in the

future.

● Rigour is key when working with projects under development, especially since

documentation can be outdated, incomplete, or might not address all potential

challenges. In such evolving projects, staying updated with the latest changes,

actively participating in community discussions, and maintaining thorough records of

one’s own processes become crucial to avoid pitfalls and redundancy.

67

● A good level of understanding of web architecture is needed to figure OpenWISP out.

● Value of Real-World Testing: Simulations offer valuable insights, but they cannot fully

replicate the intricacies of real-world deployments. Hence, there's an inherent value in

pilot tests or small-scale real-world deployments.

7.2. Cost and Benefit Analysis

Having gained insights into OpenWISP and its functionalities, let’s discuss the potential

costs and benefits of its implementation within Hahatay's framework.

The hardware requirements for OpenWISP are relatively modest. Actually, it could be run on a

variety of hardware platforms, including Raspberry Pis, laptops, and servers. Furthermore,

the main requirement for running OpenWISP is that the devices run OpenWrt, which all the

devices in Hahatay already do.

The number of manpower hours required to set up OpenWISP, on the other hand, is a matter

more difficult to break down. On an already functioning network, such as Hahatay, the hours

will depend on several factors, including the number of Access Points (APs), the complexity

of the network and the level of experience with OpenWISP.

We need to take into account that the network at Hahatay is significantly complex, having 4

different areas growing into 5, as seen in Figure 3. The areas are interconnected with

antennas. One of the areas has the router that is connected to the Internet. Each area has

from the antenna that receives the signal, a mesh network around it providing Internet to all

the facilities in said area.

68

Figure 314: Graph representing Hahatay’s areas. The vertexes indicate the areas and the

edges contain tags with the distance. The dashed lines refer to the fact that the Institute

area is still under construction.

We can calculate that at the beginning, setting up an AP at Hahatay, where, as mentioned, all

devices have already OpenWrt, can take up to 2.5 hours. This is because apart from

installing OpenWISP on each OpenWrt device, it is required to configure the device to

communicate with the OpenWISP server. This involves setting up the wireless network,

14 Source: screenshot from a Hahatay

69

Dynamic Host Configuration Protocol (DHCP), and Domain Name System (DNS) and also

testing it.

Moreover, as first steps, we find the initial set-up for the server, the end-user accounts, the

network administration accounts and the generation of documentation. All of them imply a

great number of hours. From the experience of the thesis, it is quite difficult to estimate, but

with a clear hierarchy for the permissions, it should not take more than a week.

There are also costs associated with training the technical team to use OpenWISP

effectively, especially if the system has nuances that the team is unfamiliar with. For the

technical team deploying it, the guide will be a good resource that can save time and

therefore money. However, hands-on workshops may as well be necessary to guarantee

self-sustainability. The resources for organising these trainings should also be kept in mind.

Additionally, there are maintenance costs, since it is crucial to ensure that OpenWISP

remains functional, updated, and secure.

Other costs worth discussing would be, for example, the opportunity cost. This is hardly the

situation where investing time in OpenWISP implies sidelining other opportunities or

projects. But a cost there may be, is related to the integration overhead because at the

moment they have an infrastructure that with its flaws, works, so if challenges come up

when integrating, they could cost money and imply a lack of connection for end users.

From using OpenWISP there are plenty of benefits and in this section, we will discuss, for

example, the flexibility. This is because open-source solutions often offer more flexibility for

customisation and integration. This allows the network to be tailored more closely to

specific needs.

70

But there are more tangible benefits:

● Enhanced Network Management: OpenWISP provides centralised management and

configuration of network devices. This can lead to reduced downtimes, faster issue

resolution, and more streamlined operations.

● Direct Financial Savings: Using an open-source solution often means avoiding

licensing fees. Moreover, enhanced efficiencies might lead to fewer resource

requirements.

● Scalability: OpenWISP makes it easier to scale the network in the future, potentially

reducing future capital expenditure.

OpenWISP represents a strategic investment not just in monetary terms but in

future-proofing an organisation's network infrastructure. OpenWISP ensures that networks

remain adaptive and robust. This foresight not only guarantees enhanced network

capabilities but also positions communities like Hahatay for growth and innovation in the

evolving digital landscape.

7.3. Adapting and Refining the Network Over Time

Static network designs can not accommodate the dynamism of networks. Needs evolve

rapidly and so do the networks. It is mandatory to make networks as adaptable as possible.

Just as expanding cities upgrade their infrastructure to accommodate growth, organisations

must refine their networks. This ensures they remain robust, secure, and efficient.

As per monitoring the network, OpenWISP offers the OpenWISP monitoring module which

offers according to openwisp (2023):

● Collection of monitoring data in a time-series database (influxdb) and essential

device status metrics, including uptime, RAM, CPU load, and Wi-Fi status.

71

● Comprehensive monitoring charts covering packet loss, latency, and interface traffic,

with varying resolutions from a day to a year.

● Configurable alerts for real-time network issue detection.

● Admin dashboard that offers a holistic view of network status, including device

online/offline metrics and a geographic map (for OpenWISP users).

● Extensibility with custom metrics, charts, and an API for device data retrieval based

on NetJSON DeviceMonitoring.

Other 3rd party solutions that can be integrated are Zabbix (Zabbix, n.d.) and Nagios

(Nagios, n.d.), which are open-source. They do not offer very different metrics from

OpenWISP but can be a good alternative if we are already familiar with them.

7.3.1. Key Performance Indicators (KPIs):

KPIs provide quantifiable metrics that offer insights into the efficiency, stability, and overall

performance of a network. Regularly tracking these indicators ensures that the network

meets its intended performance levels, aids in the early detection of potential issues, and

can guide optimisation strategies. Let's delve into some pivotal KPIs that should be

monitored within Hahatay's network infrastructure:

● Bandwidth Utilization: This metric helps in determining how much of the available

bandwidth is actively being used to prevent bottlenecks.

● Network Uptime: Represents the percentage of time the network is operational

without any disruptions in order to detect underlying issues.

● Packet Loss Rate: Represents the percentage of data packets sent from one network

device to another that fail to arrive at their destination.

● Latency: Measures the time taken for data to travel from its source to its destination

across the network. Lower latency ensures that applications and services function

more responsively, improving user experience.

72

● Traffic Volume: By analysing the volume of data traffic on the network, one can

determine peak usage times and potential sources of congestion.

● Number of Active Devices: Keeping a tab on the number of devices actively

connected to the network can help in predicting load and ensuring that the network

infrastructure can handle growth.

● Security Threat Detections: A metric that counts the number of detected security

threats over time. An increase in this KPI could indicate a heightened risk

environment or potential vulnerabilities in the network.

● Quality of Service (QoS): Evaluates the performance of specific data traffic types or

applications. Ensuring that priority traffic (e.g., VoIP calls) receives the necessary

resources is vital for consistent service delivery.

Monitoring these KPIs will not only provide a snapshot of the current health of the network

but also guide future decisions related to upgrades, configurations, and expansions. By

staying tuned to these indicators, Hahatay and any other network can ensure its network

remains robust and ready to serve its evolving needs.

7.3.2. Evaluations and feedback

Beyond technical metrics, feedback from end-users provides invaluable insights into

real-world performance and improvement areas. Regular assessments, whether quarterly or

monthly, pinpoint network stress points or upgrade needs. A dedicated feedback channel,

like a contact email, bridges the gap between end-users and operators.

7.3.3 Other considerations

Scalability ensures consistent service amidst growth or technological shifts. Tools like

OpenWISP offer scalability, but third-party integrations require careful consideration to retain

agility.

73

Additionally, given the diversity of users, regular security assessments and utilising tools like

Nikto (Chris Sullo, 2021) could help, safeguard the network.

7.4. OpenWISP Enhancement Proposal (OEP)

During the Groundwork tasks and OpenWISP exploration, the opportunity to work closely for

many hours with this platform has allowed for some reflections. Some reflections are mere

technical observations, but some others are particularly interesting.

For example, it was a quest to find the documentation for the specific version chosen to

work with. It was rather surprising the decentralisation of information, so the reflection on

the possibility that this could be an aspect that might impede its wider adoption or efficient

utilization, especially among novice developers is the cause of the following proposal.

7.4.1. Detailed Enhancement Proposal

This proposal is focused on the fact that there is a certain detachment of the community

from the actual code. OpenWISP offers a mailing list as a means of communicating.

Moreover, as an open-source project, there are Issues and Pull Requests opened and we can

not miss the chance that there might be many local forks in developers computers.

This situation can be limiting for the not advanced developers who want to implement or

customise certain modules. For this reason, one initial idea from the Literature Review came

up again.

It was that centralising and standardizing the way of publishing different tweaks could be

done by implementing a module marketplace where developers share their tweaks, so other

74

developers can find them all in the same place by searching keywords of what they need, for

example. Also, it could intertwine the community further having GitHub repositories linked

directly to the marketplace.

The marketplace could work as any app store for mobile phones does, with a name, a

description and a logo. Modules would need reviews by community before being published

as if they were a Pull Request to generate trust in the developers. Finally, it is a definitive

condition that it must have a version checking, ensuring compatibility or at least discussing

it verbosely in the description.

A more accurate description can be found at Appendix B where the Technical Design

Document (TDD) describing all the features and implementation of the marketplace where

the technical feasibility has been ensured.

7.4.2. Potential Impact and Importance

The potential benefits from this enhancement would be a better operator experience. It could

imply a quicker response to new needs in a network.

Moreover, centralising and standardising the publication of tweaks and modules can

streamline the process for developers. A dedicated module marketplace can act as a

one-stop-shop, allowing developers to share, find, and even collaborate on custom tweaks

and functionalities.

By streamlining the sharing and discovery of tweaks, this enhancement could facilitate

quicker innovations, ensuring that the broader OpenWISP community can benefit from

individual developer insights.

75

As an obstacle, the marketplace ideally should be a part of OpenWISP’s page so it could be

harder to integrate. Furthermore, implementing quality control could require additional

resources or dedicated teams to review and verify the modules. Similarly, the open nature of

a marketplace brings about security concerns that would require rigorous monitoring and

swift response mechanisms. It is definitely not a trivial piece to add.

The OpenWISP community is a thriving ecosystem of developers and operators. By

implementing a centralised module marketplace, we can foster an even tighter collaboration,

streamline the customisation process, and propel OpenWISP to even greater heights.

76

8 Conclusion and Future Directions

This work comes from evaluating a very general situation focusing on the specific case of

Hahatay while maintaining the universality of the solutions at maximum. Achieving a balance

among it all has been a challenge. Through this balance, we have contributed to a finer

understanding of network infrastructure optimisation, tailored not only to Hahatay's specific

needs but also to provide insights universally applicable to similar scenarios in various

organisational contexts.

8.1. Key Findings

Throughout the elaboration of this thesis we have come across different findings and

reflections that could be summarized with:

● Dynamic nature of networks: Throughout this project, it became apparent that

networks are not static. As organisations grow and evolve, network infrastructures

need to adapt to cater to new operational demands and technological advancements.

● Importance of permissions and hierarchies: Ensuring a clear hierarchy for

permissions not only streamlines processes but also significantly reinforces security

measures, mitigating potential risks.

● Continuous monitoring and adaptation: With tools like OpenWISP and its monitoring

module, maintaining an up-to-date view of the network's health is not just achievable

but necessary. Regularly monitoring KPIs helps in identifying potential issues before

they escalate.

● Community involvement in open source: OpenWISP's strength lies not just in its

codebase but also in its active community. However, the detachment observed

between the community and the core code has potential implications for its growth

and accessibility.

77

● Potential of module marketplace: The idea of centralising customisations through a

marketplace is not just about simplifying the developer experience but also about

amplifying community collaboration. This centralisation is feasible if not as an

integral part of the OpenWISP page, available on the internet.

