
OpenWISP

version dev

OpenWISP Community

August 31, 2024

Contents

OpenWISP Documentation 1

First Steps 1

Quick Start Guide 1

Try the Demo 1

Install OpenWISP 2

Make Sure OpenWISP Can Reach Your Devices 2

Configure Your OpenWrt Devices 2

Learn More 2

Seek Help 2

Setting Up the Management Network 2

Why OpenWISP Needs to Reach Your Devices 2

Public Internet Deployment 3

Private Network 3

Configure Your OpenWrt Device 4

Prerequisites 4

Flash OpenWrt on Your Device 4

Install the OpenWISP OpenWrt Agents 4

Compiling Your Own OpenWrt Image 6

How to Edit Django Settings 7

What is an OpenWISP Module? 7

Editing Settings with Ansible-OpenWISP2 7

Editing Settings with Docker-OpenWISP 8

OpenWISP Settings Reference 8

Project Overview 9

Architecture, Modules, Technologies 9

OpenWISP Modules 11

Deployment 11

Server Side 12

Network Device Side 12

Website and Documentation 13

Main Technologies Used 13

Python 13

Django 13

Django REST Framework 13

Celery 13

OpenWrt 13

Lua 13

Node.js and React JS 14

Ansible 14

Docker 14

NetJSON 14

RADIUS 14

FreeRADIUS 14

Mesh Networking 14

InfluxDB 14

Elasticsearch 14

Networkx 15

Relational Databases 15

Other Notable Dependencies 15

Values and Goals of OpenWISP 15

What is OpenWISP? 15

History 16

Core Values 16

1. Communication through Electronic Means is a Human Right 16

2. Net Neutrality 16

3. Privacy 16

4. Open Source, Licenses, and Collaboration 16

5. Software Reusability for Long-Term Sustainability 17

Goals 17

Installers 17

Ansible OpenWISP 17

System Requirements 18

Hardware Requirements (Recommended) 18

Software 18

Supported Operating Systems 18

Deploying OpenWISP Using Ansible 19

Introduction & Prerequisites 19

Install Ansible 19

Install This Role 20

Choose a Working Directory 20

Create Inventory File 20

Create Playbook File 20

Run the Playbook 20

Upgrading OpenWISP 21

Deploying the Development Version of OpenWISP 22

Using Let's Encrypt SSL Certificate 22

Enabling OpenWISP Modules 23

Enabling the Monitoring Module 23

Enabling the Firmware Upgrader Module 24

Enabling the Network Topology Module 24

Enabling the RADIUS Module 25

Configuring FreeRADIUS for WPA Enterprise (EAP-TTLS-PAP) 25

Using Let's Encrypt Certificate for WPA Enterprise (EAP-TTLS-PAP) 27

Deploying Custom Static Content 28

Configuring CORS Headers 28

Install OpenWISP for Testing in a VirtualBox VM 29

Using Vagrant 29

Installing Debian 11 on VirtualBox 30

VM Configuration 30

Back to your local machine 30

Troubleshooting 31

SSL Certificate Gotchas 32

Role Variables 32

Developer Installation instructions 40

Installing for Development 40

How to Run Tests 40

Docker OpenWISP 41

Quick Start Guide 42

Available Images 42

Image Tags 42

Auto Install Script 42

Using Docker Compose 43

Architecture 44

Settings 45

Essential 46

DASHBOARD_DOMAIN 46

API_DOMAIN 46

VPN_DOMAIN 46

TZ 46

CERT_ADMIN_EMAIL 46

SSL_CERT_MODE 46

Security 47

DJANGO_SECRET_KEY 47

DJANGO_ALLOWED_HOSTS 47

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS 47

OpenWISP 47

EMAIL_HOST 47

EMAIL_DJANGO_DEFAULT 48

EMAIL_HOST_PORT 48

EMAIL_HOST_USER 48

EMAIL_HOST_PASSWORD 48

EMAIL_HOST_TLS 48

EMAIL_TIMEOUT 48

EMAIL_BACKEND 48

DJANGO_X509_DEFAULT_CERT_VALIDITY 49

DJANGO_X509_DEFAULT_CA_VALIDITY 49

DJANGO_CORS_HOSTS 49

DJANGO_LANGUAGE_CODE 49

DJANGO_SENTRY_DSN 49

DJANGO_LEAFET_CENTER_X_AXIS 49

DJANGO_LEAFET_CENTER_Y_AXIS 49

DJANGO_LEAFET_ZOOM 50

DJANGO_WEBSOCKET_HOST 50

OPENWISP_GEOCODING_CHECK 50

USE_OPENWISP_CELERY_TASK_ROUTES_DEFAULTS 50

OPENWISP_CELERY_COMMAND_FLAGS 50

USE_OPENWISP_CELERY_NETWORK 50

OPENWISP_CELERY_NETWORK_COMMAND_FLAGS 51

USE_OPENWISP_CELERY_FIRMWARE 51

OPENWISP_CELERY_FIRMWARE_COMMAND_FLAGS 51

USE_OPENWISP_CELERY_MONITORING 51

OPENWISP_CELERY_MONITORING_COMMAND_FLAGS 51

OPENWISP_CELERY_MONITORING_CHECKS_COMMAND_FLAGS 51

OPENWISP_CUSTOM_OPENWRT_IMAGES 52

METRIC_COLLECTION 52

CRON_DELETE_OLD_RADACCT 52

CRON_DELETE_OLD_POSTAUTH 52

CRON_CLEANUP_STALE_RADACCT 52

CRON_DELETE_OLD_RADIUSBATCH_USERS 52

DEBUG_MODE 52

DJANGO_LOG_LEVEL 53

Enabled OpenWISP Modules 53

USE_OPENWISP_TOPOLOGY 53

USE_OPENWISP_RADIUS 53

USE_OPENWISP_FIRMWARE 53

USE_OPENWISP_MONITORING 53

PostgreSQL Database 53

DB_NAME 53

DB_USER 53

DB_PASS 54

DB_HOST 54

DB_PORT 54

DB_SSLMODE 54

DB_SSLCERT 54

DB_SSLKEY 54

DB_SSLROOTCERT 54

DB_OPTIONS 55

DB_ENGINE 55

InfluxDB 55

INFLUXDB_USER 55

INFLUXDB_PASS 55

INFLUXDB_NAME 55

INFLUXDB_HOST 55

INFLUXDB_PORT 55

INFLUXDB_DEFAULT_RETENTION_POLICY 56

Postfix 56

POSTFIX_ALLOWED_SENDER_DOMAINS 56

POSTFIX_MYHOSTNAME 56

POSTFIX_DESTINATION 56

POSTFIX_MESSAGE_SIZE_LIMIT 56

POSTFIX_MYNETWORKS 57

POSTFIX_RELAYHOST_TLS_LEVEL 57

POSTFIX_RELAYHOST 57

POSTFIX_RELAYHOST_USERNAME 57

POSTFIX_RELAYHOST_PASSWORD 57

POSTFIX_DEBUG_MYNETWORKS 57

uWSGI 58

UWSGI_PROCESSES 58

UWSGI_THREADS 58

UWSGI_LISTEN 58

Nginx 58

NGINX_HTTP2 58

NGINX_CLIENT_BODY_SIZE 58

NGINX_IP6_STRING 58

NGINX_IP6_80_STRING 58

NGINX_ADMIN_ALLOW_NETWORK 59

NGINX_SERVER_NAME_HASH_BUCKET 59

NGINX_SSL_CONFIG 59

NGINX_80_CONFIG 59

NGINX_GZIP_SWITCH 59

NGINX_GZIP_LEVEL 59

NGINX_GZIP_PROXIED 60

NGINX_GZIP_MIN_LENGTH 60

NGINX_GZIP_TYPES 60

NGINX_HTTPS_ALLOWED_IPS 60

NGINX_HTTP_ALLOW 60

NGINX_CUSTOM_FILE 60

NINGX_REAL_REMOTE_ADDR 60

OpenVPN 61

VPN_NAME 61

VPN_CLIENT_NAME 61

X509 Certificates 61

X509_NAME_CA 61

X509_NAME_CERT 61

X509_COUNTRY_CODE 61

X509_STATE 61

X509_CITY 62

X509_ORGANIZATION_NAME 62

X509_ORGANIZATION_UNIT_NAME 62

X509_EMAIL 62

X509_COMMON_NAME 62

Misc Services 62

REDIS_HOST 62

REDIS_PORT 62

REDIS_PASS 63

DASHBOARD_APP_SERVICE 63

API_APP_SERVICE 63

DASHBOARD_APP_PORT 63

API_APP_PORT 63

WEBSOCKET_APP_PORT 63

DASHBOARD_INTERNAL 63

API_INTERNAL 64

NFS Server 64

EXPORT_DIR 64

EXPORT_OPTS 64

Advanced Customization 64

Creating the customization Directory 64

Supplying Custom Django Settings 65

Supplying Custom CSS and JavaScript Files 65

Supplying Custom uWSGI configuration 66

Supplying Custom Nginx Configurations 66

Docker 66

Supplying Custom Freeradius Configurations 66

Docker 66

Supplying Custom Python Source Code 67

Disabling Services 67

Docker OpenWISP FAQs 68

1. Setup fails, it couldn't find the images on DockerHub? 68

2. Makefile failed without any information, what's wrong? 68

3. Can I run the containers as the root or docker 68

Developer Docs 69

Building and Running Images 69

Running Tests 70

Using Chromedriver 70

Using Geckodriver 70

Finish Setup and Run Tests 70

Run Quality Assurance Checks 70

Makefile Options 70

Modules 71

Users 71

Users: Structure & Features 72

User Management 72

Multi-tenancy 72

Permissions and Roles 72

API Integration 72

Admin Interface 72

Extensible Authentication 73

Basic Concepts 73

Superusers 73

Staff Users 74

Permissions 74

Default Permission Groups 75

Administrator 75

Operator 75

Organizations & Multi-Tenancy 75

Organization Membership and Roles 76

Organization Manager 76

Organization Members (End-Users) 76

Organization Owners 77

Shared Objects 77

Management Commands 78

export_users 78

Settings 78

OPENWISP_ORGANIZATION_USER_ADMIN 78

OPENWISP_ORGANIZATION_OWNER_ADMIN 78

OPENWISP_USERS_AUTH_API 78

OPENWISP_USERS_AUTH_THROTTLE_RATE 79

OPENWISP_USERS_AUTH_BACKEND_AUTO_PREFIXES 79

OPENWISP_USERS_EXPORT_USERS_COMMAND_CONFIG 79

OPENWISP_USERS_USER_PASSWORD_EXPIRATION 79

OPENWISP_USERS_STAFF_USER_PASSWORD_EXPIRATION 80

REST API 80

Live Documentation 80

Browsable Web Interface 81

Obtain Authentication Token 81

Authenticating with the User Token 81

List of Endpoints 82

Change User password 82

List Groups 82

Create New Group 82

Get Group Detail 82

Change Group Detail 82

Patch Group Detail 82

Delete Group 82

List Email Addresses 82

Add Email Address 82

Get Email Address 83

Change Email Address 83

Patch Email Address 83

Make/Unmake Email Address Primary 83

Mark/Unmark Email Address as Verified 83

Remove Email Address 83

List Organizations 83

Create new Organization 83

Get Organization Detail 83

Change Organization Detail 83

Patch Organization Detail 83

Delete Organization 84

List Users 84

Create User 84

Get User Detail 84

Change User Detail 84

Patch User Detail 84

Delete User 84

Developer Docs 84

Developer Installation Instructions 85

Installing for Development 85

Alternative Sources 86

Pypi 86

Github 86

Admin Utilities 86

MultitenantAdminMixin 86

MultitenantOrgFilter 86

MultitenantRelatedOrgFilter 87

Django REST Framework Utilities 87

Authentication 88

openwisp_users.api.authentication.BearerAuthentication 88

openwisp_users.api.authentication.SesameAuthentication 88

Permission Classes 88

organization_field 88

DjangoModelPermissions 89

ProtectedAPIMixin 89

Mixins for Multi-Tenancy 89

Filtering Items by Organization 89

Checking Parent Objects 90

Multi-tenant Serializers for the Browsable Web UI 91

Multi-tenant Filtering Capabilities for the Browsable Web UI 91

Miscellaneous Utilities 92

Organization Membership Helpers 93

is_member(org) 93

is_manager(org) 93

is_owner(org) 94

organizations_dict 94

organizations_managed 94

organizations_owned 94

UsersAuthenticationBackend 94

PasswordExpirationMiddleware 95

PasswordReuseValidator 95

Extending OpenWISP Users 95

1. Initialize Your Custom Module 96

2. Install OpenWISP Users 97

3. Add EXTENDED_APPS 97

4. Add openwisp_utils.staticfiles.DependencyFinder 97

5. Add openwisp_utils.loaders.DependencyLoader 97

6. Inherit the AppConfig Class 97

7. Create Your Custom Models 98

8. Add Swapper Configurations 98

9. Create Database Migrations 98

10. Create the admin 98

1. Monkey Patching 99

usermodel_add_form 99

usermodel_change_form 99

usermodel_list_and_search 100

2. Inheriting Admin Classes 100

11. Create Root URL Configuration 101

12. Import the Automated Tests 101

Other Base Classes that can be Inherited and Extended 101

Extending the API Views 101

Controller 102

Controller: Structure & Features 103

Config App 103

PKI App 103

Connection App 104

SSH 104

SNMP 104

Geo App 104

Subnet Division App 104

Configuration Templates 105

What is a Template? 105

Template Ordering and Override 105

Shared Templates vs Organization Specific 105

Default Templates 106

Required Templates 107

Device Group Templates 107

Template Tags 107

Implementation Details of Templates 108

Configuration Variables 108

Different Types of Variables 109

1. User Defined Device Variables 109

2. Predefined Device Variables 109

3. Group Variables 109

4. Organization Variables 109

5. Global Variables 110

6. Template Default Values 110

7. System Defined Variables 111

Example Usage of Variables 111

Implementation Details of Variables 112

Device Groups 112

Group Templates 113

Group Configuration Variables 113

Group Metadata 113

Variables vs Metadata 113

Configuring Push Operations 114

Introduction 114

1. Generate SSH Key 114

2. Save SSH Private Key in "Access Credentials" 115

3. Add the Public Key to Your Devices 116

4. Test It 116

Sending Commands to Devices 117

Default Commands 117

Defining New Options in the Commands Menu 118

Command Configuration 119

1. label 119

2. schema 119

3. callable 120

How to register or unregister commands 120

Import/Export Device Data 120

Importing 120

Exporting 120

Organization Limits 121

Automating WireGuard Tunnels 121

1. Create VPN Server Configuration for WireGuard 121

2. Deploy WireGuard VPN Server 123

3. Create VPN Client Template for WireGuard VPN Server 123

4. Apply WireGuard VPN Template to Devices 123

Automating VXLAN over WireGuard Tunnels 124

1. Create VPN Server Configuration for VXLAN Over WireGuard 125

2. Deploy Wireguard VXLAN VPN Server 126

3. Create VPN Client Template for WireGuard VXLAN VPN Server 126

4. Apply Wireguard VXLAN VPN Template to Devices 127

Automating ZeroTier Tunnels 128

1. Configure Self-Hosted ZeroTier Network Controller 128

2. Create VPN Server Configuration for ZeroTier 128

3. Create VPN Client Template for ZeroTier VPN Server 130

4. Apply ZeroTier VPN Template to Devices 131

Automating OpenVPN Tunnels 132

Setting up the OpenVPN Server 133

1. Install Ansible and Required Ansible Roles 133

2. Create Inventory File and Playbook YAML 133

3. Run the Playbook 134

Import the CA and the Server Certificate in OpenWISP 134

Import the CA 135

Import the Server Certificate 135

Create the VPN Server in OpenWISP 135

Create the VPN-Client Template in OpenWISP 135

Automating Subnet and IP Address Provisioning 136

1. Create a Subnet and a Subnet Division Rule 136

Device Subnet Division Rule 137

VPN Subnet Division Rule 137

2. Create a VPN Server 138

3. Create a VPN Client Template 138

4. Apply VPN Client Template to Devices 139

Important notes for using Subnet Division 139

Limitations of Subnet Division Rules 140

Size 140

Number of Subnets 140

Number of IPs 140

REST API Reference 140

Live Documentation 141

Browsable Web Interface 141

Authentication 141

Pagination 142

List of Endpoints 142

List Devices 142

Create Device 142

Get Device Detail 143

Download Device Configuration 143

Change Details of Device 143

Patch Details of Device 143

Delete Device 144

List Device Connections 144

Create Device Connection 144

Get Device Connection Detail 144

Change Device Connection Detail 144

Patch Device Connection Detail 144

Delete Device Connection 144

List Credentials 144

Create Credential 145

Get Credential Detail 145

Change Credential Detail 145

Patch Credential Detail 145

Delete Credential 145

List Commands of a Device 145

Execute a Command a Device 145

Get Command Details 145

List Device Groups 145

Create Device Group 146

Get Device Group Detail 146

Change Device Group Detail 146

Get Device Group from Certificate Common Name 146

Get Device Location 146

Create Device Location 146

Change Details of Device Location 148

Delete Device Location 148

Get Device Coordinates 149

Update Device Coordinates 149

List Locations 149

Create Location 150

Get Location Details 151

Change Location Details 151

Delete Location 151

List Devices in a Location 151

List Locations with Devices Deployed (in GeoJSON Format) 151

Floor Plan List 151

Create Floor Plan 152

Get Floor Plan Details 152

Change Floor Plan Details 152

Delete Floor Plan 152

List Templates 152

Create Template 153

Get Template Detail 153

Download Template Configuration 153

Change Details of Template 153

Patch Details of Template 153

Delete Template 153

List VPNs 153

Create VPN 154

Get VPN detail 154

Download VPN Configuration 154

Change Details of VPN 154

Patch Details of VPN 154

Delete VPN 154

List CA 154

Create New CA 154

Import Existing CA 154

Get CA Detail 155

Change Details of CA 155

Patch Details of CA 155

Download CA(crl) 155

Delete CA 155

Renew CA 155

List Cert 155

Create New Cert 155

Import Existing Cert 155

Get Cert Detail 156

Change Details of Cert 156

Patch Details of Cert 156

Delete Cert 156

Renew Cert 156

Revoke Cert 156

Settings 156

OPENWISP_SSH_AUTH_TIMEOUT 156

OPENWISP_SSH_BANNER_TIMEOUT 156

OPENWISP_SSH_COMMAND_TIMEOUT 157

OPENWISP_SSH_CONNECTION_TIMEOUT 157

OPENWISP_CONNECTORS 157

OPENWISP_UPDATE_STRATEGIES 157

OPENWISP_CONFIG_UPDATE_MAPPING 158

OPENWISP_CONTROLLER_BACKENDS 158

OPENWISP_CONTROLLER_VPN_BACKENDS 158

OPENWISP_CONTROLLER_DEFAULT_BACKEND 158

OPENWISP_CONTROLLER_DEFAULT_VPN_BACKEND 159