8.2. Recommendations for Further Work

This thesis could be a foundation for other research and work on making solutions like

OpenWISP more accessible. To list some of the possibilities of future work:

● Enhanced documentation: A dedicated effort to centralise and improve

documentation, especially version-specific details, would significantly benefit new

and less experienced developers. Throughout the development, this lack of

centralisation has been a huge bottleneck.

● Stakeholder feedback Loop: Regular engagement with various stakeholders, can

provide invaluable insights. Establishing a structured feedback loop can offer a

continuous stream of suggestions for improvement.

● Security audits: With the mentioned dynamism of networks, regular security

assessments are necessary and should not be overlooked.

● Engage with other open-source networking solutions: Looking into the possibility of

integrating or collaborating with other open-source network management tools,

learning from their successes and challenges. This could be very valuable, making

smooth integrations between services.

● Developing the module marketplace: The Technical Design Document set the base

for a feasible future development. However, it does not contain information on the

specific data structures, for example. Future work on the design for this would be

very valuable facilitating a future development of this webpage.

78

8.3. Closing statements and personal conclusion

With the development of the guide OpenWISP is more accessible for network administration

users. Any technician looking for a solution to manage a network will be able to understand

and take advantage of OpenWISP’s potential for the most important infrastructure needs

that organisations might have.

Moreover, the Technical Design Document on the module marketplace provides a general

design on how to implement the module marketplace. However, this document would have

been more relevant if done having knowledge of the specific available infrastructure for it, for

example to define the Kubernetes Cluster with more details on the control plane and the

nodes.

Finally, being able to work on a topic related to the courses that were studied the most at the

university provided great satisfaction it was possible to use the resources acquired during

the degree, putting them to work, having the opportunity to link this previous knowledge with

comprehension of other perspectives, such as the needs of organisations. Nonetheless, the

satisfaction is not only linked to the technical advancements but also to the conviction that

the work done is meaningful to others. Furthermore, the fact that this was not a very

collaborative project implied more independence, and although it was rewarding to take

individual decisions without more debate than the internal one, it had its consequences. It

implied less support, and this fact made a big difference to the point of view of team work

for the researcher.

79

Bibliography

Ansible. (2019). How Ansible Works | Ansible.com. Ansible.com; Red Hat.

https://www.ansible.com/overview/how-ansible-works

Barcelo, J. (2014, July 14). Bottom-up Broadband: Free Software Philosophy Applied to

Networking Initiatives.

https://github.com/jbarcelo/open_networks_paper/blob/master/bub.pdf?raw=true

Barcelo, J., Bellalta, B., Baig, R., Roca, R., Domingo, A., Sanabria, L., Cano, C., & Oliver, M.

(2012). Bottom-up Broadband Initiatives in the Commons for Europe Project.

Battlemesh. (n.d.). Wireless Battle Mesh. Www.battlemesh.org. Retrieved June 9, 2023, from

https://www.battlemesh.org/

Chetty, K., Qigui, L., Gcora, N., Josie, J., Wenwei, L., & Fang, C. (2018). Bridging the digital

divide: measuring digital literacy. Economics: The Open-Access, Open-Assessment

E-Journal, 12(23). https://doi.org/10.5018/economics-ejournal.ja.2018-23

Chris Sullo. (2021, May 5). nikto. GitHub. https://github.com/sullo/nikto

Cisco Meraki. (2020, October 5). Channel Planning Best Practices. Cisco Meraki.

https://documentation.meraki.com/MR/Wi-Fi_Basics_and_Best_Practices/Channel_Planning

_Best_Practices

Close The Gap . (n.d.). Close The Gap - Help us bridge the digital divide! Close-The-Gap.org.

Retrieved February 23, 2023, from https://www.close-the-gap.org/

80

Cuevas, A. (2020, October 20). Qué es un Site Survey y para qué sirve. CUBE More than IT.

https://integracion.cube.net.ar/blog/site-survey

David James Anderson. (2010). Kanban : successful evolutionary change for your

technology business (pp. 13–16, 113–120, 139–144). Blue Hole Press.

Fortinet. (n.d.). What is Role-Based Access Control (RBAC)? Why is it Important? Fortinet.

Retrieved May 27, 2023, from

https://www.fortinet.com/de/resources/cyberglossary/role-based-access-control

Fortinet. (2023). What Is QoS (Quality of Service)? Fortinet.

https://www.fortinet.com/resources/cyberglossary/qos-quality-of-service

Fundació Guifi·net. (n.d.). Red. Fundació Guifi·net. Retrieved June 14, 2023, from

https://fundacio.guifi.net/es_ES/page/red

IBM. (2023, March 24). Virtual Local Area Networks . IBM.

https://www.ibm.com/docs/en/aix/7.3?topic=cards-virtual-local-area-networks

Incommon. (n.d.). What is eduroam? InCommon. Retrieved March 16, 2023, from

https://incommon.org/eduroam/what-is-eduroam/

Intel. (n.d.). 2.4 GHz vs. 5 GHz vs. 6 GHz: What’s the Difference? Intel. Retrieved June 7,

2023, from

https://www.intel.com/content/www/us/en/products/docs/wireless/2-4-vs-5ghz.html

LibreMesh. (n.d.-a). How it works. Libremesh.org. Retrieved May 25, 2023, from

https://libremesh.org/howitworks.html

81

LibreMesh. (n.d.-b). LibreMesh. Libremesh.org. Retrieved May 23, 2023, from

https://libremesh.org/

MikroTik. (n.d.). RouterOS license keys - RouterOS - MikroTik Documentation.

Help.mikrotik.com. Retrieved April 23, 2023, from

https://help.mikrotik.com/docs/display/ROS/RouterOS+license+keys

Nagios. (n.d.). Nagios Features. Nagios. Retrieved June 14, 2023, from

https://www.nagios.org/about/features/

NSRC. (2017, January 27). eduroam and Identity Services. Www.youtube.com; Network

Startup Resource Center. https://www.youtube.com/watch?v=PgWTBgmJetw

OECD. (2020). Enhancing Equal Access to Opportunities for Al. OECD Publishing.

https://www.oecd.org/economy/Enhancing-equal-access-to-opportunities-OECD-background

-note-for-G20-Framework-Working-Group-july-2020.pdf

OpenWISP. (n.d.-a). Architecture, Modules, Technologies — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved May 26, 2023, from

https://openwisp.io/docs/general/architecture.html

OpenWISP. (n.d.-b). netjsonconfig — netjsonconfig 1.1a0 documentation.

Netjsonconfig.openwisp.org. Retrieved June 12, 2023, from

http://netjsonconfig.openwisp.org/en/latest/

OpenWISP. (n.d.-c). OpenWISP: OpenWRT Controller, public wifi, RADIUS, mesh networks.

Openwisp.org. Retrieved May 25, 2023, from https://openwisp.org/whatis.html

82

OpenWISP. (n.d.-d). Values and Goals of OpenWISP — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved March 17, 2023, from

https://openwisp.io/docs/general/values.html#goals

OpenWISP. (n.d.-e). WiFi Hotspot & Captive Portal — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved May 11, 2023, from https://openwisp.io/docs/tutorials/hotspot.html

openwisp. (2023). openwisp-monitoring. GitHub.

https://github.com/openwisp/openwisp-monitoring

OpenWRT. (2023a). The UCI system. OpenWrt Wiki.

https://openwrt.org/docs/guide-user/base-system/uci

OpenWRT. (2023b). Welcome to the OpenWrt Project. OpenWrt Wiki. https://openwrt.org/

Payscale. (2023a, February 18). Project Manager, Information Technology (IT).

Payscale.com.

https://www.payscale.com/research/ES/Job=Project_Manager%2C_Information_Technology

_(IT)/Salary/7689aadc/Barcelona

Payscale. (2023b, February 18). Technical Writer Salary in Spain. Payscale.com.

https://www.payscale.com/research/ES/Job=Technical_Writer/Salary/7d396eb3/Barcelona

Payscale. (2023c, February 27). Research Scientist Salary in Spain. Payscale.com.

https://www.payscale.com/research/ES/Job=Research_Scientist/Salary/d192e53b/Barcelo

na

Quagga. (n.d.). Quagga (http://www.quagga.net). Quagga-Re.github.io. Retrieved May 11,

2023, from http://quagga-re.github.io/quagga-RE/

83

Red Eléctrica de España (REE). (n.d.). ESIOS Electricidad LUMIOS. Esios.ree.es; REE.

Retrieved March 13, 2023, from

https://www.esios.ree.es/es/lumios?rate=rate1&start_date=12-03-2023T18%3A06&end_dat

e=13-03-2023T18%3A06&p1=0&p2=0&p3=1

Sumarno, S., Hartama, D., Gunawan, I., Tambunan, H. S., & Irawan, E. (2019). Optimization of

Network Security Using Website Filtering With Microtic Routerboard. Journal of Physics,

1255(1), 012076. https://doi.org/10.1088/1742-6596/1255/1/012076

Team4Tech. (n.d.). Homepage. Team4Tech. Retrieved February 23, 2023, from

https://team4tech.org/

Tien, F. F., & Fu, T.-T. (2008). The correlates of the digital divide and their impact on college

student learning. Computers & Education, 50(1), 421–436.

https://doi.org/10.1016/j.compedu.2006.07.005

TP-Link. (n.d.-a). What is Mesh WiFi? | Whole Home Mesh WiFi. TP-Link. Retrieved June 12,

2023, from https://www.tp-link.com/es/mesh-wifi/#b

TP-Link. (n.d.-b). Whole-Home Mesh WiFi. TP-Link. Retrieved June 12, 2023, from

https://www.tp-link.com/en/mesh-wifi/#b

University of Wollongong. (2008, December 12). Advantages of VLANs.

Documents.uow.edu.au.

https://documents.uow.edu.au/~blane/netapp/ontap/nag/networking/concept/c_oc_netw_v

lan-advantages.html

Wireshark. (n.d.). CaptureSetup/WLAN - The Wireshark Wiki. Wiki.wireshark.org. Retrieved

June 11, 2023, from https://wiki.wireshark.org/CaptureSetup/WLAN

84

Zabbix. (n.d.). Zabbix features overview. Zabbix.com. Retrieved June 14, 2023, from

https://www.zabbix.com/features?utm_campaign=mainpage&utm_source=website&utm_me

dium=header

85

Appendix A: OpenWISP Guide for

Network Management in Community

Environments

Prepared by Alicia Pallarol Isábal as part of a Bachelor thesis submission to Universitat

Politècnica de Catalunya in October 2023.