OPENWISP_CONTROLLER_REGISTRATION_ENABLED 159

OPENWISP_CONTROLLER_CONSISTENT_REGISTRATION 159

OPENWISP_CONTROLLER_REGISTRATION_SELF_CREATION 159

OPENWISP_CONTROLLER_CONTEXT 159

OPENWISP_CONTROLLER_DEFAULT_AUTO_CERT 160

OPENWISP_CONTROLLER_CERT_PATH 160

OPENWISP_CONTROLLER_COMMON_NAME_FORMAT 160

OPENWISP_CONTROLLER_MANAGEMENT_IP_DEVICE_LIST 161

OPENWISP_CONTROLLER_CONFIG_BACKEND_FIELD_SHOWN 161

OPENWISP_CONTROLLER_DEVICE_NAME_UNIQUE 161

OPENWISP_CONTROLLER_HARDWARE_ID_ENABLED 161

OPENWISP_CONTROLLER_HARDWARE_ID_OPTIONS 162

OPENWISP_CONTROLLER_HARDWARE_ID_AS_NAME 162

OPENWISP_CONTROLLER_DEVICE_VERBOSE_NAME 162

OPENWISP_CONTROLLER_HIDE_AUTOMATICALLY_GENERATED_SUBNETS_AND_IPS 162

OPENWISP_CONTROLLER_SUBNET_DIVISION_TYPES 163

OPENWISP_CONTROLLER_API 163

OPENWISP_CONTROLLER_API_HOST 163

OPENWISP_CONTROLLER_USER_COMMANDS 163

OPENWISP_CONTROLLER_ORGANIZATION_ENABLED_COMMANDS 163

OPENWISP_CONTROLLER_DEVICE_GROUP_SCHEMA 164

OPENWISP_CONTROLLER_SHARED_MANAGEMENT_IP_ADDRESS_SPACE 164

OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY 164

OPENWISP_CONTROLLER_DSA_OS_MAPPING 164

OPENWISP_CONTROLLER_DSA_DEFAULT_FALLBACK 165

OPENWISP_CONTROLLER_GROUP_PIE_CHART 165

OPENWISP_CONTROLLER_API_TASK_RETRY_OPTIONS 166

Developer Docs 167

Developer Installation Instructions 167

Dependencies 167

Installing for Development 167

Alternative Sources 169

Pypi 169

Github 169

Install and Run on Docker 169

Troubleshooting Steps for Common Installation Issues 169

Unable to Load SpatiaLite library Extension? 169

Having Issues with Other Geospatial Libraries? 169

Code Utilities 170

Registering / Unregistering Commands 170

register_command 171

unregister_command 171

Controller Notifications 171

Registering Notification Types 171

Signals 171

config_modified 172

Special cases in which config_modified is not emitted 172

config_status_changed 172

config_backend_changed 172

checksum_requested 172

config_download_requested 173

is_working_changed 173

management_ip_changed 173

device_registered 173

device_name_changed 174

device_group_changed 174

group_templates_changed 174

subnet_provisioned 174

vpn_server_modified 174

vpn_peers_changed 175

Extending OpenWISP Controller 175

1. Initialize Your Project & Custom Apps 176

2. Install openwisp-controller 176

3. Add Your Apps to INSTALLED_APPS 176

4. Add EXTENDED_APPS 177

5. Add openwisp_utils.staticfiles.DependencyFinder 177

6. Add openwisp_utils.loaders.DependencyLoader 178

7. Initial Database Setup 178

8. Django Channels Setup 178

9. Other Settings 179

10. Inherit the AppConfig Class 179

11. Create Your Custom Models 179

12. Add Swapper Configurations 180

13. Create Database Migrations 180

14. Create the Admin 181

14.1. Monkey Patching 181

sample_config 181

sample_connection 181

sample_geo 182

sample_pki 182

sample_subnet_division 182

14.2. Inheriting admin classes 182

sample_config 183

sample_connection 184

sample_geo 184

sample_pki 185

sample_subnet_division 186

15. Create Root URL Configuration 187

16. Import the Automated Tests 187

Other Base Classes that Can Be Inherited and Extended 188

1. Extending the Controller API Views 188

2. Extending the Geo API Views 188

Custom Subnet Division Rule Types 188

More Utilities to Extend OpenWISP Controller 189

Monitoring 189

Monitoring: Features 191

Quick Start Guide 191

Install Monitoring Packages on the Device 191

Make Sure OpenWISP can Reach your Devices 192

Device Health Status 192

UNKNOWN 192

OK 192

PROBLEM 192

CRITICAL 192

Metrics 192

Device Status 192

Ping 193

Traffic 194

WiFi Clients 194

Memory Usage 195

CPU Load 195

Disk Usage 196

Mobile Signal Strength 196

Mobile Signal Quality 196

Mobile Access Technology in Use 197

Iperf3 197

Passive vs Active Metric Collection 199

Checks 199

Ping 199

Configuration Applied 199

Iperf3 199

Managing Device Checks & Alert Settings 200

Configuring Iperf3 Check 202

1. Make Sure Iperf3 is Installed on the Device 202

2. Ensure SSH Access from OpenWISP is Enabled on your Devices 202

3. Set Up and Configure Iperf3 Server Settings 202

4. Run the Check 204

Iperf3 Check Parameters 204

Iperf3 Client Options 204

Iperf3 Client's TCP Options 205

Iperf3 Client's UDP Options 205

Iperf3 Authentication 205

Server Side 205

1. Generate RSA Key Pair 205

2. Create User Credentials 206

3. Now Start the Iperf3 Server with Authentication Options 206

Client Side (OpenWrt Device) 206

1. Install iperf3-ssl 206

2. Configure Iperf3 Check Authentication Parameters 206

Dashboard Monitoring Charts 207

Monitoring WiFi Sessions 207

Scheduled Deletion of WiFi Sessions 208

REST API Reference 208

Live Documentation 209

Browsable Web Interface 209

List of Endpoints 210

Retrieve General Monitoring Charts 210

Retrieve Device Charts and Device Status Data 211

List Device Monitoring Information 211

Collect Device Metrics and Status 212

List Nearby Devices 212

List WiFi Session 213

Get WiFi Session 213

Pagination 213

Settings 213

TIMESERIES_DATABASE 214

Timeseries Database Options 214

OPENWISP_MONITORING_DEFAULT_RETENTION_POLICY 215

OPENWISP_MONITORING_SHORT_RETENTION_POLICY 215

OPENWISP_MONITORING_AUTO_PING 215

OPENWISP_MONITORING_PING_CHECK_CONFIG 215

OPENWISP_MONITORING_AUTO_DEVICE_CONFIG_CHECK 216

OPENWISP_MONITORING_CONFIG_CHECK_INTERVAL 216

OPENWISP_MONITORING_AUTO_IPERF3 216

OPENWISP_MONITORING_IPERF3_CHECK_CONFIG 217

OPENWISP_MONITORING_IPERF3_CHECK_DELETE_RSA_KEY 217

OPENWISP_MONITORING_IPERF3_CHECK_LOCK_EXPIRE 217

OPENWISP_MONITORING_AUTO_CHARTS 218

OPENWISP_MONITORING_CRITICAL_DEVICE_METRICS 218

OPENWISP_MONITORING_HEALTH_STATUS_LABELS 218

OPENWISP_MONITORING_WIFI_SESSIONS_ENABLED 218

OPENWISP_MONITORING_MANAGEMENT_IP_ONLY 218

OPENWISP_MONITORING_DEVICE_RECOVERY_DETECTION 219

OPENWISP_MONITORING_MAC_VENDOR_DETECTION 219

OPENWISP_MONITORING_WRITE_RETRY_OPTIONS 219

OPENWISP_MONITORING_TIMESERIES_RETRY_OPTIONS 220

OPENWISP_MONITORING_TIMESERIES_RETRY_DELAY 220

OPENWISP_MONITORING_DASHBOARD_MAP 220

OPENWISP_MONITORING_DASHBOARD_TRAFFIC_CHART 220

OPENWISP_MONITORING_METRICS 221

OPENWISP_MONITORING_CHARTS 222

Adaptive Size Charts 223

OPENWISP_MONITORING_DEFAULT_CHART_TIME 224

OPENWISP_MONITORING_AUTO_CLEAR_MANAGEMENT_IP 224

OPENWISP_MONITORING_API_URLCONF 224

OPENWISP_MONITORING_API_BASEURL 224

OPENWISP_MONITORING_CACHE_TIMEOUT 224

Management Commands 224

run_checks 224

migrate_timeseries 225

Developer Docs 225

Developer Installation Instructions 225

Dependencies 225

Installing for Development 226

Alternative Sources 227

PyPI 227

Github 227

Install and Run on Docker 227

Code Utilities 227

Registering / Unregistering Metric Configuration 228

register_metric 228

unregister_metric 230

Registering / Unregistering Chart Configuration 230

register_chart 230

unregister_chart 231

Monitoring Notifications 232

Registering Notification Types 232

Signals 232

device_metrics_received 232

health_status_changed 232

threshold_crossed 233

pre_metric_write 233

post_metric_write 233

Exceptions 233

TimeseriesWriteException 233

InvalidMetricConfigException 234

InvalidChartConfigException 234

Extending OpenWISP Monitoring 234

1. Initialize your Custom Module 235

2. Install openwisp-monitoring 235

3. Add EXTENDED_APPS 235

4. Add openwisp_utils.staticfiles.DependencyFinder 235

5. Add openwisp_utils.loaders.DependencyLoader 236

6. Inherit the AppConfig Class 236

7. Create your Custom Models 236

8. Add Swapper Configurations 237

9. Create Database Migrations 237

10. Create your Custom Admin 237

1. Monkey Patching 237

2. Inheriting Admin Classes 238

11. Create Root URL Configuration 239

12. Create celery.py 239

13. Import Celery Tasks 239

14. Create the Custom Command run_checks 239

15. Import the Automated Tests 240

Other Base Classes that can be Inherited and Extended 240

DeviceMetricView 240

Network Topology 241

Network Topology: Features 241

Quick Start Guide 242

Creating a Topology 242

Sending Data for Topology with RECEIVE Strategy 243

Sending Data for ZeroTier Topology with RECEIVE Strategy 243

1. Create Topology for ZeroTier 244

2. Create a Script for Sending ZeroTier Topology Data 245

Topology Collection Strategies 246

FETCH Strategy 246

RECEIVE Strategy 246

Integrations with other OpenWISP modules 246

Rest API 247

Live Documentation 247

Browsable Web Interface 248

List of Endpoints 248

List Topologies 248

Create Topology 249

Detail of a Topology 249

Change Topology Detail 249

Patch Topology Detail 249

Delete Topology 249

View Topology History 249

Send Topology Data 249

List Links 249

Create Link 250

Get Link Detail 250

Change Link Detail 250

Patch Link Detail 250

Delete Link 250

List Nodes 250

Create Node 250

Get Node Detail 250

Change Node Detail 251

Patch Node Detail 251

Delete Node 251

Settings 251

OPENWISP_NETWORK_TOPOLOGY_PARSERS 251

OPENWISP_NETWORK_TOPOLOGY_SIGNALS 251

OPENWISP_NETWORK_TOPOLOGY_TIMEOUT 251

OPENWISP_NETWORK_TOPOLOGY_LINK_EXPIRATION 251

OPENWISP_NETWORK_TOPOLOGY_NODE_EXPIRATION 252

OPENWISP_NETWORK_TOPOLOGY_VISUALIZER_CSS 252

OPENWISP_NETWORK_TOPOLOGY_API_URLCONF 252

OPENWISP_NETWORK_TOPOLOGY_API_BASEURL 252

OPENWISP_NETWORK_TOPOLOGY_API_AUTH_REQUIRED 252

OPENWISP_NETWORK_TOPOLOGY_WIFI_MESH_INTEGRATION 252

Management Commands 253

update_topology 253

Logging 253

save_snapshot 253

upgrade_from_django_netjsongraph 253

create_device_nodes 254

Developer Docs 254

Installation Instructions 254

Installing for Development 255

Alternative Sources 255

Pypi 255

Github 256

Overriding Visualizer Templates 256

Example: Overriding the <script> Tag 256

Extending OpenWISP Network Topology 257

1. Initialize your Custom Module 258

2. Install openwisp-network-topology 258

3. Add EXTENDED_APPS 258

4. Add openwisp_utils.staticfiles.DependencyFinder 259

5. Add openwisp_utils.loaders.DependencyLoader 259

6. Inherit the AppConfig Class 259

7. Create your Custom Models 259

8. Add Swapper Configurations 260

9. Create Database Migrations 260

10. Create the Admin 260

1. Monkey Patching 260

2. Inheriting Admin Classes 260

11. Create Root URL Configuration 261

12. Setup API URLs 262

13. Extending Management Commands 262

14. Import the Automated Tests 262

Other Base Classes that can be Inherited and Extended 262

1. Extending API Views 262

2. Extending the Visualizer Views 262

Firmware Upgrader 263

Firmware Upgrader: Features 264

Quick Start Guide 264

Requirements 264

1. Create a Category 264

2. Create the Build Object 265

3. Upload Images to the Build 265

4. Perform a Firmware Upgrade to a Specific Device 266

5. Performing Mass Upgrades 266

Automatic Device Firmware Detection 267

Writing Custom Firmware Upgrader Classes 267

REST API Reference 267

Live Documentation 268

Browsable Web Interface 268

Authentication 268

Pagination 269

Filtering by Organization Slug 269

List of Endpoints 269

List Mass Upgrade Operations 269

Get Mass Upgrade Operation Detail 269

List Firmware Builds 269

Create Firmware Build 270

Get Firmware Build Details 270

Change Details of Firmware Build 270

Patch Details of Firmware Build 270

Delete Firmware Build 270

Get List of Images of a Firmware Build 270

Upload New Firmware Image to the Build 270

Get Firmware Image Details 270

Delete Firmware Image 270

Download Firmware Image 270

Perform Batch Upgrade 270

Dry-run Batch Upgrade 271

List Firmware Categories 271

Create New Firmware Category 271

Get Firmware Category Details 271

Change the Details of a Firmware Category 271

Patch the Details of a Firmware Category 271

Delete a Firmware Category 271

List Upgrade Operations 271

Get Upgrade Operation Details 272

List Device Upgrade Operations 272

Create Device Firmware 272

Get Device Firmware Details 272

Change Details of Device Firmware 272

Patch Details of Device Firmware 272

Delete Device Firmware 272

Settings 272

OPENWISP_FIRMWARE_UPGRADER_RETRY_OPTIONS 273

OPENWISP_FIRMWARE_UPGRADER_TASK_TIMEOUT 273

OPENWISP_CUSTOM_OPENWRT_IMAGES 273

OPENWISP_FIRMWARE_UPGRADER_MAX_FILE_SIZE 274

OPENWISP_FIRMWARE_UPGRADER_API 274

OPENWISP_FIRMWARE_UPGRADER_OPENWRT_SETTINGS 274

OPENWISP_FIRMWARE_API_BASEURL 274

OPENWISP_FIRMWARE_UPGRADERS_MAP 275

OPENWISP_FIRMWARE_PRIVATE_STORAGE_INSTANCE 275

Developer Docs 275

Developer Installation Instructions 275

Requirements 276

Install Dependencies 276

Installing for Development 276

Extending OpenWISP Firmware Upgrader 277

1. Initialize your Custom Module 278

2. Install openwisp-firmware-upgrader 279

3. Add EXTENDED_APPS 279

4. Add openwisp_utils.staticfiles.DependencyFinder 279

5. Add openwisp_utils.loaders.DependencyLoader 279

6. Inherit the AppConfig Class 279

7. Create your Custom Models 280

8. Add Swapper Configurations 280

9. Create Database Migrations 280

10. Create the Admin 280

1. Monkey Patching 280

2. Inheriting Admin Classes 281

11. Create Root URL Configuration 281

12. Create celery.py 281

13. Import the Automated Tests 282

Other Base Classes That Can be Inherited and Extended 282

FirmwareImageDownloadView 282

API Views 283

RADIUS 283

RADIUS: Features 283

Registration of new users 284

Generating users 284

Using the admin interface 284

Management command: prefix_add_users 285

REST API: Batch user creation 285

Importing users 286

CSV Format 286

Imported users with hashed passwords 286

Importing users with clear-text passwords 286

Auto-generation of usernames and passwords 286

Using the admin interface 286

Management command: batch_add_users 287

REST API: Batch user creation 287

Social Login 287

Setup 288

Configure the social account application 289

Captive page button example 289

Settings 289

Single Sign-On (SAML) 290

Setup 290

Configure the djangosaml2 settings 291

Captive page button example 291

Logout 291

Settings 292

FAQs 292

Preventing change in username of a registered user 292

Enforcing Session Limits 292

Default Groups 292

How Limits are Enforced: Counters 292

DailyCounter 293

DailyTrafficCounter 293

MonthlyTrafficCounter 293

MonthlySubscriptionTrafficCounter 293

Database Support 293

Django Settings 294

Writing Custom Counter Classes 294

Change of Authorization (CoA) 294

Management commands 295

delete_old_radacct 295

delete_old_postauth 295

cleanup_stale_radacct 295

deactivate_expired_users 296

delete_old_radiusbatch_users 296

delete_unverified_users 296

upgrade_from_django_freeradius 296

convert_called_station_id 297

REST API Reference 297

Live documentation 298

Browsable web interface 298

FreeRADIUS API Endpoints 299

FreeRADIUS API Authentication 299

Radius User Token 299

Bearer token 300

Querystring 300

Organization UUID & RADIUS API Token 300

API Throttling 301

List of Endpoints 301

Authorize 301

Post Auth 302

Accounting 302

GET 302

POST 303

Pagination 303

Filters 304

User API Endpoints 304

List of Endpoints 304

User Registration 304

Registering to Multiple Organizations 305

Reset password 305

Confirm reset password 306

Change password 306

Login (Obtain User Auth Token) 306

Validate user auth token 307

User Radius Sessions 307

User Radius Usage 307

Create SMS token 308

Get active SMS token status 308

Verify/Validate SMS token 308

Change phone number 309

Batch user creation 309

Batch CSV Download 310

Settings 310

Admin related settings 310

OPENWISP_RADIUS_EDITABLE_ACCOUNTING 311

OPENWISP_RADIUS_EDITABLE_POSTAUTH 311

OPENWISP_RADIUS_GROUPCHECK_ADMIN 311

OPENWISP_RADIUS_GROUPREPLY_ADMIN 311

OPENWISP_RADIUS_USERGROUP_ADMIN 311

OPENWISP_RADIUS_USER_ADMIN_RADIUSTOKEN_INLINE 311

Model related settings 311

OPENWISP_RADIUS_DEFAULT_SECRET_FORMAT 312

OPENWISP_RADIUS_DISABLED_SECRET_FORMATS 312

OPENWISP_RADIUS_BATCH_DEFAULT_PASSWORD_LENGTH 312

OPENWISP_RADIUS_BATCH_DELETE_EXPIRED 312

OPENWISP_RADIUS_BATCH_PDF_TEMPLATE 312

OPENWISP_RADIUS_EXTRA_NAS_TYPES 312

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS 312

OPENWISP_RADIUS_COA_ENABLED 313

RADCLIENT_ATTRIBUTE_DICTIONARIES 313

OPENWISP_RADIUS_MAX_CSV_FILE_SIZE 313

OPENWISP_RADIUS_PRIVATE_STORAGE_INSTANCE 314

OPENWISP_RADIUS_CALLED_STATION_IDS 314

OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE 314

OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT 314

OPENWISP_RADIUS_UNVERIFY_INACTIVE_USERS 315

OPENWISP_RADIUS_DELETE_INACTIVE_USERS 315

API and user token related settings 315

OPENWISP_RADIUS_API_URLCONF 315

OPENWISP_RADIUS_API_BASEURL 315

OPENWISP_RADIUS_API 315

OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN 315

OPENWISP_RADIUS_API_AUTHORIZE_REJECT 315

OPENWISP_RADIUS_API_ACCOUNTING_AUTO_GROUP 316

OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES 316

OPENWISP_RADIUS_ALLOW_FIXED_LINE_OR_MOBILE 316

OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS 316

OPENWISP_RADIUS_PASSWORD_RESET_URLS 317

OPENWISP_RADIUS_REGISTRATION_API_ENABLED 318

OPENWISP_RADIUS_SMS_VERIFICATION_ENABLED 318

OPENWISP_RADIUS_MAC_ADDR_ROAMING_ENABLED 319

OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION 320

Adding support for more registration/verification methods 320

Email related settings 321

OPENWISP_RADIUS_BATCH_MAIL_SUBJECT 321

OPENWISP_RADIUS_BATCH_MAIL_MESSAGE 321

OPENWISP_RADIUS_BATCH_MAIL_SENDER 322

Counter related settings 322

OPENWISP_RADIUS_COUNTERS 322

OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME 322

OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME 322

OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP 322

Social Login related settings 323

OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED 323

SAML related settings 323

OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED 323

OPENWISP_RADIUS_SAML_REGISTRATION_METHOD_LABEL 324

OPENWISP_RADIUS_SAML_IS_VERIFIED 324

OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME 324

SMS token related settings 324

SENDSMS_BACKEND 324

OPENWISP_RADIUS_SMS_TOKEN_DEFAULT_VALIDITY 325

OPENWISP_RADIUS_SMS_TOKEN_LENGTH 325

OPENWISP_RADIUS_SMS_TOKEN_HASH_ALGORITHM 325

OPENWISP_RADIUS_SMS_COOLDOWN 325

OPENWISP_RADIUS_SMS_TOKEN_MAX_ATTEMPTS 325

OPENWISP_RADIUS_SMS_TOKEN_MAX_USER_DAILY 325

OPENWISP_RADIUS_SMS_TOKEN_MAX_IP_DAILY 325

OPENWISP_RADIUS_SMS_MESSAGE_TEMPLATE 325

Developer Docs 326

Developer Installation Instructions 326

Dependencies 326

Installing for Development 326

Alternative Sources 327

Pypi 327

Github 327

Migrating an existing freeradius database 328

Troubleshooting Steps for Common Installation Issues 328

Code Utilities 328

Signals 328

radius_accounting_success 328

Captive portal mock views 329

Captive Portal Login Mock View 329

Captive Portal Logout Mock View 329

Extending OpenWISP RADIUS 329

1. Initialize your custom module 330

2. Install openwisp-radius 330

3. Add your App to INSTALLED_APPS 330

4. Add EXTENDED_APPS 331

5. Add openwisp_utils.staticfiles.DependencyFinder 331

6. Add openwisp_utils.loaders.DependencyLoader 331

7. Inherit the AppConfig class 332

8. Create your custom models 332

9. Add swapper configurations 332

10. Create database migrations 332

11. Create the admin 333

1. Monkey patching 333

2. Inheriting admin classes 333

12. Setup Freeradius API Allowed Hosts 335

13. Setup Periodic tasks 335

14. Create root URL configuration 335

15. Import the automated tests 336

Other base classes that can be inherited and extended 336

1. Extending the API Views 336

2. Extending the Social Views 336

3. Extending the SAML Views 336

Deploy instructions 337

Freeradius Setup for Captive Portal authentication 337

How to install freeradius 3 337

Configuring Freeradius 3 338

Enable the configured modules 338

Configure the REST module 338

Configure the SQL module 339

Configure the site 340

Restart freeradius to make the configuration effective 341

Reconfigure the development environment using PostgreSQL 341

Using Radius Checks for Authorization Information 341

Configuration 342

Debugging & Troubleshooting 342

Start freeradius in debug mode 342

Testing authentication and authorization 342

Testing accounting 343

Customizing your configuration 343

Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication 344

Prerequisites 344

Freeradius configuration 344

Configure the sites 344

Main sites 344

Inner tunnels 345

Configure the EAP modules 346

Repeating the steps for more organizations 347

Final steps 347

Implementing other EAP scenarios 347

WiFi Login Pages 348

WiFi Login Pages: Features 349

Screenshots 349

Setup 351

Add Organization configuration 351

Removing Sections of Configuration 352

Variants of the Same Configuration 352

Variant with Different Organization Slug / UUID / Secret 353

Support for Old Browsers 353

Configuring Sentry for Proxy Server 353

Supporting Realms (RADIUS Proxy) 354

Allowing Users to Manage Account from the Internet 354

Translations 355

Defining Available Languages 355

Add Translations 355

Update Translations 355

Customizing Translations for a Specific Language 356

Customizing Translations for a Specific Organization and Language 356

Handling Captive Portal / RADIUS Errors 356

Loading Extra JavaScript Files 357

1. Loading Extra JavaScript Files for Whole Application (All Organizations) 357

2. Loading Extra JavaScript Files for a Specific Organization 357

Settings 358

Captive Portal Settings 358

captive_portal_login_form 358

captive_portal_logout_form 359

Menu Items 359

User Fields in Registration Form 360

Username Field in Login Form 361

Configuring Social Login 361

Custom CSS Files 361

Custom HTML 361

Second Logo 361

Sticky Message 362

Login Page 362

Contact Box 362

Footer 363

Configuring SAML Login & Logout 363

TOS & Privacy Policy 363

Configuring Logging 363

Mocking Captive Portal Login and Logout 363

Sign Up with Payment Flow 364

Developer Docs 364

Developer Installation Instructions 364

Dependencies 364

Prerequisites 365

OpenWISP RADIUS 365

Installing for Development 365

Running Automated Browser Tests 365

Usage 366

Yarn Commands 366

Using Custom Ports 366

Running webpack-bundle-analyzer 366

IPAM 367

IPAM: Features 368

Exporting and Importing Subnet 368

Exporting 368

From Management Command 369

From Admin Interface 369

Importing 369

From Management Command 369

From Admin Interface 369

CSV File Format 370

REST API 370

Live Documentation 370

Browsable Web Interface 371

Authentication 371

API Throttling 371

Pagination 371

List of Endpoints 371

Get Next Available IP 372

GET 372

Request IP 372

POST 372

Response 372

Subnet IP Address List/Create 372

GET 372

POST 372

Subnet List/Create 373

GET 373

POST 373

Subnet Detail 373

GET 373

DELETE 373

PUT 373

IP Address Detail 373

GET 374

DELETE 374

PUT 374

Export Subnet 374

POST 374

Import Subnet 374

POST 374

Developer Docs 374

Developer Installation Instructions 375

Installing for Development 375

Alternative Sources 375

Pypi 375

Github 376

Extending OpenWISP IPAM 376

1. Initialize your Custom Module 377

2. Install openwisp-ipam 377

3. Add EXTENDED_APPS 377

4. Add openwisp_utils.staticfiles.DependencyFinder 377

5. Add openwisp_utils.loaders.DependencyLoader 378

6. Inherit the AppConfig Class 378

7. Create your Custom Models 378

8. Add Swapper Configurations 379

9. Create Database Migrations 379

10. Create the Admin 379

1. Monkey Patching 379

2. Inheriting Admin Classes 379

11. Create Root URL Configuration 380

12. Import the Automated Tests 380

Other Base Classes That Can be Inherited and Extended 380

1. Extending the API Views 380

Notifications 381

Notifications: Features 382

Notification Types 382

generic_message 382

Properties of Notification Types 383

Defining message_template 384

Sending Notifications 384

The notify signal 384

Passing Extra Data to Notifications 385

Web & Email Notifications 386

Web Notifications 386

Notification Widget 386

Notification Toasts 387

Email Notifications 387

Notification Preferences 388

Silencing Notifications for Specific Objects 388

Scheduled Deletion of Notifications 389

REST API 389

Live Documentation 390

Browsable Web Interface 390

Authentication 390

Pagination 390

List of Endpoints 391

List User's Notifications 391

Mark All User's Notifications as Read 391

Get Notification Details 391

Mark a Notification Read 391

Delete a Notification 391

List User's Notification Setting 391

Get Notification Setting Details 392

Update Notification Setting Details 392

List User's Object Notification Setting 392

Get Object Notification Setting Details 392

Create Object Notification Setting 392

Delete Object Notification Setting 392

Settings 392

OPENWISP_NOTIFICATIONS_HOST 392

OPENWISP_NOTIFICATIONS_SOUND 393

OPENWISP_NOTIFICATIONS_CACHE_TIMEOUT 393

OPENWISP_NOTIFICATIONS_IGNORE_ENABLED_ADMIN 393

OPENWISP_NOTIFICATIONS_POPULATE_PREFERENCES_ON_MIGRATE 394

OPENWISP_NOTIFICATIONS_NOTIFICATION_STORM_PREVENTION 394

Management Commands 394

populate_notification_preferences 394

create_notification 395

Developer Docs 395

Developer Installation Instructions 395

Installing for Development 396

Alternative Sources 397

Pypi 397

Github 397

Code Utilities 397

Registering / Unregistering Notification Types 397

register_notification_type 397

unregister_notification_type 398

Exceptions 399

NotificationRenderException 399

Notification Cache 399

Cache Invalidation 399

Extending openwisp-notifications 400

1. Initialize your custom module 401

2. Install openwisp-notifications 401

3. Add EXTENDED_APPS 401

4. Add openwisp_utils.staticfiles.DependencyFinder 401

5. Add openwisp_utils.loaders.DependencyLoader 401

6. Inherit the AppConfig class 402

7. Create your custom models 402

8. Add swapper configurations 402

9. Create database migrations 402

10. Create your custom admin 403

1. Monkey patching 403

2. Inheriting admin classes 403

11. Create root URL configuration 403

12. Create root routing configuration 403

13. Create celery.py 404

14. Import Celery Tasks 404

15. Register Template Tags 404

16. Register Notification Types 404

17. Import the automated tests 404

Other base classes that can be inherited and extended 404

API views 405

Web Socket Consumers 405

Utils 405

Collection of Usage Metrics 406

Opting Out from Metric Collection 406

Admin Filters 406

Settings 407

OPENWISP_ADMIN_SITE_CLASS 407

OPENWISP_ADMIN_SITE_TITLE 407

OPENWISP_ADMIN_SITE_HEADER 407

OPENWISP_ADMIN_INDEX_TITLE 407

OPENWISP_ADMIN_DASHBOARD_ENABLED 407

OPENWISP_ADMIN_THEME_LINKS 407

OPENWISP_ADMIN_THEME_JS 408

OPENWISP_ADMIN_SHOW_USERLINKS_BLOCK 408

OPENWISP_API_DOCS 408

OPENWISP_API_INFO 409

OPENWISP_SLOW_TEST_THRESHOLD 409

OPENWISP_STATICFILES_VERSIONED_EXCLUDE 409

OPENWISP_HTML_EMAIL 409

OPENWISP_EMAIL_TEMPLATE 409

OPENWISP_EMAIL_LOGO 410

OPENWISP_CELERY_SOFT_TIME_LIMIT 410

OPENWISP_CELERY_HARD_TIME_LIMIT 410

OPENWISP_AUTOCOMPLETE_FILTER_VIEW 410

Developer Docs 411

Developer Installation Instructions 411

Installing for Development 411

Alternative Sources 412

Pypi 412

Github 412

OpenWISP Dashboard 412

register_dashboard_template 413

unregister_dashboard_template 414

register_dashboard_chart 415

Dashboard Chart query_params 415

Dashboard chart quick_link 416

unregister_dashboard_chart 416

Main Navigation Menu 417

Context Processor 417

The register_menu_group function 417

Adding a Custom Link 419

Adding a Model Link 419

Adding a Menu Group 420

The register_menu_subitem function 420

How to Use Custom Icons in the Menu 421

Using the admin_theme 421

Using DependencyLoader and DependencyFinder 422

DependencyFinder 422

DependencyLoader 422

Supplying Custom CSS and JS for the Admin Theme 423

Extend Admin Theme Programmatically 423

openwisp_utils.admin_theme.theme.register_theme_link 423

openwisp_utils.admin_theme.theme.unregister_theme_link 424

openwisp_utils.admin_theme.theme.register_theme_js 424

openwisp_utils.admin_theme.theme.unregister_theme_js 424

Sending emails 424

openwisp_utils.admin_theme.email.send_email 424

Database Backends 425

openwisp_utils.db.backends.spatialite 425

Quality Assurance Checks 425

openwisp-qa-format 426

openwisp-qa-check 426

checkmigrations 427

checkcommit 427

checkendline 427

checkpendingmigrations 427

checkrst 427

Custom Fields 427

openwisp_utils.fields.KeyField 428

openwisp_utils.fields.FallbackBooleanChoiceField 428

openwisp_utils.fields.FallbackCharChoiceField 428

openwisp_utils.fields.FallbackCharField 429

openwisp_utils.fields.FallbackURLField 429

openwisp_utils.fields.FallbackTextField 430

openwisp_utils.fields.FallbackPositiveIntegerField 430

openwisp_utils.fields.FallbackDecimalField 431

Admin Utilities 431

openwisp_utils.admin.TimeReadonlyAdminMixin 432

openwisp_utils.admin.ReadOnlyAdmin 432

openwisp_utils.admin.AlwaysHasChangedMixin 432

openwisp_utils.admin.CopyableFieldsAdmin 432

openwisp_utils.admin.UUIDAdmin 432

openwisp_utils.admin.ReceiveUrlAdmin 432

openwisp_utils.admin.HelpTextStackedInline 432

openwisp_utils.admin_theme.filters.InputFilter 433

openwisp_utils.admin_theme.filters.SimpleInputFilter 434

openwisp_utils.admin_theme.filters.AutocompleteFilter 434

Customizing the Submit Row in OpenWISP Admin 435

Test Utilities 435

openwisp_utils.tests.catch_signal 436

openwisp_utils.tests.TimeLoggingTestRunner 436

openwisp_utils.tests.capture_stdout 437

openwisp_utils.tests.capture_stderr 437

openwisp_utils.tests.capture_any_output 438

openwisp_utils.tests.AssertNumQueriesSubTestMixin 438

openwisp_utils.test_selenium_mixins.SeleniumTestMixin 438

Other Utilities 438

Model Utilities 439

openwisp_utils.base.UUIDModel 439

openwisp_utils.base.TimeStampedEditableModel 439

REST API Utilities 439

openwisp_utils.api.serializers.ValidatedModelSerializer 439

openwisp_utils.api.apps.ApiAppConfig 440

Storage Utilities 440

openwisp_utils.storage.CompressStaticFilesStorage 440

Other Utilities 440

openwisp_utils.utils.get_random_key 440

openwisp_utils.utils.deep_merge_dicts 440

openwisp_utils.utils.default_or_test 441

openwisp_utils.utils.print_color 441

openwisp_utils.utils.SorrtedOrderedDict 441

openwisp_utils.tasks.OpenwispCeleryTask 441

openwisp_utils.utils.retryable_request 441

OpenWrt Agents 442

OpenWISP Config Agent 442

OpenWISP Config: Features 443

Quick Start Guide 443

Settings 445

Configuration Options 445

Merge Configuration 447

Configuration Test 447

Disable Testing 447

Define Custom Tests 447

Hardware ID 447

Boot Up Delay 447

Hooks 448

pre-reload-hook 448

post-reload-hook 448

post-registration-hook 449

Unmanaged Configurations 449

Automatic registration 449

Consistent Key Generation 449

Hotplug Events 449

Compiling a Custom OpenWrt Image 450

Automate Compilation for Different Organizations 451

Debugging 451

Developer Documentation 451

Compiling openwisp-config 451

Quality Assurance Checks 452