Index:
A First steps 89

A.1 Overview of OpenWISP Architecture 89
A.2 The starting point of the guide 91

B OpenWISP Customisation 93
B.1 User Roles and Permissions 93

B.1.1 Network administration users 94
B.1.2 End-users 94
B.1.3 Access permissions 95

B.2 Network Usage Policies 96
B.2.1 Network Monitoring 97

B.3 Specific Module Configuration 98
B.3.1 Customising User Interfaces: Captive Page Interface 99
B.3.2 Workflow Automation: Onboarding Example 99
B.3.3 Inter-module Communication: Data Sharing and Task Triggering Example 100

B.4 Best Practices in Customisation 101
B.4.1 Adopting a Modular Approach 101
B.4.2 Prioritizing User Experience 101
B.4.3 Ensuring Network Security 102
B.4.4 Maintainability and Scalability 102
B.4.5 Testing and Validation 103
B.4.6 Compliance and Legalities 103

B.5 Automated Customisation Scripts 103
C Optimising Network Performance 107

C.1 Understanding and Managing Network Traffic 107

86

Appendix A: OpenWISP Guide for Network Management in Community Environments

C.1.1 Identifying High Traffic Periods 107
C.1.2 Identifying Bandwidth-Intensive Devices or Users 108
C.1.3 Managing Network Traffic 108
C.3.4 Troubleshooting Network Issues 108

C.2 Troubleshooting Common Network Issues 109
C.2.1 Installation/configuration issues 109
C.2.2 Device connectivity issues 110
C.2.3 Monitoring issues 110
C.2.4 Upgrade issues 111

C.3 Network Performance Monitoring 111
C.4 VPNs 111

D Ubiquitous Access and User-Centred Design 113
D.1 Designing for Ubiquitous Access 113

D.1.1 Network Layouts for Optimal Coverage 114
D.1.2 Device Compatibility and Access 115

D.2 User-Centred System Design 115
D.2.1 Creating User Guides for End-users 116

E Case Studies and Evaluations 117
E.1 The Value of Simulated Deployments 117
E.2 Performance Evaluations 118
E.3 Cost Analysis: OpenWISP vs Proprietary Solutions 118
E.4 Advantages of Open-Source Software 119
E.5 Methodological Framework for Continuous Evaluation 120

F Conclusion 121
F.1 Final thoughts 121
F.2 Next Steps and Further Learning 121
F.3 Additional Resources 122
F.4 Closing Remarks 123

G References 125

List of figures:
1. OpenWISP’s architecture diagram 89

2. OpenWISP dashboard with different modules shown in the side menu 92

87

Appendix A: OpenWISP Guide for Network Management in Community Environments

Purpose of the Guide

As network infrastructure demands continue to evolve, especially within community settings,

there is an increasing need to understand the tools that can best address these demands.

OpenWISP, as a versatile Network Management System, emerges as a potential solution for

diverse community scenarios, including the context of Hahatay, a Senegalese community.

This guide has two primary objectives:

1) To offer a thorough, yet approachable, exploration of OpenWISP's features and

customisation opportunities. From adjusting user roles and configuring specific

modules to understanding and applying best practices, this guide aims to present

OpenWISP's functionalities in a digestible manner.

2) To showcase how OpenWISP can be applied in tangible real-world situations.

Through in-depth evaluations, and strategies for network optimisation, readers can

gain insight not just into the mechanics, but also the rationale behind each decision,

highlighting OpenWISP's advantages over other solutions.

This guide is not trying to substitute OpenWISP’s documentation in any way, it tries to

complement it. Actually, it contains links referring to either the documentation or the source

code.

Who Should Read This Guide?

This guide is designed primarily for engineers, IT administrators, and other professionals

interested in implementing and optimising OpenWISP for community network setups. While

some sections delve into technical aspects, we have aimed to make the content accessible

and valuable to those with a foundational understanding of networking concepts. If you are

looking to leverage OpenWISP for your network management needs, and especially if you are

considering its application in community environments, this guide is for you.

88

Appendix A: OpenWISP Guide for Network Management in Community Environments

A First steps

A.1 Overview of OpenWISP Architecture

Figure 11: OpenWISP’s architecture diagram.

1 Source: from OpenWISP (n.d-a).

89

Appendix A: OpenWISP Guide for Network Management in Community Environments

The core of OpenWISP is the OpenWISP controller, which is a central server that manages

and configures all the devices in the network (openwisp, 2023c). The controller is

responsible for tasks such as provisioning new devices, configuring network settings, and

updating firmware. It also provides a web-based interface that allows network administrators

to view and manage the network. Moreover, OpenWISP is built on Django, therefore it

benefits from the Django ecosystem. It can be extended using Django apps or even be

integrated into larger Django projects.

Also, a database is required for an OpenWISP deployment, as shown in Figure 1. For this

purpose, there are some RDBMS supported like PostgreSQL or MySQL. A centralized

database stores all information. The different modules can have their specific tables or sets

of tables within this centralized database. Each module interacts with the database to store

and retrieve its specific data. For example, the monitoring module saves device performance

metrics, while the controller saves device configurations and details.

But there are more modules other than the controller, such as the monitoring and network

topology, for example. The OpenWISP controller interacts with the OpenWISP modules using

a variety of different methods. One of them is Django signals, they allow certain senders to

notify a set of receivers when some action has taken place. OpenWISP makes extensive use

of signals. For instance, when a new device is registered in the OpenWISP controller, a signal

might be emitted. The OpenWISP monitoring module, for example, can then catch this signal

and initiate its own set of actions, like starting to monitor the new device and the network

topology module can update the view of the topology accordingly.

However, there are other possibilities for module communication since the OpenWISP

controller provides a REST API that can be used by the modules to communicate with each

other. It also allows for integration with other systems, which means you can automate

certain tasks or pull data from OpenWISP into other platforms.

90

Appendix A: OpenWISP Guide for Network Management in Community Environments

As an example, one endpoint of the controller can be GET

/api/v1/controller/device/, which lists the devices or this other endpoint POST

/api/v1/controller/device/{id}/command/ (openwisp, 2023c)

that executes a command in the device. Commands are specific actions that can be

customised, there are two default ones.

As per communication, OpenWISP often uses established protocols and standards. For

example, it uses the NetJSON format for network device configurations. This is an open

standard, so it allows for interoperability with other systems that support NetJSON

(OpenWISP, n.d.-a).

Furthermore, OpenWISP has a web-based interface, allowing administrators to manage and

monitor devices from anywhere. This interface is built using modern web technologies,

ensuring its responsiveness.

Because of its modular architecture, OpenWISP can be scaled as needed. If you only need

certain features, you can only use those specific modules. You can add more modules as

your network grows or your needs change.

A.2 The starting point of the guide

Once we are aware of OpenWISP’s architecture, it is time to discuss at which point this guide

supposes you have arrived when reading it. Also, the guide assumes the use of devices with

OpenWRT firmware.

This guide is relevant once you have set up your OpenWISP server using Ansible, since we

are aiming for a production environment. This set up is detailed here:

https://github.com/openwisp/ansible-openwisp2#usage-tutorial.

91

https://github.com/openwisp/ansible-openwisp2#usage-tutorial

Appendix A: OpenWISP Guide for Network Management in Community Environments

The guide might require future updates due to the fact that soon enough a docker set up will

also be available for production.

The guide discusses elements within the OpenWISP dashboard that may look similar to

Figure 2:

Figure 22: OpenWISP dashboard with different modules shown in the side menu.

2 Source: Screenshot of an own OpenWISP instance.

92

Appendix A: OpenWISP Guide for Network Management in Community Environments

B OpenWISP Customisation

Customisation is a very broad concept when discussing OpenWISP because this platform

has so many possibilities that there are many aspects to discuss. In OpenWISP you can

customise every detail for every module, also the modules themselves are built to be

independent of each other, so there are also a lot of customisation possibilities regarding the

configuration of the whole system.

It is possible to change details such as the logo on the captive page for the RADIUS module.

Furthermore, its open-source nature allows you to build another module extending an

existing one or even create a completely different new one.

Since this topic is so broad and because building an entire module requires specific

circumstances, we will not delve into every aspect of OpenWISP customisation. In this guide

section, we will examine the most useful customisation options for general network

infrastructures, discussing best practices. We will delve into some of the most important

items to take into account in a community network and how to configure it using OpenWISP.

B.1 User Roles and Permissions

The platform categorizes users into two fundamental roles: network administration users,

who oversee the setup, supervision, and care of the network, and end-users, the main

beneficiaries of the network's connectivity. Each category has its distinct features and

responsibilities.

For the network administration role, their responsibilities and access permissions are

defined by their specific position within the network's hierarchy. Meanwhile, the end-user

experience is related to RADIUS, a key networking protocol. Through RADIUS, the platform

93

Appendix A: OpenWISP Guide for Network Management in Community Environments

can streamline the process of user verification, permission granting, and usage tracking,

ensuring a secure and controlled network environment.

B.1.1 Network administration users

Some examples of network administration user roles we could define for our network

infrastructure are:

● Administrator: This role has a high level of access, it has a broader oversight and

organizational structuring. It can add users, groups, all kinds of configurations, etc.

Essentially, manages the network from the organisation side rather than the technical

one.

● Technician/operator: This role is for the staff that directly work with the network, it is

for those who interact more frequently with the system. It has a great deal of access

and its permissions are related to operational tasks.

● Auditor: This role is for specific staff that can evaluate the network. As for the

access, they can view settings and logs, but not make changes.

In OpenWISP to create new roles and be able to link a user with the role, in the OpenWISP

Dashboard we need to go to the lateral tab of Users & Organizations and then to the one

named Groups & Permissions. There we should find that by default there is already an

Administrator and an Operator group created. By clicking on Add new group, we can choose

a name and pick from a list the permissions for this role.

B.1.2 End-users

As per the end-users, it is very interesting the level of customisation in the management that

is achievable.

94

Appendix A: OpenWISP Guide for Network Management in Community Environments

As in the network administration users, there are groups and the different users belong to a

specific group. The groups are the customisable part, you can choose the belonging

organisation, the group name and if it is the default assigned group to new users. But most

importantly, you can set group replies and group checks these are ways to limit the

bandwidth utilisation with attributes such as the maximum daily sessions and the maximum

traffic per session. They come from the freeradius schema (OpenWISP, n.d.-b), freeradius is a

deamon to set up a radius protocol (freeradius, n.d.).

By default, there are two groups “users” and “power-users”. The only difference is that users

are the default group and they have limits.

B.1.3 Access permissions

In order for the users to be able to access the network, both network administration and

end-users, need to be in the system.

For the end-users' case, they can be created in batches, from a .csv file but also one by one.

OpenWISP can be configured so that users can also self-register using their mail or social

accounts. Furthermore, paid plans can be implemented and be shown at the self-registration

to have different limits to their connections. These payments are done via PayPal, more

information can be found at

https://openwisp.io/docs/tutorials/hotspot.html#paid-wifi-hotspot-subscription-plans.

The batch creation allows to only specify the mail of the user and the username, password

and any related additional data is generated. It can be done in OpenWISP’s interface, in the

Dashboard, in the tab Batch User Creation. There you can upload the .csv file, add a name

and an expiration date for the new user. More information can be found at

https://openwisp-radius.readthedocs.io/en/latest/user/importing_users.html.

95

Appendix A: OpenWISP Guide for Network Management in Community Environments

The different groups of users can have different sets of permissions or limitations,

customised as explained in the previous section. Some examples of groups of users that

could be created are: students, teachers, staff and guests. Each one should have different

limits.

The accounting, authorisation and authentication are done with the package Coova-Chilli,

which provides the captive portal interface (OpenWISP, n.d.-d).

B.2 Network Usage Policies

Since a community network has many different spaces with different purposes and therefore

needs, it is important to formally define the usage policies for the network with the

specification of network administration roles and permissions, end-user roles as well as the

justification behind the collected data.

This is important because it smoothes the standardization of processes; facilitates the

changes in the technical staff; and can help future policymaking because of the existence of

context. Moreover, these policies facilitate security revisions, for example, user privileges.

OpenWISP is not just a tool to manage networks but a means to implement, enforce, and

monitor adherence to network usage policies in a systematic and automated manner. In this

section, we will discuss the most relevant policy and network-wise topics we can execute

with OpenWISP.

● Access: in the previous section, the possibilities to implement different access types

for new users were discussed. To have a secure network, we need to decide how will

the users access the network. For how to do it, we can find it at section B.1.3.

96

Appendix A: OpenWISP Guide for Network Management in Community Environments

● Resource allocation: in user management, policies indicating the limits for each

group can help guarantee QoS as far as bandwidth goes, as explained in section

B.1.2.

● Monitoring: monitoring a network, gathering data on the users and the usage, can

help identify inadequate usage, all in all, ways to improve the policies and to make

sure that they are respected. Also, in terms of policy definition, it is important to

define the consequences of policy violation. Since monitoring in OpenWISP is a broad

topic, we will discuss it in the next section.