Run tests 452

OpenWISP Monitoring Agent 453

Quick Start Guide 453

Settings 454

Configuration Options 454

Collecting vs. Sending 454

Collect Mode 455

Send Mode 455

Boot-Up Delay 455

Debugging 455

Developer Documentation 456

Compiling the Monitoring Agent 456

Quality Assurance Checks 457

Run tests 457

Tutorials 457

OpenWISP Demo 457

Accessing the demo system 458

Firmware instructions (flashing OpenWISP Firmware) 458

1. Downloading the firmware 458

2. Flashing the firmware 459

Alternative firmware instructions 459

Connecting your device to OpenWISP 460

DHCP client mode 460

Static address mode 460

Registration 461

Monitoring charts and status 461

Health status 461

Device Status 462

Charts 463

Get help 464

How to Set Up WiFi Access Point SSIDs 465

Introduction & Prerequisites 465

Set Up an Open Access Point SSID on a Device 466

Set Up a WPA Encrypted Access Point SSID on a Device 467

Set Up the Same SSID and Password on Multiple Devices 468

Multiple SSIDs, multiple radios 469

Roaming (802.11r: Fast BSS Transition) 469

Monitoring WiFi Clients 470

WiFi Hotspot & Captive Portal 471

Introduction & Prerequisites 471

Enable Captive Portal Template 472

Accessing the Public WiFI Hotspot 473

Logging Out 474

Session Limits 475

Automatic Captive Portal Login 475

Sign Up 475

Social Login 476

Paid WiFi Hotspot Subscription Plans 476

How to Set Up WPA Enterprise (EAP-TTLS-PAP) Authentication 477

Introduction & Prerequisites 477

Enable OpenWISP RADIUS 477

VPN Tunnel 478

Firmware Requirements 478

One Radio Available 478

Configuring FreeRADIUS for WPA Enterprise 479

Self-Signed Certificates 480

Public Certificates 480

Creating the Template 481

Enable the WPA Enterprise Template on the Devices 485

Connecting to the WiFi with WPA2 Enterprise 486

Verifying and Debugging 487

How to Set Up a Wireless Mesh Network 489

Introduction & Prerequisites 489

Firmware Requirements 490

General Assumptions 490

At Least 2 Devices 490

One Radio Available 490

Existing DHCP server on the LAN 490

Creating the Template 490

Why we use a pre-reload-hook script 494

Enable the Mesh Template on the Devices 495

Verifying and Debugging 495

Monitoring the Mesh Nodes 497

Mesh Topology Collection and Visualization 498

Changing the Default 802.11s Routing Protocol 501

Community Resources 501

Help us to grow 501

Are you using OpenWISP for your organization? 502

How to help 502

1. Open new discussion threads 502

2. Send feedback 503

3. Stars on github 503

4. Documentation 503

5. Social media 503

6. Blogging 503

7. Conferences & Meetups 504

8. Participate 504

9. Contribute technically 504

10. Commercial support and funding development 504

Press 504

Presentations 504

OpenWISP: a Hackable Network Management System for the 21st Century 504

django-freeradius at PyCon Italia 2018 505

OpenWISP 2: the modular configuration manager for OpenWrt 505

Applying the Unix Philosophy to Django projects 505

Opening Proprietary Networks with OpenWISP 505

OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices 505

Do you really need to fork OpenWrt? 505

OpenWISP GARR Conference 2011 505

OpenWISP e Progetti WiFi Nazionali 505

Blog Posts 506

Google Summer of Code Blog Posts 506

2023 Contributors 506

2022 Contributors 506

2021 Students 506

2020 Students 506

2019 Students 506

2018 Students 507

2017 Students 507

Research and publications 507

Logos and Graphic material 507

Code of Conduct 509

1. Purpose 509

2. Open Source Citizenship 509

3. Expected Behavior 509

4. Unacceptable Behavior 509

5. Consequences of Unacceptable Behavior 510

6. Reporting Guidelines 510

7. Addressing Grievances 510

8. Scope 510

9. Contact info 510

10. License and attribution 511

Developer Resources 511

Contributing guidelines 511

Introduce yourself 511

Look for open issues 511

Priorities for the next release 512

Setup 512

How to commit your changes properly 512

1. Branch naming guidelines 512

2. Commit message style guidelines 512

3. Pull-Request guidelines 513

4. Avoiding unnecessary changes 513

Coding Style Conventions 514

1. Python code conventions 514

2. Javascript code conventions 514

3. OpenWrt related conventions 514

Thank You 514

Useful Python & Django Tools for OpenWISP Development 515

Why Python? 515

Why Django? 516

Why Django REST Framework? 516

Useful Development Tools 517

IPython and ipdb 517

Django Extensions 517

Django Debug Toolbar 517

Using these Tools in OpenWISP 517

Google Summer of Code 519

How to run a successful Google Summer of Code 520

Traits we look for in applicants 520

How to become an OpenWISP star 521

Time to start hacking 522

Project ideas 522

Application Template 522

1. Your Details 522

2. Tell Us About Yourself 523

3. Your GSoC Project 523

4. After GSoC 523

GSoC Project Ideas 2024 523

General suggestions and warnings 524

Project Ideas 524

Improve OpenWISP General Map: Indoor, Mobile, Linkable URLs 524

Prerequisites to work on this project 525

Expected outcomes 525

Improve netjsongraph.js resiliency and visualization 526

Prerequisites to work on this project 526

Expected outcomes 526

Improve UX and Flexibility of the Firmware Upgrader Module 527

Prerequisites to work on this project 527

Expected outcomes 528

Training Issues 528

Improve UX of the Notifications Module 528

Prerequisites to work on this project 529

Expected outcomes 529

Training Issues 529

Add more timeseries database clients to OpenWISP Monitoring 529

Prerequisites to work on this project 530

Expected outcomes 530

OpenWISP Documentation

Everything you need to know about OpenWISP is here!

Note

For a complete overview of this documentation, refer to the Full Table of Contents.

Important

Are you looking for a quick overview of the OpenWISP application?

Try the OpenWISP Demo.

First Steps

Quick Start Guide

Try the Demo 1

Install OpenWISP 2

Make Sure OpenWISP Can Reach Your Devices 2

Configure Your OpenWrt Devices 2

Learn More 2

Seek Help 2

Try the Demo

Before installing OpenWISP, we recommend trying out the OpenWISP Demo system. This will give you a great
overview of how the system works.

Once you have explored the demo, you can install your own instance by following the instructions below.

OpenWISP Documentation

1

_images/index-banner.png

Install OpenWISP

For production usage, we recommend Deploying OpenWISP with the Ansible OpenWISP role.

Alternatively, you can use Docker OpenWISP.

Make Sure OpenWISP Can Reach Your Devices

For smooth operations, please Setup a Management Network.

Configure Your OpenWrt Devices

Follow the guide to Configure Your OpenWrt Devices.

If you don't have a physical OpenWrt-compatible device, you can install OpenWrt in a VirtualBox VM. The guide
above covers how to do this.

Learn More

Once you have everything set up, we recommend exploring other sections of this documentation to make the most
out of OpenWISP.

Depending on your use case, you might be interested in different features:

• Automating Configuration Provisioning: If your primary interest is automating the provisioning of
configurations for OpenWrt devices, check out the Controller module.

• Device Monitoring: For those who need monitoring information from their devices, the Monitoring module will
be particularly useful.

• WiFi Connectivity and Security: If you're focused on providing WiFi Hotspot connectivity or WPA Enterprise
WiFi, take a look at the RADIUS and WiFi Login Pages modules.

Additionally, we offer tutorials for the most common scenarios:

• Open and/or WPA Protected WiFi Access Point SSID

• WiFi Hotspot, Captive Portal (Public WiFi), Social Login

• Setting Up WPA Enterprise (EAP-TTLS-PAP) Authentication

• Setting Up a Wireless Mesh Network

Explore these resources to fully leverage the capabilities of OpenWISP!

Seek Help

Reach out to the Community Support Channels.

Setting Up the Management Network

In this section, we will explain how to ensure that your OpenWISP instance can reach your network devices.
Why OpenWISP Needs to Reach Your Devices 2

Public Internet Deployment 3

Private Network 3

Why OpenWISP Needs to Reach Your Devices

For OpenWISP to perform tasks such as push operations, shell commands, firmware upgrades, and periodically run
active checks, it needs to be able to reach the network devices.

OpenWISP Documentation

2

http://openwisp.org/support.html

There are two main deployment scenarios for OpenWISP:

• Public Internet Deployment

• Private Network

Public Internet Deployment

This is the most common scenario:

• The OpenWISP server is deployed in a data center exposed to the public internet. Thus, the server has a public
IPv4 (and IPv6) address and usually a valid SSL certificate provided by Let's Encrypt or another commercial
SSL provider.

• The network devices are geographically distributed across different locations (different cities, regions, or
countries).

In this scenario, the OpenWISP application will not be able to reach the devices unless a management tunnel is
used.

Therefore, having a management VPN solution is crucial, not only to allow OpenWISP to work properly but also
to perform debugging and troubleshooting when needed.

Requirements for this scenario:

• A VPN server must be installed so that the OpenWISP server can reach the VPN peers. For more information
on how to do this via OpenWISP, please refer to the following sections:

• Wireguard

• Wireguard over VXLAN

• Zerotier

• OpenVPN

If you prefer to use other tunneling solutions (L2TP, Softether, etc.) and know how to configure those solutions
on your own, that's fine as well.

If the OpenWISP server is connected to a network infrastructure that allows it to reach the devices via
preexisting tunneling or Intranet solutions (e.g., MPLS, SD-WAN), then setting up a VPN server is not needed,
as long as there's a dedicated interface on OpenWrt with an assigned IP address that is reachable from the
OpenWISP server.

• The devices must be configured to join the management tunnel automatically, either via a preexisting
configuration in the firmware or via a Default Templates.

• The OpenWISP Config Agent running on the network devices must be configured to specify the
management_interface option, which must be set to the interface name assigned by the VPN tunnel. The
agent will communicate the IP of the management interface to the OpenWISP Server, and OpenWISP will use
the management IP to reach the device.

For example, if the management interface is named tun0, the openwisp-config configuration should look like
the following:

In /etc/config/openwisp on the device

config controller 'http'
 # ... other configuration directives ...
 option management_interface 'tun0'

Private Network

In some cases, the OpenWISP instance is directly connected to the same network where the devices it manages are
operating.

Real-world examples:

• An office LAN where the OpenWISP instance and the network devices are in the same Layer 2 domain.

OpenWISP Documentation

3

• A Layer 3 routed network, like that operated by an ISP, where each device already has an internal IP address
that can be reached from the rest of the network.

In these cases, OpenWISP should be configured to accept requests using its private IP address and should be
configured to use the Last IP field of the devices to reach them.

In this scenario, it's necessary to set the "OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY" setting to
False.

Configure Your OpenWrt Device

This page will guide you through installing the OpenWISP agents on a device that supports OpenWrt.

Hint

No physical device? No problem! You can try OpenWISP using a Virtual Machine.

Prerequisites 4

Flash OpenWrt on Your Device 4

Install the OpenWISP OpenWrt Agents 4

Compiling Your Own OpenWrt Image 6

Prerequisites

Ensure you have already Installed the OpenWISP Server Application and Configured a Management Network.

Flash OpenWrt on Your Device

If you have a compatible network device, follow the official OpenWrt flashing guide.

If you don't have a physical device, you can install OpenWrt on a VirtualBox Virtual Machine.

Note

Enable SSH access and connect the device or VM to the internet.

When using VirtualBox, both Adapter1 and Adapter2 should use "Adapter Type: Intel PRO/1000 MT Desktop".
Use a different IP address for the OpenWrt device than the one used for the local OpenWISP website (e.g., if
your OpenWISP site uses 192.168.56.2, use 192.168.56.3 for the OpenWrt device).

Install the OpenWISP OpenWrt Agents

We recommend installing the latest versions of the OpenWISP packages. Download them onto your device from
downloads.openwisp.io and then install them as follows:

cd /tmp

WARNING: the URL may change over time, so verify the correct URL
from downloads.openwisp.io

wget https://downloads.openwisp.io/openwisp-config/latest/openwisp-config_1.1.0a-1_all.ipk
wget https://downloads.openwisp.io/openwisp-monitoring/latest/netjson-monitoring_0.2.0a-1_all.ipk
wget https://downloads.openwisp.io/openwisp-monitoring/latest/openwisp-monitoring_0.2.0a-1_all.ipk

OpenWISP Documentation

4

https://openwrt.org/
https://openwrt.org/docs/guide-user/virtualization/virtualbox-vm
https://openwrt.org/docs/guide-user/installation/generic.flashing
https://openwrt.org/docs/guide-user/virtualization/virtualbox-vm
http://downloads.openwisp.io/

opkg install openwisp-config_1.1.0a-1_all.ipk
opkg install netjson-monitoring_0.2.0a-1_all.ipk
opkg install openwisp-monitoring_0.2.0a-1_all.ipk

Note

If wget doesn't work (e.g., SSL issues), you can use curl or alternatively download the packages onto your
machine and upload them to your device via scp.

Once the agents are installed on your OpenWrt device, let's ensure they can connect to OpenWISP successfully.

Edit the config file located at /etc/config/openwisp, which should look like the following sample:

For more information about the config options, please see the README
or https://github.com/openwisp/openwisp-config#configuration-options

config controller 'http'
 #option url 'https://openwisp2.mynetwork.com'
 #option interval '120'
 #option verify_ssl '1'
 #option shared_secret ''
 #option consistent_key '1'
 #option mac_interface 'eth0'
 #option management_interface 'tun0'
 #option merge_config '1'
 #option test_config '1'
 #option test_script '/usr/sbin/mytest'
 #option hardware_id_script '/usr/sbin/read_hw_id'
 #option hardware_id_key '1'
 option uuid ''
 option key ''
 # curl options
 #option connect_timeout '15'
 #option max_time '30'
 #option capath '/etc/ssl/certs'
 #option cacert '/etc/ssl/certs/ca-certificates.crt'
 # hooks
 #option pre_reload_hook '/usr/sbin/my_pre_reload_hook'
 #option post_reload_hook '/usr/sbin/my_post_reload_hook'

Uncomment and update the following lines:

• url: Set this to the hostname of your OpenWISP instance (e.g., if your OpenWISP server is at "192.168.56.2",
set the URL to https://192.168.56.2).

• verify_ssl: Set to '0' if your controller's SSL certificate is self-signed; in production, use a valid SSL
certificate to ensure security.

• shared_secret: Retrieve this from the OpenWISP dashboard in the Organization settings. The list of
organizations is available at /admin/openwisp_users/organization/.

• management_interface: Refer to Setting Up the Management Network.

Hint

For more details on the configuration options, refer to OpenWrt Config Agent Settings.