B.2.1 Network Monitoring

OpenWISP can track each user and device. For the devices, at the dashboard there is a

Monitoring tab, there we can find two more tabs: Metrics and Checks.

The default metrics can be found at:

https://github.com/openwisp/openwisp-monitoring/blob/16a6608222658295ba6d0bd4dcd

848a36e94b308/openwisp_monitoring/monitoring/configuration.py#L49C20-L49C20. They

are:

● Ping: It checks if a specific device is reachable using fping.

● Configuration applied: It checks if a specific configuration has been applied to a

specific device.

● Traffic: It measures the network traffic of a specific interface in GB. Both download

and upload.

● Clients: It lists the Wi-Fi clients associated with a specific interface.

● Disk: It checks the disk usage of an available partition of a specific device.

● Memory: It checks the percentage of RAM being used by a specific device.

● CPU: It checks the average CPU load of a specific device while accounting for the

available CPUs. It is measured using the Linux load averages.

97

Appendix A: OpenWISP Guide for Network Management in Community Environments

● Signal strength: It measures the signal strength and signal power in dBm.

● Signal quality: It measures the Signal to Noise Ratio in dB.

● Access technology: It lists the access technology being used by the device.

It is possible to add new metrics and to change the tags or any fields within them. Most of

these metrics send emails or notifications of some kind whenever a certain value is reached,

for example. Also, it is possible to define additional charts or to override the default charts

for the metrics, for instance, if a metric was measured in GB it is possible to change the

measurement in the chart showing it in MB. There are examples for this following this link:

https://github.com/openwisp/openwisp-monitoring/tree/1.0#openwisp_monitoring_metrics.

As per the available checks, there are three: ping, configuration applied and Iperf3. The first

check looks for information on both the uptime and the RTT (Round trip time), the uptime,

packet loss and rtt charts are created. The configuration applied is a periodic check that

ensures changes to configurations are performed in time, it is also triggered whenever the

configuration status of a device changes, so the flow of information is seamless. Finally, the

Iperf3 check looks for information directly related to the performance, for example the jitter

and the datagram loss (openwisp, 2023d).

B.3 Specific Module Configuration

There are some modules that need a lot of customisation or some tasks within those

modules that require specific customisation, in this section, we will discuss the most

relevant ones.

98

Appendix A: OpenWISP Guide for Network Management in Community Environments

B.3.1 Customising User Interfaces: Captive Page Interface

The captive page interface is vital because it is often one of the first points of interaction

between the end-user and the network. OpenWISP provides options to tailor this to different

user bases in many ways:

● Multilingual Support: OpenWISP can ensure that the captive page is available in

different languages based on the location of the infrastructure so that the end users

can choose. In order to change this in OpenWISP, we need to check the

documentation at

https://github.com/openwisp/openwisp-wifi-login-pages#defining-available-language

s where it is explained.

● Branding: Integrating organization or network branding into the captive page, which

might involve logos, colour schemes, and typography that adhere to a particular

brand identity. In order to change the logo you can follow the instructions here:

https://github.com/openwisp/openwisp-wifi-login-pages/tree/1.0#variants-of-the-sa

me-configuration. Note the importance of not deleting the default .yaml file.

● Access Control: as discussed in section B.1.3, there are different access flows

possible for a user.

B.3.2 Workflow Automation: Onboarding Example

Automating workflows is necessary in order to be efficient, for this reason, we must consider

the task of onboarding new devices or users onto the network. An automated workflow

could on the one hand manage the onboarding of new devices and onboarding of new users.

For the devices, with the NetJSON configuration templates and automatic registration, it is

possible to fully automate the deployment of new nodes in your network (openwisp, 2023a)

99

Appendix A: OpenWISP Guide for Network Management in Community Environments

(openwisp, 2023b). Once the templates are configured as needed, it is only necessary to

register a device and it will autoconfigure according to the template.

As per the users, if we accepted self-registration, the creation of new users would be

streamlined as well as the assignment and management of user credentials, potentially

integrating with existing user management systems or databases, using the Users module,

calling its API.

In section B.5 we find an example of a script that can serve as a base for automating

configuration for devices.

B.3.3 Inter-module Communication: Data Sharing and Task Triggering

Example

Inter-module communication is about how one module within OpenWISP can use or trigger

functionality in another. As we already discussed, there are certain metrics that trigger

notifications to the network administrators. However, there are other events where task

triggering is interesting.

For example, the OpenWISP firmware upgrader module can interact with OpenWISP

notifications module. When a firmware upgrade is performed using the Firmware Upgrader

module, it can trigger a notification in the Notifications module. This notification could

inform the network administrators about the status of the firmware upgrade, such as

whether the upgrade was successful or if there were any issues. This would be done by

extending the firmware upgrader module and adding the necessary API calls. Since this is a

very specific topic more focused on general web development, we will not dig deeper into it.

100

Appendix A: OpenWISP Guide for Network Management in Community Environments

B.4 Best Practices in Customisation

An infrastructure is always evolving, for this reason, it is important to follow best practices

guidelines in order to be perfectly aligned with the network’s needs. For this reason, in this

section, we will be discussing some of these best practices in relation to an infrastructure

that uses OpenWISP.

B.4.1 Adopting a Modular Approach

In order to make the most out of OpenWISP’s modular architecture, it is required to

strategically choose and implement the modules that are actually needed in our

infrastructure.

The fact is that we should only implement modules that are directly beneficial to avoid

unnecessary complexity. For instance, the OpenWISP firmware upgrader module might not

be necessary for smaller infrastructures manually managed, so it would be best to skip it.

But at the same time, we should be open to exploring how additional modules can be

integrated as the network grows or demands evolve.

B.4.2 Prioritizing User Experience

Given that networks have many users, we should always keep in mind who is using the

network in order to make all features accessible to the variety of user needs and abilities.

This topic is highly related to the intuitiveness of the interface of the captive page, for

example, where it is important to support different languages and to customise it by adding

a logo, so the users can easily associate the captive page with the network.

101

Appendix A: OpenWISP Guide for Network Management in Community Environments

B.4.3 Ensuring Network Security

OpenWISP allows for secure provisioning and configuration management of devices. It

supports any type of configuration supported by OpenWRT. Moreover, it includes a x509 PKI,

management system, using the django-x509 django app (openwisp, 2023c). This allows for

the secure authentication of devices on the network.

The secure communication protocols that OpenWISP supports secure communication

protocols. For example, it uses SSH access for push updates.

Furthermore, an important item in terms of security is having a Role-Based Access Control

(RBAC) policy, where no user has more access than he or she needs. This is essential to limit

human errors. For this reason, defining each network administration user role with the

detailed access level it needs is essential.

Finally, the RADIUS module provides support for RADIUS, a networking protocol that offers

centralized Authentication, Authorization, and Accounting (AAA) management for users who

connect and use a network service. This includes support for WPA Enterprise (802.1x),

captive portal authentication, and more (openwisp, 2023e).

B.4.4 Maintainability and Scalability

As we develop our infrastructure and tailor OpenWISP to our needs, the customisation

should be undertaken with future maintainability and scalability in mind.

To maintain it, we need to be thorough with the documentation, registering all about our

infrastructure’s customisations, configurations and practices for future reference and

troubleshooting. Not only that, but we also need to make the most out of the resources and

the capabilities of OpenWISP, using templates for new devices to ensure consistent

102

Appendix A: OpenWISP Guide for Network Management in Community Environments

configuration among different devices, saving time for the administrators. Moreover, its

modular architecture allows the system to scale with the network’s needs.

B.4.5 Testing and Validation

The open-source nature of OpenWISP that allows us to extend modules based on our needs

can be dangerous because, with our own development, we could be introducing security

threats or performance downgrades for the network.

In order to prevent this, we must always have pre-deployment testing, where we validate

custom features in a controlled environment before deploying them into the live network. We

must also have continuous monitoring to be aware of the impacts of customisations on

network performance and security, conveniently for this we can use the built-in checks and

alerts in the monitoring module to validate and monitor custom configurations.

B.4.6 Compliance and Legalities

In each country, compliance can be very different. This is why we must ensure that

customisations and network management practices comply with relevant laws, regulations,

and policies.

OpenWISP can gather various data from the user and we must know which one we can use

or store and which one is sensitive. On the user privacy topic, one of OpenWISP's core goals

is that user personal data is never sold to third parties and that traffic logs are stored only for

the period of time mandated by law (OpenWISP, n.d.-c).

B.5 Automated Customisation Scripts

Here is an example of a basic configuration script to create a new configuration in

OpenWISP. In this context, a configuration is a set of parameters that can be applied to a

103

Appendix A: OpenWISP Guide for Network Management in Community Environments

device to configure its network settings. Configurations can be used to configure a wide

range of settings, such as the device's IP address, subnet mask, gateway address, DNS

servers, and wireless network settings.

As mentioned this is a basic Python script so it does not include error handling, it was

elaborated specifically for this guide by Pallarol (2023):

import requests

import json

OPENWISP_SERVER = 'https://your-openwisp-server.com'

USERNAME = 'username'

PASSWORD = 'password'

CONFIG_NAME = 'New Network Configuration'

CONFIG_BACKEND = 'netjsonconfig.OpenWrt'

DEVICE_NAME = 'New Device'

DEVICE_MAC_ADDRESS = '00:00:00:00:00:00'

LOGIN_ENDPOINT = f'{OPENWISP_SERVER}/admin/login/'

CONFIGURATION_ENDPOINT = f'{OPENWISP_SERVER}/api/v1/config/'

login_response = requests.post(

LOGIN_ENDPOINT,

data={'username': USERNAME, 'password': PASSWORD},

headers={'Content-Type':
'application/x-www-form-urlencoded'},

allow_redirects=False

)

if login_response.status_code == 302:

csrftoken = login_response.cookies['csrftoken']

104

Appendix A: OpenWISP Guide for Network Management in Community Environments

sessionid = login_response.cookies['sessionid']

headers = {

'Content-Type': 'application/json',

'X-CSRFToken': csrftoken,

}

cookies = {'sessionid': sessionid}

config_payload = {

"name": CONFIG_NAME,

"backend": CONFIG_BACKEND,

"config": {

specific configuration parameters

},

"device": {

"name": DEVICE_NAME,

"mac_address": DEVICE_MAC_ADDRESS,

}

}

config_response = requests.post(

CONFIGURATION_ENDPOINT,

data=json.dumps(config_payload),

headers=headers,

cookies=cookies

)

if config_response.status_code == 201:

print("Configuration created successfully!")

else:

105

Appendix A: OpenWISP Guide for Network Management in Community Environments

print("Failed to create configuration. Reason:",

config_response.text)

else:

print("Login failed. Please check your credentials.")

This script logs in to the OpenWISP server and obtains a cookie for subsequent requests.

Then it prepares a configuration payload with the specific configuration parameters, such as

the name, backend, config parameters, device name, and MAC address. After this, it posts

the configuration payload to the OpenWISP API endpoint to create the new configuration and

finally it prints a success message if the configuration was created successfully, or an error

message if it failed.

Please replace 'https://your-openwisp-server.com', 'username', 'password', 'New Network

Configuration', 'New Device', and '00:00:00:00:00:00' with the actual server details, username,

password, configuration name, device name, and device MAC address respectively.

Even though you could simply use the OpenWISP Dashboard to apply a configuration, a

script like this one can help automate the configuration for new devices and would be

specially useful for registering many new devices at once or for complex configurations.

106

Appendix A: OpenWISP Guide for Network Management in Community Environments

C Optimising Network Performance

To have a well-functioning network optimisation mechanisms are crucial. They enable the

optimal network operation. In this section, we will discuss some of the most important

network performance topics to keep in mind while using OpenWISP.