OpenWISP Documentation

5

Note

When testing or developing using the Django development server directly from your computer, make sure the
server listens on all interfaces (./manage.py runserver 0.0.0.0:8000) and then point OpenWISP to use
your local IP address (e.g. http://192.168.1.34:8000).

Save the file and restart the agent:

/etc/init.d/openwisp_config restart

Note

No changes are needed for the monitoring agent at this stage. The default settings work for most cases, and the
agent restarts itself when the config agent is restarted.

For more details on its configuration options, refer to OpenWrt Monitoring Agent Settings.

Your OpenWrt device should now be able to register with OpenWISP.

If not, refer to the following troubleshooting guides:

• Troubleshooting issues with the OpenWrt Config Agent

• Troubleshooting issues with the OpenWrt Monitoring Agent

• Troubleshooting issues with the OpenWISP Server (Ansible role)

Seealso

• Config Agent Quick Start Guide

• OpenWrt Config Agent Settings

• Monitoring Agent Quick Start Guide

• OpenWrt Monitoring Agent Settings

Compiling Your Own OpenWrt Image

Warning

This section is for advanced users.

Compiling a custom OpenWrt image can save time when configuring new devices. By doing this, you can preinstall
the agents and include your configurations (e.g., url and shared_secret) in the default image.

This way, you won't have to configure each new device manually, which is particularly useful if you provision and
manage many devices.

Refer to the guide on compiling a custom OpenWrt image for more information.

OpenWISP Documentation

6

How to Edit Django Settings

Table of Contents:
What is an OpenWISP Module? 7

Editing Settings with Ansible-OpenWISP2 7

Editing Settings with Docker-OpenWISP 8

OpenWISP Settings Reference 8

What is an OpenWISP Module?

The OpenWISP server application is composed of a number of modules called Django apps.

Django is the underlying Python web framework on top of which OpenWISP is built.

Some of the Django apps used by OpenWISP are developed and maintained by OpenWISP, other apps are
developed and maintained by either Django or third party organizations, but most of these apps are configurable and
customizable in different shapes or forms.

The most common way to modify the behavior of a Django app is by editing the project settings.py file, a file which
holds all the global configuration of the application.

The Django based modules of OpenWISP are highly configurable and over time you may need to edit their settings,
these settings are documented in the respective section of each module on this website, a reference is also provided
for convenience at the end of this page.

If you are looking for a reference which lists and describes all the OpenWISP modules please refer to Architecture,
Modules, Technologies.

Editing Settings with Ansible-OpenWISP2

The official ansible OpenWISP role provides many role variables which offer a convenient way to edit the most
widely used settings of OpenWISP.

However, not all the possible settings have a corresponding variable because doing so would be very costly to
maintain and make the code more complicated, for that reason the role provides a way to add any python instruction
to define and manipulate settings via the openwisp2_extra_django_settings_instructions variable, e.g.:

in the playbook variables add:
openwisp2_extra_django_settings_instructions:
 - |
 OPENWISP_NETWORK_TOPOLOGY_NODE_EXPIRATION = 14

 OPENWISP_MONITORING_METRICS = {
 'ping': {
 'alert_settings': {'tolerance': 60}
 },
 'config_applied': {
 'alert_settings': {'tolerance': 60}
 },
 'disk': {
 'alert_settings': {'tolerance': 60}
 },
 'memory': {
 'alert_settings': {'tolerance': 60}
 },
 'cpu': {
 'alert_settings': {
 'threshold': 95,
 'tolerance': 60
 }

OpenWISP Documentation

7

https://docs.djangoproject.com/en/4.2/intro/reusable-apps/
https://djangoproject.com/
https://docs.djangoproject.com/en/4.2/topics/settings/

 },
 }

This allows for great flexibility in configuring and extending OpenWISP: the possibility of running python code in the
settings allows for limitless adaptation and customization.

Editing Settings with Docker-OpenWISP

Similarly to the ansible role, the dockerized version of OpenWISP provides mainly two ways of changing settings:

1. The most widely used setting have a dedicated environment variable.

2. For more advanced use cases, it's possible to provide an entirely custom django settings file.

OpenWISP Settings Reference

• OpenWISP Controller Settings

• OpenWISP Monitoring Settings

• OpenWISP Firmware Upgrader Settings

• OpenWISP Network Topology Settings

• OpenWISP Users Settings

• OpenWISP Notifications Settings

• OpenWISP Utils Settings

OpenWISP Documentation

8

Project Overview

Architecture, Modules, Technologies

Project Overview

9

Project Overview

10

../_images/openwisp-architecture-v2-all.png

The diagram above provides an overview of the OpenWISP architecture. It highlights the key technologies used, the
structure of the OpenWISP modules, their major dependencies, and their interactions.

Important

For an enhanced viewing experience, open the image in a new browser tab.

Table of Contents:
OpenWISP Modules 11

Deployment 11

Server Side 12

Network Device Side 12

Website and Documentation 13

Main Technologies Used 13

Python 13

Django 13

Django REST Framework 13

Celery 13

OpenWrt 13

Lua 13

Node.js and React JS 14

Ansible 14

Docker 14

NetJSON 14

RADIUS 14

FreeRADIUS 14

Mesh Networking 14

InfluxDB 14

Elasticsearch 14

Networkx 15

Relational Databases 15

Other Notable Dependencies 15

OpenWISP Modules

Note

For more insights into the motivations and philosophy behind the modular architecture of OpenWISP, refer to
Applying the Unix Philosophy to Django projects: a report from the real world.

Deployment

• Ansible OpenWISP2: Recommended method to deploy OpenWISP on virtual machines.

Project Overview

11

https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world

• Docker OpenWISP: Enables deployment of OpenWISP on Dockerized cloud infrastructure. While still under
active development, the basic features of OpenWISP are functional.

• Ansible OpenWISP WiFi Login Pages: Ansible role for deploying the WiFi Login Pages module.

• Ansible OpenWISP2 Image Generator: Useful for generating multiple OpenWrt firmware images for different
organizations with the OpenWISP packages preinstalled.

• Ansible Wireguard OpenWISP: Ansible role that enables deployment of Wireguard integration for OpenWISP
Controller.

Server Side

• OpenWISP Users: Manages user authentication, multi-tenancy, and provides REST API utilities and classes for
implementing multi-tenancy.

• OpenWISP Controller: Handles configuration management, VPN provisioning (OpenVPN, Wireguard,
Wireguard over VXLAN), shell commands, SSH connections, x509 PKI management, geographic maps, floor
plans, programmable IP address management, and subnet provisioning.

This module depends on several Django apps and Python libraries developed or maintained by OpenWISP:

• netjsonconfig: For configuration generation, validation, and parsing.

• django-x509: Manages Public Key Infrastructure (certification authorities and x509 certificates).

• django-loci: Provides geographic and indoor mapping features.

• openwisp-ipam: Administers IP and subnet management.

• django-rest-framework-gis: Adds GIS capabilities to Django REST Framework.

• OpenWISP Monitoring: Monitors and tracks device metrics like ping success rate, packet loss, round trip time,
traffic, WiFi clients, memory, CPU load, flash space, ARP/neighbor information, DHCP leases, and provides
charts and configurable alerts. It also allows custom checks and tolerance threshold configurations.

• OpenWISP Network Topology: Collects and visualizes network topology data from dynamic mesh routing
protocols and other popular networking software like OpenVPN. It can visualize network graphs and save daily
snapshots for future viewing.

This module relies on two libraries developed and maintained by OpenWISP:

• netdiff: Parses network topology.

• netjsongraph.js: A JavaScript library for visualizing network graphs.

• OpenWISP Firmware Upgrader: Provides a firmware upgrade solution for OpenWrt and potentially other
embedded OSes. Features include automatic retry for network failures, mass upgrades, a REST API, and
more.

• OpenWISP RADIUS: Offers a web interface to a FreeRADIUS database, a rich REST HTTP API, and features
like user self-registration, SMS verification, user import from CSV files, event-based user generation, Captive
Portal Social Login, and Captive Portal SAML login.

• OpenWISP Notifications: Provides email and web notifications for OpenWISP, enabling modules to notify users
about significant events in their network.

• OpenWISP Utils: Common utilities and classes shared by all OpenWISP Python modules. Includes many
utilities for QA checks and automated testing, heavily used in continuous integration builds of most OpenWISP
GitHub repositories.

• OpenWISP WiFi Login Pages: A configurable login page and self registration app for WiFi Hotspot services,
offering features like login, sign up, social login, SMS verification, password reset and more. It is a frontend for
the OpenWISP RADIUS REST API, designed for end users of a WiFi Hotspot service.

Network Device Side

• OpenWISP OpenWrt Config Agent: An OpenWrt package that integrates with OpenWISP Controller.

Project Overview

12

https://github.com/openwisp/ansible-openwisp-wifi-login-pages
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/ansible-wireguard-openwisp
https://github.com/openwisp/netjsonconfig
https://github.com/openwisp/django-x509
https://github.com/openwisp/django-loci
https://github.com/openwisp/django-rest-framework-gis
https://github.com/openwisp/netdiff
https://github.com/openwisp/netjsongraph.js

• OpenWISP OpenWrt Monitoring Agent: An OpenWrt package that integrates with OpenWISP Monitoring.

Website and Documentation

• openwisp-docs: Repository for the OpenWISP documentation, hosted on openwisp.io/docs.

• OpenWISP-Website: Repository for the OpenWISP website, hosted on openwisp.org.

Main Technologies Used

Python

Python is the primary programming language used for the server-side application (web admin, API, controller,
workers).

Originally, OpenWISP was built on Ruby On Rails, but we later switched to Python due to its suitability for networking
and a larger pool of potential contributors.

Find out more on why OpenWISP chose Python as its main language.

Django

Django is one of the most popular web frameworks for Python.

It is used extensively in our modules, allowing rapid development and access to a rich ecosystem.

It's the base framework used in most of the server-side modules of OpenWISP.

Find out more on why OpenWISP chose Django as its main web framework.

Django REST Framework

Django REST framework is a powerful and flexible toolkit for building Web APIs based on Django, widely used in
most of the Django and web-based OpenWISP modules.

Find out more on why OpenWISP chose Django REST Framework to build its REST API.

Celery

Celery is a Python implementation of a distributed task queue. It is heavily used in OpenWISP to execute
background tasks, perform network operations like monitoring checks, configuration updates, firmware upgrades,
and more.

OpenWrt

OpenWrt is a Linux distribution designed for embedded systems, routers, and networking in general.

It has a very skilled community and is used as a base by many hardware vendors (Technicolor, Ubiquiti Networks,
Linksys, Teltonika, and many others).

Lua

Lua is a lightweight, multi-paradigm programming language designed primarily for embedded systems and clients.

Lua is cross-platform, since the interpreter is written in ANSI C, and has a relatively simple C API.

It is the official scripting language of OpenWrt and is used heavily in the OpenWrt packages of OpenWISP:
openwisp-config and openwisp-monitoring.

Project Overview

13

https://github.com/openwisp/openwisp-docs
https://openwisp.io/docs/
https://github.com/openwisp/OpenWISP-Website
https://openwisp.org/
https://www.python.org/
https://www.djangoproject.com/
https://www.django-rest-framework.org
https://docs.celeryq.dev/en/stable/index.html
https://openwrt.org/
https://www.lua.org/

Node.js and React JS

NodeJS is a JavaScript runtime for building JS-based applications.

In OpenWISP, it's used as a base for frontend applications along with React, like the WiFi Login Pages module.

Ansible

Ansible is a popular software automation tool written in Python, generally used for automating software provisioning,
configuration management, and application deployment.

We use Ansible to provide automated procedures to deploy OpenWISP, to compile custom OpenWrt images for
different organizations, to deploy OpenWISP WiFi Login Pages, and to deploy the Wireguard integration for
OpenWISP Controller.

Docker

We use Docker in docker-openwisp, which aims to ease the deployment of OpenWISP in a containerized
infrastructure.

NetJSON

NetJSON is a data interchange format based on JSON designed to ease the development of software tools for
computer networks.

RADIUS

RADIUS (Remote Authentication Dial-In User Service) is a networking protocol used for centralized Authentication,
Authorization, and Accounting management of network services.

FreeRADIUS

FreeRADIUS is the most popular open-source implementation of the RADIUS protocol and is extensively relied upon
in OpenWISP RADIUS.

Mesh Networking

A mesh network is a local network topology where infrastructure nodes connect directly, dynamically, and
non-hierarchically to as many other nodes as possible. They cooperate to efficiently route data to and from clients.

OpenWrt supports the standard mesh mode (802.11s), which OpenWISP supports out of the box. Additionally,
OpenWrt can support other popular dynamic open-source routing protocols such as OLSRd2, BATMAN-advanced,
Babel, BMX, etc.

For more information on how to set up a mesh network with OpenWISP, refer to: How to Set Up a Wireless Mesh
Network.

InfluxDB

InfluxDB is the default open-source time-series database used in OpenWISP Monitoring.

Elasticsearch

Elasticsearch is an alternative option that can be used in OpenWISP Monitoring as a time-series database. It excels
in storing and retrieving data quickly and efficiently.

Project Overview

14

https://nodejs.org/en/
https://reactjs.org/
https://www.ansible.com/
https://www.ansible.com/
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/ansible-openwisp-wifi-login-pages
http://netjson.org/
http://json.org/
https://en.wikipedia.org/wiki/RADIUS/
https://freeradius.org/
https://en.wikipedia.org/wiki/Mesh_networking/
https://www.influxdata.com/
https://www.elastic.co/

Networkx

Networkx is a network graph analysis library written in Python and used under the hood by netdiff and the
OpenWISP Network Topology module.

Relational Databases

Django supports several Relational Database Management Systems.

The most notable ones are:

• PostgreSQL

• MySQL

• SQLite

For production usage, we recommend PostgreSQL.

For development, we recommend SQLite for its simplicity.

Other Notable Dependencies

• Paramiko (used in OpenWISP Controller and Firmware Upgrader).

• Django-allauth (used in OpenWISP Users).

• Django-organizations (used in OpenWISP Users).

• Django-swappable-models (used in all major Django modules).

• Django-private-storage (used in OpenWISP RADIUS and Firmware Upgrader).

• Dj-rest-auth (used in OpenWISP RADIUS).

• Django-sendsms (used in OpenWISP RADIUS).

• Django-saml2 (used in OpenWISP RADIUS).

Values and Goals of OpenWISP

Table of Contents:
What is OpenWISP? 15

History 16

Core Values 16

1. Communication through Electronic Means is a Human Right 16

2. Net Neutrality 16

3. Privacy 16

4. Open Source, Licenses, and Collaboration 16

5. Software Reusability for Long-Term Sustainability 17

Goals 17

What is OpenWISP?

OpenWISP is a robust and versatile software platform designed to simplify and automate network management, with
a strong emphasis on wireless networks. It's widely used in various scenarios, including public WiFi hotspots, mesh
networks, community networks, and IoT applications.

In December 2016, OpenWISP 2 was launched, marking the next generation of our software. This version, built with
Python and Django, replaced the original version developed with Ruby on Rails. The OpenWISP community has

Project Overview

15

https://networkx.org/
https://docs.djangoproject.com/en/4.0/ref/databases/
https://www.postgresql.org/
https://www.mysql.com/
https://www.sqlite.org/
https://www.paramiko.org/
https://github.com/pennersr/django-allauth
https://github.com/bennylope/django-organizations
https://github.com/openwisp/django-swappable-models
https://github.com/edoburu/django-private-storage
https://github.com/iMerica/dj-rest-auth
https://github.com/stefanfoulis/django-sendsms
https://github.com/IdentityPython/djangosaml2

since cultivated an ecosystem of applications and tools that empower developers to create custom networking
solutions. Our mission is to drive innovation and promote freedom in the realm of network infrastructure automation.

History

Refer to History of OpenWISP.

Core Values

1. Communication through Electronic Means is a Human Right

We believe that communication through electronic means is a fundamental human right.

According to Mozilla, 4 billion people live without internet access today.

Having witnessed the significant progress the internet has brought to our society, we are deeply convinced that
addressing the issue of internet connectivity will help to alleviate the economic disparity that is so evident at the
beginning of the 21st century.

For these reasons, fighting the digital divide, both primary (lack of infrastructure) and secondary (lack of
know-how), is our utmost priority.

2. Net Neutrality

We believe Net Neutrality is beneficial to the internet because it ensures fair treatment (non-discrimination) of private
communications.

The very first public WiFi networks built with OpenWISP in Italy adhere strictly to this principle: no content filtering of
any type is allowed on these networks, and no special privileges are given to any private entities.

For this reason, we are opposed to including in our ecosystem and documentation any software tools or tutorials that
aim to implement solutions contrary to Net Neutrality.

3. Privacy

Privacy is fundamental to a healthy and functional society.

The initial public WiFi networks built with OpenWISP in Italy adhere strictly to this principle: traffic logs are stored
only for the duration mandated by law, and personal data is never sold to third parties.

Therefore, we oppose the inclusion in our ecosystem and documentation of any software tool or tutorial that aims to
intrude upon user privacy by collecting and selling their data to third parties for profit.

4. Open Source, Licenses, and Collaboration

We release all our software under Open Source licenses on GitHub.

We primarily use two types of licenses:

• GPLv3: Used for software modules we consider to have significant commercial value for ISPs and private
companies. This license aims to prevent these tools from being included in proprietary closed-source solutions,
ensuring that private entities do not profit from our community's work without contributing back.