Some topics we will not be discussing are channel selection and VLAN management. Even

though these topics are undoubtedly relevant to a network infrastructure OpenWISP does not

have a functionality related to them, we would need to use 3rd party applications and that is

not the object of this guide.

C.1 Understanding and Managing Network Traffic

This section is based on the premise that we are familiar with the monitoring module at

https://github.com/openwisp/openwisp-monitoring and all its default metrics since we will

be learning about the different ways we can use these metrics and discussing how to make

the most out of our network. We will be breaking down the importance of specific metrics so

that if we consider it necessary we can add notifications or alerts as explained in section

B.2.1.

C.1.1 Identifying High Traffic Periods

With the data from the traffic metric, administrators can scrutinize temporal patterns in the

network. By identifying periods of high traffic, institutions can strategically plan

network-intensive tasks like updates or backups during off-peak hours, ensuring that the

network performance remains unhampered during crucial learning hours, for example.

107

Appendix A: OpenWISP Guide for Network Management in Community Environments

C.1.2 Identifying Bandwidth-Intensive Devices or Users

OpenWISP provides insights into the utilization of network resources per device with the

metrics. This becomes pivotal in identifying bandwidth-Intensive devices or users. By

analysing the metrics, data visualization tools and logs, administrators can pinpoint devices

that recurrently showcase excessive bandwidth usage. This can also aid in recognising

unauthorised usage or malware-infected devices which might be silently consuming

bandwidth, providing a layer of network security through vigilant monitoring.

C.1.3 Managing Network Traffic

Utilising the metrics from OpenWISP's monitoring module allows network administrators to

implement data-driven strategies for managing network traffic. In the context of Quality of

Service (QoS) rules, data like packet loss, jitter, and latency can be observed and analysed

through OpenWISP, which can subsequently inform the configuration of QoS rules to

prioritize certain types of traffic, ensuring that critical educational platforms are always

accessible and performant for users.

Furthermore, with OpenWISP, administrators can set alerts to be triggered when certain

bandwidth thresholds are met or exceeded, enabling proactive management before issues

escalate. In a practical scenario, based on usage data, administrators might decide to

impose bandwidth limits or block non-educational traffic during learning hours to safeguard

the network’s performance for educational activities.

C.3.4 Troubleshooting Network Issues

The monitoring module can serve as a valuable asset in identifying and diagnosing network

issues. For instance, administrators might observe inconsistencies or anomalies in the

traffic data, which could be indicative of various issues. A sudden and unexpected drop in

network traffic might signal a network outage or failure of a critical network component. On

108

Appendix A: OpenWISP Guide for Network Management in Community Environments

the other hand, a gradual reduction in speed over time might suggest hardware degradation

or issues with the internet service provider.

OpenWISP enables administrators to not only visualize this data but also to receive alerts for

specific incidents. The historical data provided by the monitoring module ensures that

administrators can backtrack and identify when an issue may have originated, significantly

reducing the troubleshooting time and ensuring rapid resolution.

C.2 Troubleshooting Common Network Issues

According to the experimentation carried out in the thesis that contains this guide, there are

some issues when configuring OpenWISP. They will be discussed in this section.

The end goal of this section is to encourage you to ask in the OpenWISP channels. There you

will be able to find help or people willing to help you: https://openwisp.org/support.html.

C.2.1 Installation/configuration issues

This guide, as previously mentioned, is supposed to be used once we have a full server

deployment of OpenWISP. However, there might be some issues with dependencies,

environment setup, or database configuration.

For the dependencies, you should ensure that all the required ones are installed. For the

environment set-up, make sure that the system meets the minimum requirements for

running OpenWISP; if you are using a virtual environment, check that it is correctly set up and

activated. Moreover, check both the environmental variables required and the permissions of

the user account that you are using.

109

Appendix A: OpenWISP Guide for Network Management in Community Environments

C.2.2 Device connectivity issues

This issue could be due to network problems, incorrect device configuration, or compatibility

issues.

● If the device is not connecting to the OpenWISP server: you should check the device’s

network connection, check the configuration of the device related to the server

connection and also verify that the device’s firewall or security settings are not

blocking the connection.

● If the device does not appear in OpenWISP’s interface: you should in a first instance

wait, since it might take some time for a newly connected device to appear. If the

device still does not appear after a while, check the device’s configuration and ensure

it is correctly set up to connect to the OpenWISP server.

● If the device is showing as disconnected in OpenWISP’s interface: check if the device

is turned off, disconnected from the network, or experiencing network issues.

● If the device is not sending monitoring data: ensure the monitoring module is

correctly installed and configured. Also, check the device’s network connection and if

you are still not receiving monitoring data, there might be an issue with the

monitoring configuration on either the device or the OpenWISP server.

C.2.3 Monitoring issues

Setting up or interpreting the monitoring module might cause problems. This could include

issues with collecting data from devices, displaying the data in the OpenWISP interface, or

setting up alerts.

If there were issues with the data collection, it could be a configuration issue of both the

device and the server or just an issue with the connectivity of the device. However, if data

was not displaying correctly it can be due to the fact that they need some time. Finally, if

110

Appendix A: OpenWISP Guide for Network Management in Community Environments

there is an issue with the alerts, firstly, check the settings but afterwards, again, there is a

configuration issue.

C.2.4 Upgrade issues

You might also encounter problems when upgrading OpenWISP or its modules. This could

be due to incompatible versions, database migration issues, or changes in the system

requirements.

This issue is based on prevention rather than solutions because these errors could be

avoided by good documentation, especially. But also, with attention to the versions, keeping

track of them.

C.3 Network Performance Monitoring

To monitor network performance OpenWISP provides the already discussed monitoring

module, where all the checks and metrics are available. As it was discussed, it is possible to

set notifications depending on specific performance metrics.

To make the most out of this module and if we do not have previous data on the

performance, here are two strategies: to either define the checks and notifications predicting

the network usage data, or to gather data about usage and then define the checks and

notifications.

C.4 VPNs

You can host a VPN server on the same machine where the rest of the OpenWISP services

are running. For this reason, it is important to discuss the optimisation when hosting a VPN

server and when using VPNs in general. In this section, we will discuss general items to keep

into account when setting VPNs to ensure the best operation.

111

Appendix A: OpenWISP Guide for Network Management in Community Environments

● System resources: Running a VPN server can consume significant system resources,

especially if you have many devices connecting to it. For this reason, you should

make sure your server has enough resources (CPU, RAM, network bandwidth) to

handle the additional load. All those can be checked with OpenWISP’s monitoring

feature. Once the server is set up, it is also important to check the resources'

management, so with the monitoring module as well, we can keep track of the

performance with metrics like connection speeds, packet loss rates or server load.

● Automating VPN configuration: OpenWISP can automate the process of configuring

VPN tunnels, saving time and reducing the risk of errors compared to manually

configuring each device. For automating the VPN configuration, the steps are:

○ Once you have the controller module installed, you can create a VPN server in

the OpenWISP dashboard. During this process, you will need to import the CA

(Certificate Authority) and the Server Certificate.

○ Then, still in the dashboard, you can create a configuration template for VPN

clients. This template will be used to automatically generate the VPN

configuration for each device.

○ Finally, if you enable by default a configuration template, it will be

automatically assigned to new devices. This means that when you register a

new device in OpenWISP, it will autoconfigure itself based on these default

templates.

● Network configuration: Depending on your network configuration, you might need to

adjust firewall rules or port forwarding settings to allow VPN connections to your

server.

Also, running a VPN server on the same machine as your other services can have security

implications. Make sure to follow best practices for securing your server such as keeping

software up-to-date, using strong encryption settings, and regularly reviewing access logs.

112

Appendix A: OpenWISP Guide for Network Management in Community Environments

D Ubiquitous Access and User-Centred Design

In this section we will discuss how OpenWISP is centred around the access and the user. It is

aimed at low-cost networks, including public Wi-Fi, university Wi-Fi, mesh networks, and IoT.

But some features that describe it more accurately are:

● Support for various devices and network layouts: OpenWISP allows you to set up any

type of configuration supported by OpenWRT, thanks to its advanced mode. This

means it can support a wide range of devices and network layouts. Also, thanks to

the network topology module, it is possible to visualise the network operating.

● User-friendly interface: OpenWISP provides a network management interface that

may present a learning curve for administrators. The platform is indeed robust and

feature-rich, but acknowledging that experiences with the interface can be diverse,

this guide is here to assist in navigating through that learning curve effectively.

● Multi-tenancy support: OpenWISP Users module provides user management,

multi-tenancy, authentication backend, REST API utilities, and classes to implement

multi-tenancy.

Other topics that showcase this are the monitoring module, the automation possibilities and

the modularity, all these items together, make network management easier and that is all due

to the fact that OpenWISP is designed to be focused on network access but with the user in

mind.

D.1 Designing for Ubiquitous Access

The items we just mentioned prove OpenWISP to be designed for ubiquitous access,

however, in terms of access, it is worth emphasising the network topology and layout, and

113

Appendix A: OpenWISP Guide for Network Management in Community Environments

the variety of devices that can work with OpenWISP. For this reason, we are going to discuss

these topics further.

D.1.1 Network Layouts for Optimal Coverage

OpenWISP's design allows it to support various network layouts for optimal coverage by

collecting and processing network topology data from different networking software,

providing flexible data collection strategies, offering real-time link status monitoring, and

visualizing the network topology. Here are some further specifics on how does OpenWISP do

all that:

● Network topology collector and visualizer: the OpenWISP Network Topology is a

complete web application and API that allows to collect network topology data from

different networking software, including dynamic mesh routing protocols and

OpenVPN; which means it can support various network layouts. It stores this data,

visualizes it and allows users to edit its details.

● Topology data collection strategies: OpenWISP supports two strategies for collecting

topology data: FETCH and RECEIVE. The FETCH strategy involves fetching topology

data from a specified URL, while the RECEIVE strategy involves receiving topology

data via POST API requests.

● Topology data processing: OpenWISP uses parsers to process topology data based

on the selected topology format. This allows it to handle different types of network

topologies.

● Link status change hooks: OpenWISP provides hooks to execute code when the

status of a link changes. This can be useful for monitoring the network and

responding to changes in real time.

More details can be found in the Github repository for the network topology module at:

https://github.com/openwisp/openwisp-network-topology.

114

Appendix A: OpenWISP Guide for Network Management in Community Environments

D.1.2 Device Compatibility and Access

OpenWISP is designed to be compatible with a wide range of devices, particularly those

running OpenWRT, actually it is compatible with any device as long as the device supports

OpenWRT. This includes a wide range of routers and other networking devices. This is

because OpenWISP uses the openwisp-config package, which is the controller agent for

OpenWRT that is within the controller module.

The process of installing openwisp-config on an OpenWRT device is straightforward. It

involves flashing the device with OpenWRT, enabling SSH access, connecting the device to

the internet, and then installing openwisp-config, as you may have already done at this point

in the guide either with physical devices or with virtual machines.

As for secure access control, OpenWISP provides this through its user management module

which we already mentioned. This module provides features such as management of users,

organizations, and permissions; multi-tenancy support so multiple organizations or

departments can use the same instance of OpenWISP while keeping their data separate and

the module also provides an authentication backend that can be used to authenticate users.

Furthermore, the module provides REST API utilities that can be used to interact with the

user management system programmatically.

D.2 User-Centred System Design

The interface of OpenWISP, while functional, can be complex and overwhelming for new

users. The system’s reliance on OpenWRT configurations and its modular nature can make it

challenging to navigate and use effectively. This complexity can create a steep learning

curve.

115

Appendix A: OpenWISP Guide for Network Management in Community Environments

It is also an important discussion of the need for end-user guides and the approach to

building one depending on the needs of the infrastructure, so the usage is enhanced in

aspects ranging from practical use to the network’s security.