• BSD3 and MIT: These highly permissive licenses are used for experimental and innovative software modules
that are valuable but less monetizable. By allowing these modules to be included in proprietary solutions, we
aim to reduce duplication of effort and encourage contributions from organizations and individuals.

We advocate for transparency and a community-driven approach, welcoming all new participants, contributors, and
users.

Our community values support, friendliness, and collaboration, aiming to make our software as useful as possible to
a wide audience, while upholding our core values.

Project Overview

16

http://openwisp.org/history.html
https://blog.mozilla.org/blog/2017/07/31/mozilla-releases-research-results-zero-rating-not-serving-ramp-internet/
https://en.wikipedia.org/wiki/Net_neutrality
https://github.com/openwisp

We encourage those who share our values to reach out to us through our support channels and contribute to the
project in any way they can, according to their means and available time.

5. Software Reusability for Long-Term Sustainability

Long-time contributors to OpenWISP have firsthand experience with the pitfalls of dealing with inflexible
monolithic applications that are difficult to reuse beyond their original design scope.

We've witnessed numerous projects emerge with great promise, only to develop their code from scratch and
eventually fade into obscurity. This recurring cycle represents a tremendous waste of human effort, energy, and
resources.

For this reason, OpenWISP 2 places a strong emphasis on modularity and reusability, drawing inspiration from
best practices established in the Unix world as outlined in The Art of Unix Programming by Eric S. Raymond.

The core modules of OpenWISP 2 are licensed and designed to facilitate inclusion by developers outside the
OpenWISP community in their own applications (subject to licensing terms).

This approach fosters an ecosystem of modern networking software tools that attracts developers from around the
globe.

The shared interest of users, modifiers, sharers, resellers, and contributors of these modules forms the bedrock of
long-term sustainability.

Goals

• Help solve the problem of lack of internet connectivity by simplifying the deployment and management of
low-cost network infrastructure worldwide.

• Drive innovation in the networking software realm through automation, modularity, reusability, flexibility,
extensibility, and collaboration.

• Foster an ecosystem of software tools capable of generating numerous OpenWISP derivatives, enhancing the
accessibility and affordability of electronic communication.

• Mitigate vendor lock-in by striving to support multiple operating systems and hardware vendors. While our
official support is currently limited to OpenWrt derivatives, we have experimental configuration backends for
Raspbian and AirOS, demonstrating feasibility for supporting multiple systems.

• Provide comprehensive documentation for both users and developers.
• Develop user-friendly web interfaces accessible to a broad audience.

Installers

Ansible OpenWISP

Seealso

Source code: github.com/openwisp/ansible-openwisp2.

This ansible role allows deploying the OpenWISP Server Application.

Recommended minimum ansible core version: 2.13.

Tested on Debian (Bookworm/Bullseye), Ubuntu (24/22/20 LTS).

The following diagram illustrates the role of the Ansible OpenWISP role within the OpenWISP architecture.

Installers

17

http://openwisp.org/support.html
http://www.catb.org/esr/writings/taoup/html/
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://github.com/openwisp/netjsonconfig/tree/raspbian
https://github.com/openwisp/netjsonconfig/tree/airos
https://github.com/openwisp/ansible-openwisp2
../_images/architecture-v2-ansible-openwisp.png

OpenWISP Architecture: highlighted Ansible OpenWISP role

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

System Requirements

The following specifications will run a new, empty instance of OpenWISP. Please ensure you account for the amount
of disk space your use case will require, e.g. allocate enough space for users to upload floor plan images.

Hardware Requirements (Recommended)

• 2 CPUs

• 2 GB Memory

• Disk space - depends on the projected size of your database and uploaded photo images

Keep in mind that increasing the number of celery workers will require more memory and CPU. You will need to
increase the amount of celery workers as the number of devices you manage grows.

For more information about how to increase concurrency, look for the variables which end with _concurrency or
_autoscale in the Role Variables section.

Software

A fresh installation of one of the supported operating systems is generally sufficient, with no preconfiguration
required. The Ansible Playbook will handle the installation and configuration of all dependencies, providing you with
a fully operational OpenWISP setup.

Important

Ensure the hostname of your target machine matches what is in your Ansible configuration file. Also, please
ensure that Ansible can access your target machine by SSH, be it either with a key or password. For more
information see the Ansible Getting Started Documentation.

Supported Operating Systems

• Debian 12

• Debian 11

• Ubuntu 24 LTS

• Ubuntu 22 LTS

• Ubuntu 20 LTS

Installers

18

https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html

Deploying OpenWISP Using Ansible

Introduction & Prerequisites 19

Install Ansible 19

Install This Role 20

Choose a Working Directory 20

Create Inventory File 20

Create Playbook File 20

Run the Playbook 20

Upgrading OpenWISP 21

Deploying the Development Version of OpenWISP 22

Introduction & Prerequisites

Note

If you want to use the latest features of OpenWISP, refer to Deploying the Development Version of OpenWISP.

If you don't know how to use ansible, don't panic, this procedure will guide you towards a fully working basic
OpenWISP installation.

If you already know how to use ansible, you can skip this tutorial.

First of all you need to understand two key concepts:

• for “production server” we mean a server (not a laptop or a desktop computer!) with public IpV4 / IPv6
which is used to host OpenWISP

• for “local machine” we mean the host from which you launch ansible, e.g.: your own laptop

Ansible is a configuration management tool that works by entering production servers via SSH, so you need to
install it and configure it on the machine where you launch the deployment and this machine must be able to
SSH into the production server.

Ansible will be run on your local machine and from there it will connect to the production server to install OpenWISP.

Note

It is recommended to use this procedure on clean virtual machines or linux containers.

If you are trying to install OpenWISP on your laptop or desktop PC just for testing purposes, please read Install
OpenWISP for testing in a VirtualBox VM.

Install Ansible

Install ansible (minimum recommended version 2.13) on your local machine (not the production server!) if you
haven't done already.

We suggest following the ansible installation guide. to install ansible. It is recommended to install ansible through a
virtual environment to avoid dependency issues.

Please ensure that you have the correct version of Jinja installed in your Python environment:
pip install Jinja2>=2.11

Installers

19

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-in-a-virtual-environment-with-pip

Install This Role

For the sake of simplicity, the easiest thing is to install this role on your local machine via ansible-galaxy
(which was installed when installing ansible), therefore run:

ansible-galaxy install openwisp.openwisp2

Ensure that you have the community.general and ansible.posix collections installed and up to date:

ansible-galaxy collection install "community.general:>=3.6.0"
ansible-galaxy collection install "ansible.posix"

Choose a Working Directory

Choose a working directory on your local machine where to put the configuration of OpenWISP.

This will be useful when you will need to upgrade OpenWISP.

E.g.:

mkdir ~/openwisp2-ansible-playbook
cd ~/openwisp2-ansible-playbook

Create Inventory File

The inventory file is where group of servers are defined. In our simple case we will define just one group in which we
will put just one server.

Create a new file called hosts in the working directory on your local machine (the directory just created in the
previous step), with the following contents:

[openwisp2]
openwisp2.mydomain.com

Substitute openwisp2.mydomain.com with your production server's hostname - DO NOT REPLACE
openwisp2.mydomain.com WITH AN IP ADDRESS, otherwise email sending through postfix will break, causing
500 internal server errors on some operations.

Create Playbook File

Create a new playbook file playbook.yml on your local machine with the following contents:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_default_from_email: "openwisp2@openwisp2.mydomain.com"

The line become: "{{ become | default('yes') }}" means ansible will use the sudo program to run each
command. You may remove this line if you don't need it (e.g.: if you are root user on the production server).

You may replace openwisp2 on the hosts field with your production server's hostname if you desire.

Substitute openwisp2@openwisp2.mydomain.com with what you deem most appropriate as default sender for
emails sent by OpenWISP 2.

Run the Playbook

Now is time to deploy OpenWISP to the production server.

Run the playbook from your local machine with:

ansible-playbook -i hosts playbook.yml -u <user> -k --become -K

Installers

20

https://docs.ansible.com/ansible/latest/collections/community/general/index.html
https://docs.ansible.com/ansible/latest/collections/ansible/posix/index.html

Substitute <user> with your production server's username.

The -k argument will need the sshpass program.

You can remove -k, --become and -K if your public SSH key is installed on the server.

Tip

• If you have an error like Authentication or permission failure then try to use root user
ansible-playbook -i hosts playbook.yml -u root -k

• If you have an error about adding the host's fingerprint to the known_hosts file, you can simply connect to
the host via SSH and answer yes when prompted; then you can run ansible-playbook again.

When the playbook is done running, if you got no errors you can login at
https://openwisp2.mydomain.com/admin with the following credentials:

username: admin
password: admin

Substitute openwisp2.mydomain.com with your production server's hostname.

Now proceed with the following steps:

1. change the password (and the username if you like) of the superuser as soon as possible

2. update the name field of the default Site object to accurately display site name in email notifications

3. edit the information of the default organization

4. in the default organization you just updated, note down the automatically generated shared secret option, you
will need it to use the auto-registration feature of openwisp-config

5. this Ansible role creates a default template to update authorized_keys on networking devices using the
default access credentials. The role will either use an existing SSH key pair or create a new one if no SSH key
pair exists on the host machine.

Now you are ready to start configuring your network! If you need help you can ask questions on one of the official
OpenWISP Support Channels.

Upgrading OpenWISP

Important

It is strongly recommended to back up your current instance before upgrading.

Update this ansible-role via ansible-galaxy:

ansible-galaxy install --force openwisp.openwisp2

Run ansible-playbook again from your local machine:

ansible-playbook -i hosts playbook.yml

You may also run the playbook automatically periodically or when a new release of OpenWISP2, for example, by
setting up a continuous integration system.

Installers

21

http://openwisp.org/support.html

Deploying the Development Version of OpenWISP

The following steps will help you set up and install the development version of OpenWISP which is not released yet,
but ships new features and improvements.

Create a directory for organizing your playbook, roles and collections. In this example, openwisp-dev is used.
Create roles and collections directories in ~/openwisp-dev.

mkdir -p ~/openwisp-dev/roles
mkdir -p ~/openwisp-dev/collections

Change directory to ~/openwisp-dev/ in terminal and create configuration and requirement files for Ansible.

cd ~/openwisp-dev/
touch ansible.cfg
touch requirements.yml

Setup roles_path and collections_paths variables in ansible.cfg as follows:

[defaults]
roles_path=~/openwisp-dev/roles
collections_paths=~/openwisp-dev/collections

Ensure your requirements.yml contains following content:

roles:
 - src: https://github.com/openwisp/ansible-openwisp2.git
 version: master
 name: openwisp.openwisp2-dev
collections:
 - name: community.general
 version: ">=3.6.0"

Install requirements from the requirements.yml as follows

ansible-galaxy install -r requirements.yml

Now, create hosts file and playbook.yml:

touch hosts
touch playbook.yml

Follow instructions in Create Inventory File section to configure hosts file.

You can reference the example playbook below (tested on Debian 11) for installing a fully-featured version of
OpenWISP.

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2-dev
 vars:
 openwisp2_network_topology: true
 openwisp2_firmware_upgrader: true
 openwisp2_radius: true
 openwisp2_monitoring: true # monitoring is enabled by default

Read Role Variables section to learn about available configuration variables.

Follow instructions in Run the Playbook section to run above playbook.

Using Let's Encrypt SSL Certificate

This section explains how to automatically install and renew a valid SSL certificate signed by Let's Encrypt.

Installers

22

https://letsencrypt.org/

The first thing you have to do is to setup a valid domain for your OpenWISP instance, this means your inventory file
(hosts) should look like the following:

[openwisp2]
openwisp2.yourdomain.com

You must be able to add a DNS record for openwisp2.yourdomain.com, you cannot use an ip address in place of
openwisp2.yourdomain.com.

Once your domain is set up and the DNS record is propagated, proceed by installing the ansible role
geerlingguy.certbot:

ansible-galaxy install geerlingguy.certbot

Then proceed to edit your playbook.yml so that it will look similar to the following example:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - geerlingguy.certbot
 - openwisp.openwisp2
 vars:
 # SSL certificates
 openwisp2_ssl_cert: "/etc/letsencrypt/live/{{ inventory_hostname }}/fullchain.pem"
 openwisp2_ssl_key: "/etc/letsencrypt/live/{{ inventory_hostname }}/privkey.pem"

 # certbot configuration
 certbot_auto_renew_minute: "20"
 certbot_auto_renew_hour: "5"
 certbot_create_if_missing: true
 certbot_auto_renew_user: "<privileged-users-to-renew-certs>"
 certbot_certs:
 - email: "<paste-your-email>"
 domains:
 - "{{ inventory_hostname }}"
 pre_tasks:
 - name: Update APT package cache
 apt:
 update_cache: true
 changed_when: false
 retries: 5
 delay: 10
 register: result
 until: result is success

Read the documentation of geerlingguy.certbot to learn more about configuration of certbot role.

Once you have set up all the variables correctly, run the playbook again.

Enabling OpenWISP Modules

Enabling the Monitoring Module 23

Enabling the Firmware Upgrader Module 24

Enabling the Network Topology Module 24

Enabling the RADIUS Module 25

Enabling the Monitoring Module

The Monitoring module is enabled by default, it can be disabled by setting openwisp2_monitoring to false.

Installers

23

https://galaxy.ansible.com/geerlingguy/certbot/
https://github.com/geerlingguy/ansible-role-certbot#readme

Enabling the Firmware Upgrader Module

It is encouraged that you read the quick-start guide of openwisp-firmware-upgrader before going ahead.

To enable the Firmware Upgrader module you need to set openwisp2_firmware_upgrader to true in your
playbook.yml file. Here's a short summary of how to do this:

Step 1: Install ansible

Step 2: Install this role

Step 3: Create inventory file

Step 4: Create a playbook file with following contents:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_firmware_upgrader: true

Step 5: Run the playbook

When the playbook is done running, if you got no errors you can login at https://openwisp2.mydomain.com/admin
with the following credentials:

username: admin
password: admin

You can configure openwisp-firmware-upgrader specific settings using the openwisp2_extra_django_settings
or openwisp2_extra_django_settings_instructions.

E.g:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_firmware_upgrader: true
 openwisp2_extra_django_settings_instructions:
 - |
 OPENWISP_CUSTOM_OPENWRT_IMAGES = (
 ('my-custom-image-squashfs-sysupgrade.bin', {
 'label': 'My Custom Image',
 'boards': ('MyCustomImage',)
 }),
)

Refer the Role Variables section of the documentation for a complete list of available role variables.

Enabling the Network Topology Module

To enable the Network Topology module you need to set openwisp2_network_topology to true in your
playbook.yml file. Here's a short summary of how to do this:

Step 1: Install ansible

Step 2: Install this role

Step 3: Create inventory file

Step 4: Create a playbook file with following contents:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:

Installers

24

https://openwisp2.mydomain.com/admin

 - openwisp.openwisp2
 vars:
 openwisp2_network_topology: true

Step 5: Run the playbook

When the playbook is done running, if you got no errors you can login at https://openwisp2.mydomain.com/admin
with the following credentials:

username: admin
password: admin

Enabling the RADIUS Module

To enable the RADIUS module you need to set openwisp2_radius to true in your playbook.yml file. Here's a
short summary of how to do this:

Step 1: Install ansible

Step 2: Install this role

Step 3: Create inventory file

Step 4: Create a playbook file with following contents:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_radius: true
 openwisp2_freeradius_install: true
 # set to false when you don't want to register openwisp-radius
 # API endpoints.
 openwisp2_radius_urls: true

Note

openwisp2_freeradius_install option provides a basic configuration of freeradius for OpenIWSP, it sets
up the radius user token mechanism if you want to use another mechanism or manage your freeradius
separately, please disable this option by setting it to false.

Step 5: Run the playbook

When the playbook is done running, if you got no errors you can login at:

https://openwisp2.mydomain.com/admin
username: admin
password: admin

Note: for more information regarding radius configuration options, look for the word “radius” in the Role Variables
section of this document.

Configuring FreeRADIUS for WPA Enterprise (EAP-TTLS-PAP)

You can use OpenWISP RADIUS for setting up WPA Enterprise (EAP-TTLS-PAP) authentication. This allows to
authenticate on WiFi networks using Django user credentials. Prior to proceeding, ensure you've reviewed the
tutorial on How to Set Up WPA Enterprise (EAP-TTLS-PAP) Authentication. This documentation section
complements the tutorial and focuses solely on demonstrating the ansible role's capabilities to configure
FreeRADIUS.

Installers

25

https://openwisp2.mydomain.com/admin

Important

The ansible role supports OpenWISP's multi-tenancy by creating individual FreeRADIUS sites for each
organization. You must include configuration details for each organization that will use WPA Enterprise.