Despite these challenges, OpenWISP’s flexibility and extensive capabilities make it a

powerful tool for network management. With the right guidance and resources, users can

leverage these features to implement comprehensive user guides as we will be discussing in

this section.

D.2.1 Creating User Guides for End-users

End-users need clear, accessible information on how to use the network services effectively,

comply with usage policies, and troubleshoot common issues. For this, creating user guides

tailored to end-users is indeed crucial. These guides should focus on:

● Usage Instructions: Clear, step-by-step instructions on how to connect to the network,

use the services provided, and make the most out of them. The instructions should

clarify the registering options, if they can self-register or if they will be sent a

password and username, for example.

● Policy Compliance: An easy-to-understand summary of the network’s usage policies,

including any data limits, restricted activities, and fair usage policies.

● Troubleshooting Guide: Simple solutions to common problems that users might

encounter while using the network services, such as what to do or who to contact if

they can not connect to the network or if their connection is slow.

In conclusion, while OpenWISP may not provide out-of-the-box user guides or centralised

documentation suitable for all users, it is possible for organisations to create effective user

guides that help understand how to use the network’s features effectively and efficiently.

116

Appendix A: OpenWISP Guide for Network Management in Community Environments

E Case Studies and Evaluations

Navigating through the deployment and management of OpenWISP necessitates a thorough

understanding that spans beyond technical proficiency. Therefore, this section seeks to

explain key aspects such as the design of case studies, performance evaluations, cost

analysis, and continuous evaluation methodologies.

Integrating these components into a guide will not only help open OpenWISP to a broader

audience but also facilitate a robust understanding of how to implement, manage, and

optimise an OpenWISP-based network effectively within real-world conditions.

E.1 The Value of Simulated Deployments

Simulated deployments are an invaluable tool in network management, particularly when

setting up and optimising network configurations. They allow network administrators to test

and fine-tune their configurations in a controlled environment before deploying them in a live

environment. This can help identify and address potential issues, ensuring a smoother and

more reliable network operation. OpenWISP's configuration management features support

this kind of testing because it has OpenWRT compatibility, so Virtual Machines can be used.

Also, the NetJSON configuration templates that OpenWISP uses allow you to define reusable

network configurations that you can apply in your simulated environment to test their

performance and impact on the network.

Moreover, the automatic registration and in general the automatisation allow you to simulate

the environment accurately enough to easily scale your testing to include more devices

without manual configuration.

Finally, OpenWISP’s modularity allows you to add or modify features as needed to suit your

testing requirements.

117

Appendix A: OpenWISP Guide for Network Management in Community Environments

E.2 Performance Evaluations

Evaluating the performance of networks managed by OpenWISP involves several aspects,

including monitoring network traffic, identifying high-usage devices, and troubleshooting

connectivity issues. Here's how OpenWISP supports these tasks:

● Monitoring network traffic: OpenWISP Monitoring is a network monitoring system is

the module that collects the important metrics for performance evaluations like

device status information like uptime, RAM status, CPU load averages, interface

properties and addresses, among others.

● Identifying high-usage devices: as we mentioned in section C.1.2, OpenWISP can help

identify high-usage devices.

● Troubleshooting connectivity Issues: the monitoring features can also help

troubleshoot connectivity issues. For example, monitoring uptime and packet loss

can help identify devices that are frequently disconnecting or experiencing high

packet loss.

Collecting and analysing network data, OpenWISP allows network administrators to monitor

network traffic, identify high-usage devices, and troubleshoot connectivity issues.

E.3 Cost Analysis: OpenWISP vs Proprietary Solutions

OpenWISP, as an open-source network management system, offers several cost benefits

compared to proprietary solutions. Here are some key factors:

● No licensing costs: Unlike proprietary software, open-source software like OpenWISP

is free to use. This means organizations can deploy and use OpenWISP without

worrying about licensing costs.

118

Appendix A: OpenWISP Guide for Network Management in Community Environments

● Customisation capabilities: OpenWISP is highly customisable as we discussed in

chapter 1. It allows organizations to modify and extend its functionality to suit their

specific needs. In contrast, proprietary solutions often come with rigid features and

limited customisation options.

● Community support: OpenWISP has a strong community of developers and users.

This community can provide valuable support and resources, helping organizations

solve problems and improve their network management. Proprietary solutions, on the

other hand, usually offer support at an additional cost.

● Avoid Vendor Lock-in: With open-source software like OpenWISP, organizations avoid

vendor lock-in that often comes with proprietary software. They have the freedom to

modify the software or switch to a different solution if needed.

E.4 Advantages of Open-Source Software

Apart from the no licensing costs, avoiding the vendor lock-in, the community support and

the ability to be extensible, there are more advantages of using open-source software:

● Transparency: Open-source software is transparent. The source code is openly

available, which allows users to inspect it, understand how it works, and make

modifications if needed.

● Attract better talent: Companies that use open-source software can attract better

talent since some developers may prefer organizations that contribute and use

open-source software.

● Better security: The transparency of open-source software allows anyone to inspect

the code, which can lead to more secure software. Security gaps are quickly tracked

down and closed under the inspection of many eyes.

119

Appendix A: OpenWISP Guide for Network Management in Community Environments

E.5 Methodological Framework for Continuous Evaluation

With the performance evaluations we do not have enough. We need to have continuous

evaluation. So apart from the performance ones, we should also take into account that there

must be periodic audits of network security to ensure that the network is secure and that all

security measures are working as expected.

Also, continuous feedback from network users can provide valuable insights into how the

network is being used and where improvements can be made. While OpenWISP does not

provide a built-in feature for collecting user feedback, organizations can use various

methods such as surveys, user interviews, or feedback forms to gather this information.

Finally, it should be interesting to use continuous improvement methodologies. An example

is the Kaizen methodology (United States Environmental Protection Agency, 2023), it

focuses on continuous improvement through incremental changes. In the context of network

management, this could involve regularly making small adjustments to the network

configuration or policies based on performance data and user feedback.

120

Appendix A: OpenWISP Guide for Network Management in Community Environments

F Conclusion

F.1 Final thoughts

This guide unfolds the significant capabilities of OpenWISP, outlining its potential in

managing network infrastructures. It brings forth invaluable functionalities, notably RADIUS,

which facilitates centralized AAA (Authentication, Authorization, and Accounting)

management. OpenWISP, with its open-source nature, is not merely a tool; it is a versatile

platform, a perfect fit to a spectrum of infrastructures thanks to its modularity and expansive

customisation possibilities.

The dynamism embedded within OpenWISP not only empowers network administrators to

optimise, secure, and adeptly manage their networks but also necessitates an appreciation

for its evolutionary nature. Particularly, during the crafting of this guide, OpenWISP

introduced production capabilities via Docker, spotlighting the importance of being proactive,

informed users. Staying tuned to such advancements ensures that we harness OpenWISP's

full potential and remain adept in managing evolving network demands.

F.2 Next Steps and Further Learning

Embarking on your implementation journey with OpenWISP, you will unearth a variety of

strategies and customisations, each paving the way towards seamless network

management possibilities. The unique demands of every network request the adaptation of

these strategies, culminating in the gradual integration of advanced functionalities as your

expertise blossoms.

Venturing into advanced customisations, including scripting and API integration, reveals new

horizons in tailoring your network management solutions. While you are crafting a

121

Appendix A: OpenWISP Guide for Network Management in Community Environments

management ecosystem that aligns with your network’s dynamics, remember that thorough

testing and validation are crucial to maintain network security and integrity.

Advanced customisations might entail developing tailored modules to cater to specific

network management needs, automating network configuration adjustments in response to

real-time monitoring data, or integrating OpenWISP with third-party applications and

platforms via APIs to enhance data sharing and functionality.

Immersing yourself in OpenWISP not only represents a step towards adaptable, scalable, and

proficient network management but also a contribution to its collective evolution, ensuring

its position as a future-ready solution. Your innovations and experiences do not just

strengthen your own network infrastructure, they enrich the entire OpenWISP community and

platform.

Engagement with this community through forums and discussion channels offers an avenue

for perpetual learning, problem-solving, and the exploration of innovative applications,

turning challenges and transformations into opportunities for growth and exploration.

F.3 Additional Resources

Navigating through the complexities and specificities of network management with

OpenWISP can be significantly enriched by diving into a myriad of additional resources

available. The official documentation and various tutorials from OpenWISP furnish a

foundational base, providing an in-depth exploration of functionalities, modules, and

customisation possibilities. These materials, accessible through the OpenWISP website,

serve not only as a guidepost for troubleshooting but also as a treasure trove of knowledge

to master the application of this versatile platform.

An exploration into real-world applications of OpenWISP is facilitated by various case

studies, each narrating a unique tale of network management challenges and innovative

122

Appendix A: OpenWISP Guide for Network Management in Community Environments

solutions. These instances not only unveil the practical applicability of strategies discussed

in this guide but also illuminate the diverse ways in which OpenWISP adapts to distinct

network environments, becoming an invaluable asset in navigating through myriad network

management scenarios.

For those who wish to delve deeper into specific topics or explore new terrains in network

management, the extensive OpenWISP documentation is available and we invite you to

explore it. These writings not only expand upon the concepts and strategies discussed

within this guide but also explore new ideas, advanced customisations, and innovative

applications within the expansive universe of OpenWISP. Thus, your journey through network

management with OpenWISP is accompanied, at every step, by knowledge and experiences

shared by a global community.

F.4 Closing Remarks

Thank you sincerely for embarking on this journey through network management with

OpenWISP, and investing your time and energy into exploring this guide. Your endeavour into

enhancing and innovating your network’s functionality and efficiency is very significant not

only for your immediate community but it also adds value to the global network of

OpenWISP users and administrators. We encourage you to dive into the practical

applications of strategies and customisations discussed herein, as each network presents a

unique landscape, ripe for exploration and tailored applications of OpenWISP’s diverse

capabilities.

Your experiments, insights, and experiences with implementing OpenWISP are invaluable,

and as you traverse through the myriad possibilities, do remember that your journey enriches

not only your network but can also inspire pathways for others in the community. Your

feedback on this guide and contributions to the OpenWISP community, whether through

123

Appendix A: OpenWISP Guide for Network Management in Community Environments

sharing your own narratives, crafting more guides, or developing modules, are not only

welcomed but deeply appreciated.

In navigating through the challenges and discoveries that await in your network

management journey, may you find innovative solutions and explore new territories in

network customisation and management with OpenWISP.

124

Appendix A: OpenWISP Guide for Network Management in Community Environments

G References

freeradius. (n.d.). guide/FAQ. Wiki.freeradius.org. Retrieved September 3, 2023, from

https://wiki.freeradius.org/guide/FAQ#freeradius-overview_what-is-freeradius-and-what-is-it-

supposed-to-do

OpenWISP. (n.d.-a). Architecture, Modules, Technologies — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved May 26, 2023, from

https://openwisp.io/docs/general/architecture.html

OpenWISP. (n.d.-b). Enforcing session limits — openwisp-radius 1.0.2 documentation.

Openwisp-Radius.readthedocs.io. Retrieved August 3, 2023, from

https://openwisp-radius.readthedocs.io/en/stable/user/enforcing_limits.html

OpenWISP. (n.d.-c). Values and Goals of OpenWISP — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved March 17, 2023, from

https://openwisp.io/docs/general/values.html#goals

OpenWISP. (n.d.-d). WiFi Hotspot & Captive Portal — OpenWISP 22.05 documentation.

Openwisp.io. Retrieved May 11, 2023, from https://openwisp.io/docs/tutorials/hotspot.html

openwisp. (2023a). NetJSON Templates. GitHub.

https://github.com/openwisp/netjson-templates

openwisp. (2023b). openwisp-config. GitHub. https://github.com/openwisp/openwisp-config

openwisp. (2023c). openwisp-controller. GitHub.

https://github.com/openwisp/openwisp-controller

openwisp. (2023d). openwisp-monitoring. GitHub.

https://github.com/openwisp/openwisp-monitoring

125

Appendix A: OpenWISP Guide for Network Management in Community Environments

openwisp. (2023e). openwisp-radius. GitHub. https://github.com/openwisp/openwisp-radius

United States Environmental Protection Agency. (2023). Lean Thinking and Methods -

Kaizen. US EPA. https://www.epa.gov/sustainability/lean-thinking-and-methods-kaizen

‌

126

Appendix B:

Technical Design Document: Module

Marketplace for OpenWISP

Prepared by Alicia Pallarol Isábal as part of a Bachelor thesis submission to Universitat

Politècnica de Catalunya in October 2023.

Index

A. Introduction 128
B. Scope of the document 130
C. Key features and functionalities of the module marketplace 131
D. Constraints on the design 136
E. System architecture and components 139
F. Design decisions 141
G. Open issues and challenges 145
H. Conclusion 147

H.1 Key Takeaways 147
H.2 Acknowledgement of Challenges 147
H.3 Next Steps 148
H.4 Closing Note 148

J. References 149

List of Figures:

1. Module Marketplace architecture diagram 140

127

Appendix B: Technical Design for a module Marketplace

A. Introduction

OpenWISP, a widely recognised open-source network management system is gaining

growth. Its ability to seamlessly manage and automate network configurations has paved

the way for its expansive utility. Within this framework, the development of a module

marketplace promises to offer users a centralised location to discover, acquire, and manage

additional functionalities, improving their capacity to tailor the system to specific needs

while keeping the collaboration and community principles of open-source software.

This Technical Design Document (TDD) has been composed as part of Alicia Pallarol Isábal’s

bachelor thesis in Computer Science, and it aims to lay a structured, technical foundation for

developing the previously mentioned module marketplace. It intends to elucidate the

proposed system architecture and components, design decisions, and other critical aspects

integral to the successful realisation of the module.

Geared towards software developers, project managers, and other stakeholders involved in

the OpenWISP project, this document offers comprehensive insights and directives,

assuming a foundational understanding of network management principles and OpenWISP

functionalities.

The purpose of the module marketplace is to fill a gap for network administrators using

OpenWISP who have a specific need that would require a new module. These administrators

could be able to find the modules they need just coded by other developers. It is also

beneficial for developers to use this platform for distributing their modules, as it will help to

promote collaboration and innovation within the OpenWISP community.

Embarking on this exploration, the document is segmented into various sections, including

Scope, Key Features, Constraints, and more, each methodically unfolding the various facets

128

Appendix B: Technical Design for a module Marketplace

of the design and development process, through a roadmap to navigate through the intricate

details of the marketplace module creation.

129

Appendix B: Technical Design for a module Marketplace

B. Scope of the document

The purpose of the module marketplace is to provide a platform for software developers to

distribute and sell their modules. The target audience is network administrators using

OpenWISP who have a specific need that would require a new module. The developers

publishing the modules will do it using GitHub.

The key features and functionality of the module marketplace include:

1. A search engine to help developers find modules that meet their needs.

2. A user management system to identify module publishers.

3. A system for publishers to share their modules on landing pages.

4. An information landing page template.

5. A process for reviewing modules before landing pages are published.

The constraints on the design of the module marketplace include:

1. The module marketplace must be easy to use for both developers and users.

2. The module marketplace must be secure.

3. The module marketplace must be scalable to handle many modules and users.

4. The publishers’ authentication needs to be integrated with GitHub.

130

Appendix B: Technical Design for a module Marketplace

C. Key features and functionalities of the module

marketplace

In the previous section, we mentioned the key features of the marketplace. Here are these

features with further details:

1. A search engine to help developers find modules that meet their needs: to assist

developers in efficiently discovering modules that solve their requirements, a robust

search engine will be embedded within the marketplace. This engine will leverage a

multifaceted ranking algorithm, considering numerous variables to prioritize search

results optimally:

○ Relevance: this will be determined through keyword matching and semantic

understanding, employing algorithms and NLP (Natural Language

Processing) techniques to correlate search queries with module descriptions

and metadata.

○ Popularity: a module’s popularity will be inferred from its GitHub traffic, and

social signals, reflecting its acceptance and usage within the community.

○ Rating: integrating user ratings, review sentiments and additional quality

indicators, the rating will serve as a direct reflection of user experiences and

module robustness.

○ Other factors: furthermore, variables such as developer reputation, module

recency, compatibility with OpenWISP, and any certification or verification will

be significant in fine-tuning the search results, ensuring developers have

access to relevant, quality modules.

131

Appendix B: Technical Design for a module Marketplace

2. A user management system to identify module publishers: central to the functionality

of the module marketplace is the user management system, prepared to validate and

identify module publishers through an integrative GitHub authentication system.

○ Authentication and profile creation: taking advantage of the reliability and

universality of GitHub OAuth authentication, the system assures secure

access and identity verification of module publishers, who are then prompted

to augment their profiles with additional customisable information drawn

from GitHub data.

○ Module management: empowering publishers to link directly to their GitHub

repositories, the system ensures not only the consistency and recency of the

hosted modules but also streamlined management of versioning, updates,

and user notifications.

○ Review, approval, and publication: with an established review process, the

platform maintains a qualitative standard, facilitating communication

between reviewers and publishers, and ultimately culminating in the

publication of vetted modules.

○ Analytics, support, and interaction: publishers are given a comprehensive

dashboard, offering crucial insights into module statistics, while also

establishing a conduit for user feedback, support, and documentation access.

○ Security and compliance: ensuring adherence to requisite legal, regulatory, and

security norms, the system perpetually safeguards the marketplace’s integrity,

and by extension, its user base.

3. A system for publishers to share their modules on landing pages: for sharing

modules, the marketplace will introduce a structured system, where publishers can

create dedicated landing pages for their modules.

132

Appendix B: Technical Design for a module Marketplace

○ Landing page creation and customisation: the system allows publishers to

effortlessly input critical module information and customise their landing

pages, fostering clarity and brand alignment while also providing a

true-to-form preview before publication.

○ Visibility and accessibility: with features like public/private modes and

accessibility checks, it ensures that landing pages and modules are readily

accessible and visible as per publisher preference.

○ User interaction and analytics: by enabling user comments, ratings, and

reviews, alongside providing critical analytics like view and download counts,

the system ensures a bidirectional engagement between publishers and

users.

○ Updates: automated checks for repository updates and facilitating

notifications ensure the module information stays current and relevant.

○ Module management: options for deactivation, withdrawal, and data

management guarantee publishers have complete control over the availability

and presence of their modules and associated data.

4. An information landing page template: aiming to ensure a consistent, user-friendly,

and accessible experience across all module landing pages, the module marketplace

will introduce a standardised information landing page template.

○ Uniformity and responsive design: by having a predefined layout and ensuring

responsiveness, the template establishes a uniform and accessible

experience across diverse devices and user environments.

○ Dynamic and automated content integration: publishers are presented with

clearly defined content fields, ensuring a balanced blend of uniformity and

individuality, as their provided content is dynamically integrated into the

strategic zones of the landing page.

133

Appendix B: Technical Design for a module Marketplace

○ Interactive elements and UX: there should be interactive elements like

download buttons and feedback sections to ensure user engagement is

straightforward and rewarding, whilst also guaranteeing that navigation and

user support are intuitively structured.

5. A process for reviewing modules before landing pages are published: to maintain

high-quality, secure, and user-oriented modules, the marketplace will incorporate a

thorough review process, ensuring that every module accords with the esteemed

standards upheld by OpenWISP.

○ Structured submission and verification: publishers are facilitated with a

structured submission form, the above-mentioned template, then, there will be

an automated or manual acknowledgement to confirm the receipt of the

module for review.

○ Automated and manual reviews: leaning on GitHub Actions, preliminary

automated checks for aspects like code quality and dependencies will be

performed, after those, OpenWISP developers will engage in a manual review

with defined criteria.

○ Constructive feedback and revision: to facilitate transparency and

improvement, detailed feedback will be given to publishers, who are then

guided through a structured revision and re-submission process.

○ Seamless approval to publishing transition: upon approval, publishers are

notified and, through an automated system, modules seamlessly transition to

being published on the marketplace, adhering to the predetermined template.

○ Continuous review of updates: modules, after the initial approval, are subject

to continuous review for any updates, ensuring that the marketplace

consistently provides secure modules.

134

Appendix B: Technical Design for a module Marketplace

○ Uniform review with trained reviewers: adherence to documented guidelines

and periodic training for reviewers ensures that each module is evaluated

under a uniform, fair, and knowledgeable perspective.

135

Appendix B: Technical Design for a module Marketplace

D. Constraints on the design

A more detailed description of the earlier mentioned constraints is this:

1. The module marketplace must be easy to use for both developers and users: to make

the marketplace a relevant product, it needs to be usable and intuitive, for that, we

need:

○ Intuitive design: crafting interfaces and workflows that are straightforward

and self-explanatory for various user demographics.

○ User assistance: embedding help documentation, tooltips, and perhaps a

chatbot to assist users in navigating and utilizing the marketplace.

○ User feedback: incorporating mechanisms like surveys, usability testing

sessions, and feedback forms to extract insightful user feedback for

continuous improvement.

○ Accessibility: ensuring that the platform is accessible to people with

disabilities, adhering to Web Content Accessibility Guidelines (WCAG) to

ensure that the platform is usable by people with varied abilities (W3C, n.d.).

○ UX/UI design principles: employing principles such as Fitts' Law, Hick’s Law,

and the Pareto Principle (uxtoast, n.d.) to enhance ease of use and efficiency.

2. The module marketplace must be secure: to be trustworthy to the users so that they

freely use the marketplace it is essential to guarantee security:

○ Data protection: utilizing Advanced Encryption Standard (AES) for data

encryption and ensuring secure data transmission through protocols such as

TLS.

○ Authentication and authorization: Implementing secure authentication

(integrating with GitHub for publishers) and ensuring appropriate

authorization mechanisms.

136

Appendix B: Technical Design for a module Marketplace

○ Code and infrastructure security: regularly auditing the codebase and

infrastructure for vulnerabilities and addressing them promptly.

○ User privacy: ensuring user privacy by collecting minimal data and providing

transparent communication regarding data usage.

3. The module marketplace must be scalable to handle many modules and users: we

need to ensure that the marketplace is a stable software solution.

○ Infrastructure scalability: designing infrastructure that can dynamically scale

to accommodate growing data, user traffic, and module submissions using

containerization (Docker) and orchestrators (Kubernetes) to ensure that the

application infrastructure can dynamically scale.

○ Database scalability: employing a database system that ensures optimal

performance and can manage increasing data without sacrificing speed or

reliability by considering NoSQL databases like MongoDB which are known

for their scalability and flexibility.

○ Platform performance: ensuring that the platform maintains its performance,

including load times and responsiveness, even as the scale grows.

○ Cost management: implementing solutions that allow scalable infrastructure

without causing costs to spiral out of control with cloud services (Amazon

Web Services, Azure or Google Cloud) that provide automatic scaling

capabilities to manage costs while scaling.

4. The publishers’ authentication needs to be integrated with GitHub: in order to link

easily the publisher with the module’s repository it is important to be integrated with

GitHub authentication:

○ OAuth authentication: employing GitHub OAuth for secure and straightforward

publisher authentication, ensuring a secure and user-friendly authentication

process, adhering to OAuth 2.0 specifications.

137

Appendix B: Technical Design for a module Marketplace

○ GitHub API integration: ensuring reliable and secure interactions with the

GitHub API for retrieving publisher data and repository details by

implementing a queuing system to manage requests and adhere to GitHub's

usage policies.