Here's an example playbook which enables OpenWISP RADIUS module, installs FreeRADIUS, and configures it for
WPA Enterprise (EAP-TTLS-PAP):

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_radius: true
 openwisp2_freeradius_install: true
 # Define a list of dictionaries detailing each organization's
 # name, UUID, RADIUS token, and ports for authentication,
 # accounting, and the inner tunnel. These details will be used
 # to create FreeRADIUS sites tailored for WPA Enterprise
 # (EAP-TTLS-PAP) authentication per organization.
 freeradius_eap_orgs:
 # A reference name for the organization,
 # used in FreeRADIUS configurations.
 # Don't use spaces or special characters.
 - name: openwisp
 # UUID of the organization.
 # You can retrieve this from the organization admin
 # in the OpenWISP web interface.
 uuid: 00000000-0000-0000-0000-000000000000
 # Radius token of the organization.
 # You can retrieve this from the organization admin
 # in the OpenWISP web interface.
 radius_token: secret-radius-token
 # Port used by the authentication service for
 # this FreeRADIUS site
 auth_port: 1822
 # Port used by the accounting service for this FreeRADIUS site
 acct_port: 1823
 # Port used by the authentication service of inner tunnel
 # for this FreeRADIUS site
 inner_tunnel_auth_port: 18230
 # If you want to use a custom certificate for FreeRADIUS
 # EAP module, you can specify the path to the CA, server
 # certificate, and private key, and DH key as follows.
 # Ensure that these files can be read by the "freerad" user.
 cert: /etc/freeradius/certs/cert.pem
 private_key: /etc/freeradius/certs/key.pem
 ca: /etc/freeradius/certs/ca.crt
 dh: /etc/freeradius/certs/dh
 tls_config_extra: |
 private_key_password = whatever
 ecdh_curve = "prime256v1"
 # You can add as many organizations as you want
 - name: demo
 uuid: 00000000-0000-0000-0000-000000000001
 radius_secret: demo-radius-token
 auth_port: 1832
 acct_port: 1833

Installers

26

 inner_tunnel_auth_port: 18330
 # If you omit the certificate fields,
 # the FreeRADIUS site will use the default certificates
 # located in /etc/freeradius/certs.

In the example above, custom ports 1822, 1823, and 18230 are utilized for FreeRADIUS authentication, accounting,
and inner tunnel authentication, respectively. These custom ports are specified because the Ansible role creates a
common FreeRADIUS site for all organizations, which also supports captive portal functionality. This common site is
configured to listen on the default FreeRADIUS ports 1812, 1813, and 18120. Therefore, when configuring WPA
Enterprise authentication for each organization, unique ports must be provided to ensure proper isolation and
functionality.

Using Let's Encrypt Certificate for WPA Enterprise (EAP-TTLS-PAP)

In this section, we demonstrate how to utilize Let's Encrypt certificates for WPA Enterprise (EAP-TTLS-PAP)
authentication. Similar to the Using Let's Encrypt SSL Certificate, we use geerlingguy.certbot role to automatically
install and renew a valid SSL certificate.

The following example playbook achieves the following goals:

• Provision a separate Let's Encrypt certificate for the freeradius.yourdomain.com hostname. This certificate will
be utilized by the FreeRADIUS site for WPA Enterprise authentication.

• Create a renewal hook to set permissions on the generated certificate so the FreeRADIUS server can read it.

Note

You can also use the same SSL certificate for both Nginx and FreeRADIUS, but it's crucial to understand the
security implications. Please exercise caution and refer to the example playbook comments for guidance.

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - geerlingguy.certbot
 - openwisp.openwisp2
 vars:
 # certbot configuration
 certbot_auto_renew_minute: "20"
 certbot_auto_renew_hour: "5"
 certbot_create_if_missing: true
 certbot_auto_renew_user: "<privileged-users-to-renew-certs>"
 certbot_certs:
 - email: "<paste-your-email>"
 domains:
 - "{{ inventory_hostname }}"
 # If you choose to re-use the same certificate for both services,
 # you can omit the following item in your playbook.
 - email: "<paste-your-email>"
 domains:
 - "freeradius.yourdomain.com"
 # Configuration to use Let's Encrypt certificate for OpenWISP server (Nnginx)
 openwisp2_ssl_cert: "/etc/letsencrypt/live/{{ inventory_hostname }}/fullchain.pem"
 openwisp2_ssl_key: "/etc/letsencrypt/live/{{ inventory_hostname }}/privkey.pem"
 # Configuration for openwisp-radius
 openwisp2_radius: true
 openwisp2_freeradius_install: true
 freeradius_eap_orgs:
 - name: demo

Installers

27

https://galaxy.ansible.com/geerlingguy/certbot/

 uuid: 00000000-0000-0000-0000-000000000001
 radius_secret: demo-radius-token
 auth_port: 1832
 acct_port: 1833
 inner_tunnel_auth_port: 18330
 # Update the cert_file and private_key paths to point to the
 # Let's Encrypt certificate.
 cert: /etc/letsencrypt/live/freeradius.yourdomain.com/fullchain.pem
 private_key: /etc/letsencrypt/live/freeradius.yourdomain.com/privkey.pem
 # If you choose to re-use the same certificate for both services,
 # your configuration would look like this
 # cert: /etc/letsencrypt/live/{{ inventory_hostname }}/fullchain.pem
 # private_key: /etc/letsencrypt/live/{{ inventory_hostname }}/privkey.pem
 tasks:
 # Tasks to ensure the Let's Encrypt certificate can be read by the FreeRADIUS server.
 # If you are using the same certificate for both services, you need to
 # replace "freeradius.yourdomain.com" with "{{ inventory_hostname }}"
 # in the following task.
 - name: "Create a renewal hook for setting permissions on /etc/letsencrypt/live/freeradius.yourdomain.com"
 copy:
 content: |
 #!/bin/bash
 chown -R root:freerad /etc/letsencrypt/live/ /etc/letsencrypt/archive/
 chmod 0750 /etc/letsencrypt/live/ /etc/letsencrypt/archive/
 chmod -R 0640 /etc/letsencrypt/archive/freeradius.yourdomain.com/
 chmod 0750 /etc/letsencrypt/archive/freeradius.yourdomain.com/
 dest: /etc/letsencrypt/renewal-hooks/post/chown_freerad
 owner: root
 group: root
 mode: '0700'
 register: chown_freerad_result
 - name: Change the ownership of the certificate files
 when: chown_freerad_result.changed
 command: /etc/letsencrypt/renewal-hooks/post/chown_freerad

Deploying Custom Static Content

For deploying custom static content (HTML files, etc.) add all the static content in files/ow2_static directory.
The files inside files/ow2_static will be uploaded to a directory named static_custom in openwisp2_path.

This is helpful for customizing OpenWISP's theme.

E.g., if you added a custom CSS file in files/ow2_static/css/custom.css, the file location to use in
OPENWISP_ADMIN_THEME_LINKS setting will be css/custom.css.

Configuring CORS Headers

While integrating OpenWISP with external services, you can run into issues related to CORS (Cross-Origin
Resource Sharing). This role allows users to configure the CORS headers with the help of django-cors-headers
package. Here's a short summary of how to do this:

Step 1: Install ansible

Step 2: Install this role

Step 3: Create inventory file

Step 4: Create a playbook file with following contents:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:

Installers

28

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://github.com/adamchainz/django-cors-headers

 - openwisp.openwisp2
 vars:
 # Cross-Origin Resource Sharing (CORS) settings
 openwisp2_django_cors:
 enabled: true
 allowed_origins_list:
 - https://frontend.openwisp.org
 - https://logs.openwisp.org

Note: to learn about the supported fields of the openwisp2_django_cors variable, look for the word
"openwisp2_django_cors" in the Role Variables section of this document.

Step 5: Run the playbook

When the playbook is done running, if you got no errors you can login at https://openwisp2.mydomain.com/admin,
with the following credentials:

username: admin
password: admin

The ansible-openwisp2 only provides abstraction (variables) for handful of settings available in django-cors-headers
module. Use the openwisp2_extra_django_settings_instructions or
openwisp2_extra_django_settings variable to configure additional setting of django-cors-headers as
shown in the following example:

- hosts: openwisp2
 become: "{{ become | default('yes') }}"
 roles:
 - openwisp.openwisp2
 vars:
 openwisp2_django_cors:
 enabled: true
 allowed_origins_list:
 - https://frontend.openwisp.org
 - https://logs.openwisp.org
 replace_https_referer: true
 # Configuring additional settings for django-cors-headers
 openwisp2_extra_django_settings_instructions:
 - |
 CORS_ALLOW_CREDENTIALS = True
 CORS_ALLOW_ALL_ORIGINS = True

Install OpenWISP for Testing in a VirtualBox VM

If you want to try out OpenWISP in your own development environment, the safest way is to use a VirtualBox Virtual
Machine (from here on VM).
Using Vagrant 29

Installing Debian 11 on VirtualBox 30

VM Configuration 30

Back to your local machine 30

Using Vagrant

Since August 2018 there's a new fast and easy way to install OpenWISP for testing purposes leveraging
Vagrant, a popular open source tool for building and maintaining portable virtual software development
environments.

To use this new way, clone the repository vagrant-openwisp2, it contains the instructions (in the README.md) and
the vagrant configuration to perform the automatic installation.

Installers

29

https://openwisp2.mydomain.com/admin
https://github.com/adamchainz/django-cors-headers
https://www.vagrantup.com
https://github.com/openwisp/vagrant-openwisp2

Alternatively, you can read on to learn how to install VirtualBox and run ansible-openwisp2 manually, this is useful if
you need to test advanced customizations of OpenWISP.

Installing Debian 11 on VirtualBox

Install VirtualBox and create a new Virtual Machine running Debian 11. A step-by-step guide is available here,
however we need to change a few things to get ansible working.

VM Configuration

Proceed with the installation as shown in the guide linked above, and come back here when you see this screen:

We're only running this as a server, so you can uncheck Debian desktop environment. Make sure
SSH server and standard system utilities are checked.

Next, add a Host-only Network Adapter and assign an IP address to the VM.

• On the Main VirtualBox page, Go to File > Host Network Manager

• Click the + icon to create a new adapter

• Set the IPv4 address to 192.168.56.1 and the IPv4 Network Mask to 255.255.255.0. You may need to
select Configure Adapter Manually to do this. The IPv6 settings can be ignored

• Shut off your VM

• In your VM settings, in the Network section, click Adapter 2 and Enable this Adapter

• Select Host-only adapter and the name of the adapter you created

• Boot up your VM, run su, and type in your superuser password

• Run ls /sys/class/net and take note of the output

• Run nano /etc/network/interfaces and add the following at the end of the file:

auto enp0s8
iface enp0s8 inet static
 address 192.168.56.2
 netmask 255.255.255.0
 network 192.168.56.0
 broadcast 192.168.56.255

Replace enp0s8 with the network interface not present in the file but is shown when running
ls /sys/class/net.

• Save the file with CTRL+O then Enter, and exit with CTRL+X.

• Restart the machine by running reboot.

Make sure you can access your VM via ssh:

ssh 192.168.56.2

Back to your local machine

Proceed with these steps in your local machine, not the VM.

Step 1: Install ansible

Installers

30

https://virtualbox.org
http://www.brianlinkletter.com/installing-debian-linux-in-a-virtualbox-virtual-machine/
../../_images/debian-software-selection.png
https://www.virtualbox.org/manual/ch06.html#network_hostonly
../../_images/host-only-network.png

Step 2: Install the OpenWISP2 role for Ansible

Step 3: Set up a working directory

Step 4: Create the hosts file

Create an ansible inventory file named hosts in your working directory (i.e. not in the VM) with the following
contents:

[openwisp2]
192.168.56.2

Step 5: Create the ansible playbook

In the same directory where you created the host file, create a file named playbook.yml which contains the
following:

- hosts: openwisp2
 roles:
 - openwisp.openwisp2
 # the following line is needed only when an IP address is used as the inventory hostname
 vars:
 postfix_myhostname: localhost

Step 6: Run the playbook

ansible-playbook -i hosts playbook.yml -b -k -K --become-method=su

When the playbook ran successfully, you can log in at https://192.168.56.2/admin with the following
credentials:

username: admin
password: admin

Troubleshooting

OpenWISP is deployed using uWSGI and also uses daphne for WebSockets and celery as a task queue.

All these services are run by supervisor.

sudo service supervisor start|stop|status

You can view each individual process run by supervisor with the following command:

sudo supervisorctl status

For more information about Supervisord, refer to Running supervisorctl.

The nginx web server sits in front of the uWSGI application server. You can control nginx with the following
commands:

service nginx status start|stop|status

OpenWISP is installed in /opt/openwisp2 (unless you changed the openwisp2_path variable in the Ansible
playbook configuration). These are some useful directories to check when experiencing issues.

Location Description

/opt/openwisp2 The OpenWISP 2 root directory.

/opt/openwisp2/log Log files

/opt/openwisp2/env Python virtual environment

/opt/openwisp2/db.sqlite3 OpenWISP 2 SQLite database

All processes are running as the www-data user.

If you need to copy or edit files, you can switch to the www-data user with the following commands:

Installers

31

http://supervisord.org/running.html#running-supervisorctl

sudo su www-data -s /bin/bash
cd /opt/openwisp2
source env/bin/activate

SSL Certificate Gotchas

When you access the admin website, you will receive an SSL certificate warning because the playbook creates a
self-signed (untrusted) SSL certificate. You can get rid of the warning by installing your own trusted certificate and
setting the openwisp2_ssl_cert and openwisp2_ssl_key variables accordingly or by following the instructions
explained in the section Using Let's Encrypt SSL Certificate.

If you keep the untrusted certificate, you will also need to disable SSL verification on devices using openwisp-config
by setting verify_ssl to 0, although we advise against using this kind of setup in a production environment.

Role Variables

This role has many variables values that can be changed to best suit your needs.

Below are listed all the variables you can customize (you may also want to take a look at the default values of these
variables).

- hosts: yourhost
 roles:
 # you can add other roles here
 - openwisp.openwisp2
 vars:
 # Enable the modules you want to use
 openwisp2_network_topology: false
 openwisp2_firmware_upgrader: false
 openwisp2_monitoring: true
 # you may replace the values of these variables with any value or URL
 # supported by pip (the python package installer)
 # use these to install forks, branches or development versions
 # WARNING: only do this if you know what you are doing; disruption
 # of service is very likely to occur if these variables are changed
 # without careful analysis and testing
 openwisp2_controller_version: "openwisp-controller~=1.0.0"
 openwisp2_network_topology_version: "openwisp-network-topology~=1.0.0"
 openwisp2_firmware_upgrader_version: "openwisp-firmware-upgrader~=1.0.0"
 openwisp2_monitoring_version: "openwisp-monitoring~=1.0.0"
 openwisp2_radius_version: "openwisp-radius~=1.0.0"
 openwisp2_django_version: "django~=3.2.13"
 # Setting this to true will enable subnet division feature of
 # openwisp-controller. Refer openwisp-controller documentation
 # for more information. https://github.com/openwisp/openwisp-controller#subnet-division-app
 # By default, it is set to false.
 openwisp2_controller_subnet_division: true
 # when openwisp2_radius_urls is set to false, the radius module
 # is setup but it's urls are not added, which means API and social
 # views cannot be used, this is helpful if you have an external
 # radius instance.
 openwisp2_radius_urls: "{{ openwisp2_radius }}"
 openwisp2_path: /opt/openwisp2
 # It is recommended that you change the value of this variable if you intend to use
 # OpenWISP2 in production, as a misconfiguration may result in emails not being sent
 openwisp2_default_from_email: "openwisp2@yourhostname.com"
 # Email backend used by Django for sending emails. By default, the role
 # uses "CeleryEmailBackend" from django-celery-email.
 # (https://github.com/pmclanahan/django-celery-email)
 openwisp2_email_backend: "djcelery_email.backends.CeleryEmailBackend"

Installers

32

https://github.com/openwisp/ansible-openwisp2/blob/master/defaults/main.yml
https://github.com/openwisp/ansible-openwisp2/blob/master/defaults/main.yml

 # Email timeout in seconds used by Django for blocking operations
 # like connection attempts. For more info read the Django documentation,
 # https://docs.djangoproject.com/en/4.2/ref/settings/#email-timeout.
 # Defaults to 10 seconds.
 openwisp2_email_timeout: 5
 # edit database settings only if you are not using sqlite
 # eg, for deploying with PostgreSQL (recommended for production usage)
 # you will need the PostGIS spatial extension, find more info at:
 # https://docs.djangoproject.com/en/4.1/ref/contrib/gis/tutorial/
 openwisp2_database:
 engine: django.contrib.gis.db.backends.postgis
 name: "{{ DB_NAME }}"
 user: "{{ DB_USER }}"
 host: "{{ DB_HOST }}"
 password: "{{ DB_PASSWORD }}"
 port: 5432
 # SPATIALITE_LIBRARY_PATH django setting
 # The role will attempt determining the right mod-spatialite path automatically
 # But you can use this variable to customize the path or fix future arising issues
 openwisp2_spatialite_path: "mod_spatialite.so"
 # customize other django settings:
 openwisp2_language_code: en-gb
 openwisp2_time_zone: UTC
 # openwisp-controller context
 openwisp2_context: {}
 # additional allowed hosts
 openwisp2_allowed_hosts:
 - myadditionalhost.openwisp.org
 # geographic map settings
 openwisp2_leaflet_config:
 DEFAULT_CENTER: [42.06775, 12.62011]
 DEFAULT_ZOOM: 6
 # enable/disable geocoding check
 openwisp2_geocoding_check: true
 # specify path to a valid SSL certificate and key
 # (a self-signed SSL cert will be generated if omitted)
 openwisp2_ssl_cert: "/etc/nginx/ssl/server.crt"
 openwisp2_ssl_key: "/etc/nginx/ssl/server.key"
 # customize the self-signed SSL certificate info if needed
 openwisp2_ssl_country: "US"
 openwisp2_ssl_state: "California"
 openwisp2_ssl_locality: "San Francisco"
 openwisp2_ssl_organization: "IT dep."
 # the following setting controls which ip address range
 # is allowed to access the controller via unencrypted HTTP
 # (this feature is disabled by default)
 openwisp2_http_allowed_ip: "10.8.0.0/16"
 # additional python packages that will be installed with pip
 openwisp2_extra_python_packages:
 - bpython
 - django-owm-legacy
 # additional django apps that will be added to settings.INSTALLED_APPS
 # (if the app needs to be installed, the name its python package
 # must be also added to the openwisp2_extra_python_packages var)
 openwisp2_extra_django_apps:
 - owm_legacy
 # additional django settings example
 openwisp2_extra_django_settings:
 CSRF_COOKIE_AGE: 2620800.0
 # in case you need to add python instructions to the django settings file