○ Data synchronization: managing data synchronization between the

marketplace and GitHub, ensuring consistency and reliability using webhooks

or periodic API polling to maintain synchronization between data stored on

the marketplace and GitHub repositories.

○ Error handling and user support: implementing error handling for potential

issues (like API failures) and providing support and guidance for publishers in

such scenarios.

138

Appendix B: Technical Design for a module Marketplace

E. System architecture and components

It is time to discuss the architecture and the technologies. Figure 1 explains it visually but

here is a description:

● Frontend: the chosen frontend technology is React due to speed, flexibility, and ease

of use which will help to build complex user interfaces, such as the one for a module

marketplace (Meta Open Source, 2023).

● Backend: the chosen technologies are node.js with express.js because of their

efficiency, scalability and easy integration with NoSQL databases (OpenJS

Foundation, 2017).

● Search technology: the chosen technology is Elasticsearch because of its full-text

search capabilities and easy set-up and use. Moreover, it is scalable and can handle

large amounts of data (Elastic, 2019).

● CI/CD: the chosen technology is GitHub actions because of the possibility to

automate the building, testing, and deployment of the application. Also, it is easy to

use and it is integrated with GitHub (GitHub, n.d.).

● Orchestration and containerisation: Kubernetes Engine and Docker are used to deploy

and manage the backend application because they are very reliable and scalable. We

will have the frontend, backend and search engine within our Kubernetes cluster

(Campbell, n.d.) (Kubernetes, 2022).

● Database: as we discussed, we want to use a NoSQL database, specifically MongoDB

is the chosen technology since it is document-oriented which we find useful if your

modules have varying attributes. We want to locate the database outside the

Kubernetes cluster to have more control over features related to backups, scaling and

maintenance (MongoDB, 2019).

139

Appendix B: Technical Design for a module Marketplace

Using GitHub Actions for the CI/CD not only provides automation for building and testing the

application but also smoothly integrates with the deployment process by pushing Docker

images to the Docker Registry. Those images are then accessed by the Kubernetes cluster,

which orchestrates the deployment of the various services, like the Node.js/Express.js

backend and Elasticsearch, ensuring they communicate seamlessly and scale according to

demand. Also, by having MongoDB externally, we ensure robust data management without

overloading our application cluster.

Figure 11: Module Marketplace architecture diagram.

1 Source: own elaboration using Draw.io according to the description at chapter E.

140

Appendix B: Technical Design for a module Marketplace

F. Design decisions

To develop the marketplace, some design decisions need to be made.

1. Technology choices:

a. Rationale: Technologies like React, Node.js with Express.js, Elasticsearch,

GitHub Actions, Docker, Kubernetes, and MongoDB were selected due to their

widespread use, community support, scalability, and compatibility with each

other.

b. Implications: The chosen stack is modern and has a robust ecosystem, but

also requires specific expertise for efficient development and management.

c. Alternatives: While other technologies like Angular or SQL databases might

have been viable, the chosen stack provided optimal solutions for our specific

use cases, such as the need for a NoSQL database to handle varying module

attributes.

2. Data management:

a. Rationale: MongoDB, a NoSQL database, was chosen for its

document-oriented nature and scalability.

b. Implications: The use of MongoDB allows for flexibility in data structuring but

implies the need for efficient data indexing and retrieval strategies to ensure

performance.

c. Alternatives: Other NoSQL databases, like CouchDB, were considered but

MongoDB’s rich feature set and broad usage in the industry were decisive

factors.

3. UI/UX design:

141

Appendix B: Technical Design for a module Marketplace

a. Rationale: A user-friendly, intuitive interface was prioritized to facilitate easy

navigation and usage of the platform by both developers and network

administrators.

b. Implications: The focus on usability may necessitate ongoing UX research

and adjustments based on user feedback and behaviour.

c. Alternatives: Alternative design philosophies, like minimalist designs, were

considered but ultimately, user-friendliness and providing ample information

were deemed crucial.

4. Security protocols:

a. Rationale: Implementing industry-standard security protocols to safeguard

user data and ensure secure transactions.

b. Implications: Rigorous testing and periodic security audits will be necessary

to maintain high security.

c. Alternatives: Different levels of security protocols were considered, but a

robust approach was deemed essential due to the platform’s nature.

5. Scalability and performance optimisation:

a. Rationale: Kubernetes was chosen to ensure that the platform can scale

efficiently to handle growing user and data loads.

b. Implications: The use of Kubernetes necessitates effective monitoring to

manage resources efficiently and ensure cost-effectiveness.

c. Alternatives: Serverless architectures were considered but ruled out due to

the complex state management and potential latency in certain use cases.

6. Integration and compatibility:

a. Rationale: GitHub was integrated for user management and CI/CD to ensure

familiarity for developers and streamline workflows.

142

Appendix B: Technical Design for a module Marketplace

b. Implications: Dependency on GitHub APIs and ensuring ongoing compatibility

with future GitHub updates.

c. Alternatives: Other platforms or custom solutions were considered but GitHub

was chosen for its widespread adoption among the target user base.

7. Development methodology (Hoory & Bottorff, 2022):

a. Rationale: Agile, due to its iterative nature and flexibility to adapt to changes.

b. Implications: Regular sprints and reviews will be integral to the development

process and during this process, change will be possible.

c. Alternatives: Waterfall methodology, discarded due to the lack of flexibility.

8. Testing and quality assurance:

a. Rationale: A thorough QA and testing phase utilizing automated tests and

manual review to ensure functionality and security.

b. Implications: May require additional resources and time to ensure

comprehensive testing.

c. Alternatives: Different testing strategies and tools, but the chosen methods

provide a balanced approach to quality and efficiency.

9. Development strategy:

a. Rationale: Automated deployment through CI/CD pipelines to ensure

consistent and error-free releases.

b. Implications: Needs rigorous testing and well-defined deployment strategies

to avoid issues in production.

c. Alternatives: Manual deployment was considered but ruled out due to

potential human error and inefficiency.

10.Maintenance and updates:

a. Rationale: Regular updates and proactive maintenance to ensure security,

functionality, and meeting user needs.

143

Appendix B: Technical Design for a module Marketplace

b. Implications: Necessitates effective communication channels with users to

manage expectations during updates or maintenance periods.

c. Alternatives: Reactive approaches were considered, but proactive

maintenance was deemed crucial for long-term sustainability and user trust.

144

Appendix B: Technical Design for a module Marketplace

G. Open issues and challenges

Some open issues include:

● Unpredictability in resource utilization:

○ Issue: This is a theoretical Design and there is no infrastructure to base the

document, it is impossible to know or predict either the user number or the

available resources.

○ Challenge: Designing the Kubernetes cluster, with the accurate resources that

the control plane and the nodes have.

● User adoption and contribution:

○ Convincing developers and network administrators to use and contribute to

the module marketplace.

○ Challenge: Developing engagement, trust, and a sense of community among

users.

● Module quality and standardization:

○ Issue: Ensuring that the published modules adhere to quality and

compatibility standards.

○ Challenge: Implementing a rigorous yet user-friendly review process to

maintain a high-quality module inventory.

● Scalability and performance management:

○ Issue: Efficiently managing resources in Kubernetes to ensure

cost-effectiveness and performance.

○ Challenge: Balancing between available resources and potential spikes in user

activity or data loads.

● Legal and compliance aspects:

145

Appendix B: Technical Design for a module Marketplace

○ Issue: Managing the legal aspects of hosting code and modules, which might

be used in various environments and applications.

○ Challenge: Navigating through licensing, intellectual property, and compliance,

especially in an open-source context.

● Technical debt and future-proofing:

○ Issue: As technology evolves, ensuring that the platform adapts and remains

relevant and efficient can be challenging.

○ Challenge: Managing technical debt and ensuring that the architecture and

technologies used are future-proof to a reasonable extent.

146

Appendix B: Technical Design for a module Marketplace

H. Conclusion

The endeavour to create a Module Marketplace for OpenWISP presents a remarkable

opportunity to facilitate network management processes by offering a centralised repository

of reusable modules. This initiative, as outlined in the technical design, merges innovative

technologies and practices, including Kubernetes, Docker, React, Node.js, Elasticsearch, and

MongoDB, to build a scalable, user-friendly, and efficient platform.

H.1 Key Takeaways

● Integrative approach: The design emphasizes an integrative approach, amalgamating

various technologies and practices to harness their collective capabilities and

provide a robust platform.

● Scalability and flexibility: using Kubernetes and Docker ensures scalable and flexible

architecture, accommodating growth and adapting to evolving requirements.

● User-centric design: With a strong focus on usability, the platform endeavours to

provide a seamless and intuitive user experience for both module publishers and

consumers.

● Security and reliability: While ensuring security through GitHub-based authentication,

the infrastructure design maintains a consistent focus on reliability and data integrity.

H.2 Acknowledgement of Challenges

The project acknowledges several challenges, including managing scalability, ensuring

consistent user engagement, maintaining module quality, and navigating through legal and

compliance aspects.

147

Appendix B: Technical Design for a module Marketplace

Given the theoretical nature of this design, the actual implementation might uncover

additional challenges and insights that will necessitate iterative enhancements to the

system architecture and user interfaces.

H.3 Next Steps

● Prototype development: The initial phase would involve developing a Proof of

Concept (PoC) to validate the technical design, gather early user feedback, and

identify potential enhancement areas.

● Continuous testing and feedback integration: Implementing continuous testing and

feedback loops to refine the platform and enhance its efficiency, usability, and

reliability.

● Community engagement: Initiating programs and platforms to engage the developer

community, encouraging contributions, and fostering a collaborative ecosystem.

● Iterative development: Adopting an agile and iterative development approach to

manage changes, updates, and enhancements in an organized and risk-mitigated

manner.

H.4 Closing Note

The module marketplace stands to be a central element in increasing the capabilities and

efficiency of network administrators and developers interacting with OpenWISP. By providing

a structured, efficient, and collaborative platform, the marketplace not only enhances module

discoverability and reusability but also fosters a collaborative environment among

developers and network administrators. As the project advances from this technical design

to the development phase, continuous learning, adaptation, and community engagement will

be critical in navigating towards a successful and sustainable module marketplace.

148

Appendix B: Technical Design for a module Marketplace

J. References

Campbell, J. (n.d.). Kubernetes vs. Docker. Atlassian. Retrieved August 9, 2023, from

https://www.atlassian.com/microservices/microservices-architecture/kubernetes-vs-docker

Elastic. (2019). Open Source Search: The Creators of Elasticsearch, ELK Stack & Kibana |

Elastic. Elastic.co; Elastic. https://www.elastic.co/

GitHub. (n.d.). Features • GitHub Actions. GitHub. Retrieved August 9, 2023, from

https://github.com/features/actions

Hoory, L., & Bottorff, C. (2022, August 10). Agile vs. Waterfall: Which Project Management

Methodology Should I Use? Forbes Advisor.

https://www.forbes.com/advisor/business/agile-vs-waterfall-methodology/

Kubernetes. (2022, November 24). Communication between Nodes and the Control Plane.

Kubernetes.

https://kubernetes.io/docs/concepts/architecture/control-plane-node-communication/

Meta Open Source. (2023). React. React.dev. https://react.dev/

MongoDB. (2019). The most popular database for modern apps. MongoDB.

https://www.mongodb.com

OpenJS Foundation. (2017). Express - Node.js web application framework. Expressjs.com.

https://expressjs.com/

Uxtoast. (n.d.). uxtoast. Www.uxtoast.com. Retrieved August 9, 2023, from

https://www.uxtoast.com/ux-laws/

W3C. (2018). Web Content Accessibility Guidelines (WCAG) Overview. Web Accessibility

Initiative (WAI). https://www.w3.org/WAI/standards-guidelines/wcag/

149