Installers

33

 openwisp2_extra_django_settings_instructions:
 - TEMPLATES[0]['OPTIONS']['loaders'].insert(0, 'apptemplates.Loader')
 # extra URL settings for django
 openwisp2_extra_urls:
 - "path(r'', include('my_custom_app.urls'))"
 # allows to specify imports that are used in the websocket routes, e.g.:
 openwisp2_websocket_extra_imports:
 - from my_custom_app.websockets.routing import get_routes as get_custom_app_routes
 # allows to specify extra websocket routes, e.g.:
 openwisp2_websocket_extra_routes:
 # Callable that returns a list of routes
 - get_custom_app_routes()
 # List of routes
 - "[path('ws/custom-app/', consumer.CustomAppConsumer.as_asgi())]"
 # controller URL are enabled by default
 # but can be disabled in multi-VM installations if needed
 openwisp2_controller_urls: true
 # The default retention policy that applies to the timeseries data
 # https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring-default-retention-policy
 openwisp2_monitoring_default_retention_policy: "26280h0m0s" # 3 years
 # whether NGINX should be installed
 openwisp2_nginx_install: true
 # spdy protocol support (disabled by default)
 openwisp2_nginx_spdy: false
 # HTTP2 protocol support (disabled by default)
 openwisp2_nginx_http2: false
 # ipv6 must be enabled explicitly to avoid errors
 openwisp2_nginx_ipv6: false
 # nginx client_max_body_size setting
 openwisp2_nginx_client_max_body_size: 10M
 # list of upstream servers for OpenWISP
 openwisp2_nginx_openwisp_server:
 - "localhost:8000"
 # dictionary containing more nginx settings for
 # the 443 section of the openwisp2 nginx configuration
 # IMPORTANT: 1. you can add more nginx settings in this dictionary
 # 2. here we list the default values used
 openwisp2_nginx_ssl_config:
 gzip: "on"
 gzip_comp_level: "6"
 gzip_proxied: "any"
 gzip_min_length: "1000"
 gzip_types:
 - "text/plain"
 - "text/html"
 - "image/svg+xml"
 - "application/json"
 - "application/javascript"
 - "text/xml"
 - "text/css"
 - "application/xml"
 - "application/x-font-ttf"
 - "font/opentype"
 # nginx error log configuration
 openwisp2_nginx_access_log: "{{ openwisp2_path }}/log/nginx.access.log"
 openwisp2_nginx_error_log: "{{ openwisp2_path }}/log/nginx.error.log error"
 # nginx Content Security Policy header, customize if needed
 openwisp2_nginx_csp: >
 CUSTOM_NGINX_SECURITY_POLICY
 # uwsgi gid, omitted by default

Installers

34

 openwisp2_uwsgi_gid: null
 # number of uWSGI process to spawn. Default value is 1.
 openwisp2_uwsgi_processes: 1
 # number of threads each uWSGI process will have. Default value is 1.
 openwisp2_uwsgi_threads: 2
 # value of the listen queue of uWSGI
 openwisp2_uwsgi_listen: 100
 # socket on which uwsgi should listen. Defaults to UNIX socket
 # at "{{ openwisp2_path }}/uwsgi.sock"
 openwisp2_uwsgi_socket: 127.0.0.1:8000
 # extra uwsgi configuration parameters that cannot be
 # configured using dedicated ansible variables
 openwisp2_uwsgi_extra_conf: |
 single-interpreter=True
 log-4xx=True
 log-5xx=True
 disable-logging=True
 auto-procname=True
 # whether daphne should be installed
 # must be enabled for serving websocket requests
 openwisp2_daphne_install: true
 # number of daphne process to spawn. Default value is 1
 openwisp2_daphne_processes: 2
 # maximum time to allow a websocket to be connected (in seconds)
 openwisp2_daphne_websocket_timeout: 1800
 # the following setting controls which ip address range
 # is allowed to access the openwisp2 admin web interface
 # (by default any IP is allowed)
 openwisp2_admin_allowed_network: null
 # install ntp client (enabled by default)
 openwisp2_install_ntp: true
 # if you have any custom supervisor service, you can
 # configure it to restart along with other supervisor services
 openwisp2_extra_supervisor_restart:
 - name: my_custom_service
 when: my_custom_service_enabled
 # Disable usage metric collection. It is enabled by default.
 # Read more about it at
 # https://openwisp.io/docs/user/usage-metric-collection.html
 openwisp2_usage_metric_collection: false
 # enable sentry example
 openwisp2_sentry:
 dsn: "https://7d2e3cd61acc32eca1fb2a390f7b55e1:bf82aab5ddn4422688e34a486c7426e3@getsentry.com:443/12345"
 openwisp2_default_cert_validity: 1825
 openwisp2_default_ca_validity: 3650
 # the following options for redis allow to configure an external redis instance if needed
 openwisp2_redis_install: true
 openwisp2_redis_host: localhost
 openwisp2_redis_port: 6379
 openwisp2_redis_cache_url: "redis://{{ openwisp2_redis_host }}:{{ openwisp2_redis_port }}/1"
 # the following options are required to configure influxdb which is used in openwisp-monitoring
 openwisp2_influxdb_install: true
 openwisp2_timeseries_database:
 backend: "openwisp_monitoring.db.backends.influxdb"
 user: "openwisp"
 password: "openwisp"
 name: "openwisp2"
 host: "localhost"
 port: 8086
 # celery concurrency for the default queue, by default the number of CPUs is used

Installers

35

 # celery concurrency for the default queue, by default it is set to 1
 # Setting it to "null" will make concurrency equal to number of CPUs if autoscaling is not used
 openwisp2_celery_concurrency: null
 # alternative to the previous option, the celery autoscale option can be set if needed
 # for more info, consult the documentation of celery regarding "autoscaling"
 # by default it is set to "null" (no autoscaling)
 openwisp2_celery_autoscale: 4,1
 # prefetch multiplier for the default queue,
 # the default value is calculated automatically by celery
 openwisp2_celery_prefetch_multiplier: null
 # celery queuing mode for the default queue,
 # leaving the default will work for most cases
 openwisp2_celery_optimization: default
 # whether the dedicated celerybeat worker is enabled which is
 # responsible for triggering periodic tasks
 # must be turned on unless there's another server running celerybeat
 openwisp2_celerybeat: true
 # whether the dedicated worker for the celery "network" queue is enabled
 # must be turned on unless there's another server running a worker for this queue
 openwisp2_celery_network: true
 # concurrency option for the "network" queue (a worker is dedicated solely to network operations)
 # the default is 1. Setting it to "null" will make concurrency equal to number of CPUs if autoscaling is not used.
 openwisp2_celery_network_concurrency: null
 # alternative to the previous option, the celery autoscale option can be set if needed
 # for more info, consult the documentation of celery regarding "autoscaling"
 # by default it is set to "null" (no autoscaling)
 openwisp2_celery_network_autoscale: 8,4
 # prefetch multiplier for the "network" queue,
 # the default is 1, which mean no prefetching,
 # because the network tasks are long running and is better
 # to distribute the tasks to multiple processes
 openwisp2_celery_network_prefetch_multiplier: 1
 # celery queuing mode for the "network" queue,
 # fair mode is used in this case, which means
 # tasks will be equally distributed among workers
 openwisp2_celery_network_optimization: fair
 # whether the dedicated worker for the celery "firmware_upgrader" queue is enabled
 # must be turned on unless there's another server running a worker for this queue
 openwisp2_celery_firmware_upgrader: true
 # concurrency option for the "firmware_upgrader" queue (a worker is dedicated solely to firmware upgrade operations)
 # the default is 1. Setting it to "null" will make concurrency equal to number of CPUs if autoscaling is not used
 openwisp2_celery_firmware_upgrader_concurrency: null
 # alternative to the previous option, the celery autoscale option can be set if needed
 # for more info, consult the documentation of celery regarding "autoscaling"
 # by default it is set to "null" (no autoscaling)
 openwisp2_celery_firmware_upgrader_autoscale: 8,4
 # prefetch multiplier for the "firmware_upgrader" queue,
 # the default is 1, which mean no prefetching,
 # because the firmware upgrade tasks are long running and is better
 # to distribute the tasks to multiple processes
 openwisp2_celery_firmware_upgrader_prefetch_multiplier: 1
 # celery queuing mode for the "firmware_upgrader" queue,
 # fair mode is used in this case, which means
 # tasks will be equally distributed among workers
 openwisp2_celery_firmware_upgrader_optimization: fair
 # whether the dedicated worker for the celery "monitoring" queue is enabled
 # must be turned on unless there's another server running a worker for this queue
 openwisp2_celery_monitoring: true
 # concurrency option for the "monitoring" queue (a worker is dedicated solely to monitoring operations)
 # the default is 2. Setting it to "null" will make concurrency equal to number of CPUs

Installers

36

 # if autoscaling is not used.
 openwisp2_celery_monitoring_concurrency: null
 # alternative to the previous option, the celery autoscale option can be set if needed
 # for more info, consult the documentation of celery regarding "autoscaling"
 # by default it is set to "null" (no autoscaling)
 openwisp2_celery_monitoring_autoscale: 4,8
 # prefetch multiplier for the "monitoring" queue,
 # the default is 1, which mean no prefetching,
 # because the monitoring tasks can be long running and is better
 # to distribute the tasks to multiple processes
 openwisp2_celery_monitoring_prefetch_multiplier: 1
 # celery queuing mode for the "monitoring" queue,
 # fair mode is used in this case, which means
 # tasks will be equally distributed among workers
 openwisp2_celery_monitoring_optimization: fair
 # whether the default celery task routes should be written to the settings.py file
 # turn this off if you're defining custom task routing rules
 openwisp2_celery_task_routes_defaults: true
 # celery settings
 openwisp2_celery_broker_url: redis://{{ openwisp2_redis_host }}:{{ openwisp2_redis_port }}/3
 openwisp2_celery_task_acks_late: true
 # maximum number of retries by celery before giving up when broker is unreachable
 openwisp2_celery_broker_max_tries: 10
 # whether to activate the django logging configuration in celery
 # if set to true, will log all the celery events in the same log stream used by django
 # which will cause log lines to be written to "{{ openwisp2_path }}/log/openwisp2.log"
 # instead of "{{ openwisp2_path }}/log/celery.log" and "{{ openwisp2_path }}/log/celerybeat.log"
 openwisp2_django_celery_logging: false
 # postfix is installed by default, set to false if you don't need it
 openwisp2_postfix_install: true
 # allow overriding default `postfix_smtp_sasl_auth_enable` variable
 postfix_smtp_sasl_auth_enable_override: true
 # allow overriding postfix_smtpd_relay_restrictions
 postfix_smtpd_relay_restrictions_override: permit_mynetworks
 # allows overriding the default duration for keeping notifications
 openwisp2_notifications_delete_old_notifications: 10
 # Expiration time limit (in seconds) of magic sign-in links.
 # Magic sign-in links are used only when OpenWISP RADIUS is enabled.
 openwisp2_django_sesame_max_age: 1800 # 30 minutes
 # Maximum file size(in bytes) allowed to be uploaded as firmware image.
 # It overrides "openwisp2_nginx_client_max_body_size" setting
 # and updates nginx configuration accordingly.
 openwisp2_firmware_upgrader_max_file_size: 41943040 # 40MB
 # to add multi-language support
 openwisp2_internationalization: true
 openwisp2_users_auth_api: true
 # Allows setting OPENWISP_USERS_USER_PASSWORD_EXPIRATION setting.
 # Read https://github.com/openwisp/openwisp-users#openwisp_users_user_password_expiration
 openwisp2_users_user_password_expiration: 30
 # Allows setting OPENWISP_USERS_STAFF_USER_PASSWORD_EXPIRATION setting.
 # Read https://github.com/openwisp/openwisp-users#openwisp_users_staff_user_password_expiration
 openwisp2_users_staff_user_password_expiration: 30
 # used for SMS verification, the default is a dummy SMS backend
 # which prints to standard output and hence does nothing
 # one of the available providers from django-sendsms can be
 # used or alternatively, you can write a backend class for your
 # favorite SMS API gateway
 openwisp2_radius_sms_backend: "sendsms.backends.console.SmsBackend"
 openwisp2_radius_sms_token_max_ip_daily: 25
 openwisp2_radius_delete_old_radiusbatch_users: 365

Installers

37

 openwisp2_radius_cleanup_stale_radacct: 1
 openwisp2_radius_delete_old_postauth: 365
 # days for which the radius accounting sessions (radacct) are retained,
 # 0 means sessions are kept forever.
 # we highly suggest to set this number according
 # to the privacy regulation of your jurisdiction
 openwisp2_radius_delete_old_radacct: 365
 # days after which inactive users will flagged as unverified
 # Read https://openwisp.io/docs/dev/radius/user/settings.html#openwisp-radius-unverify-inactive-users
 openwisp2_radius_unverify_inactive_users: 540
 # days after which inactive users will be deleted
 # Read Read https://openwisp.io/docs/dev/radius/user/settings.html#openwisp-radius-delete-inactive-users
 openwisp2_radius_delete_inactive_users: 540
 openwisp2_radius_allowed_hosts: ["127.0.0.1"]
 # allow disabling celery beat tasks if needed
 openwisp2_monitoring_periodic_tasks: true
 openwisp2_radius_periodic_tasks: true
 openwisp2_usage_metric_collection_periodic_tasks: true
 # this role provides a default configuration of freeradius
 # if you manage freeradius on a different machine or you need different configurations
 # you can disable this default behavior
 openwisp2_freeradius_install: true
 # Set an account to expire T seconds after first login.
 # This variable sets the value of T.
 freeradius_expire_attr_after_seconds: 86400
 freeradius_dir: /etc/freeradius/3.0
 freeradius_mods_available_dir: "{{ freeradius_dir }}/mods-available"
 freeradius_mods_enabled_dir: "{{ freeradius_dir }}/mods-enabled"
 freeradius_sites_available_dir: "{{ freeradius_dir }}/sites-available"
 freeradius_sites_enabled_dir: "{{ freeradius_dir }}/sites-enabled"
 freeradius_rest:
 url: "https://{{ inventory_hostname }}/api/v1/freeradius"
 freeradius_safe_characters: "+@abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-_: /"
 # Sets the source path of the template that contains freeradius site configuration.
 # Defaults to "templates/freeradius/openwisp_site.j2" shipped in the role.
 freeradius_openwisp_site_template_src: custom_freeradius_site.j2
 # Whether to deploy the default openwisp_site for FreeRADIUS.
 # Defaults to true.
 freeradius_deploy_openwisp_site: false
 # FreeRADIUS listen address for the openwisp_site.
 # Defaults to "*", i.e. listen on all interfaces.
 freeradius_openwisp_site_listen_ipaddr: "10.8.0.1"
 # A list of dict that includes organization's name, UUID, RADIUS token,
 # TLS configuration, and ports for authentication, accounting, and inner tunnel.
 # This list of dict is used to generate FreeRADIUS sites that support
 # WPA Enterprise (EAP-TTLS-PAP) authentication.
 # Defaults to an empty list.
 freeradius_eap_orgs:
 # The name should not contain spaces or special characters
 - name: openwisp
 # UUID of the organization can be retrieved from the OpenWISP admin
 uuid: 00000000-0000-0000-0000-000000000000
 # Radius token of the organization can be retrieved from the OpenWISP admin
 radius_token: secret-radius-token
 # Port used by the authentication service for this FreeRADIUS site
 auth_port: 1832
 # Port used by the accounting service for this FreeRADIUS site
 acct_port: 1833
 # Port used by the authentication service of inner tunnel for this FreeRADIUS site
 inner_tunnel_auth_port: 18330

Installers

38

 # CA certificate for the FreeRADIUS site
 ca: /etc/freeradius/certs/ca.crt
 # TLS certificate for the FreeRADIUS site
 cert: /etc/freeradius/certs/cert.pem
 # TLS private key for the FreeRADIUS site
 private_key: /etc/freeradius/certs/key.pem
 # Diffie-Hellman key for the FreeRADIUS site
 dh: /etc/freeradius/certs/dh
 # Extra instructions for the "tls-config" section of the EAP module
 # for the FreeRADIUS site
 tls_config_extra: |
 private_key_password = whatever
 ecdh_curve = "prime256v1"
 # Sets the source path of the template that contains freeradius site configuration
 # for WPA Enterprise (EAP-TTLS-PAP) authentication.
 # Defaults to "templates/freeradius/eap/openwisp_site.j2" shipped in the role.
 freeradius_eap_openwisp_site_template_src: custom_eap_openwisp_site.j2
 # Sets the source path of the template that contains freeradius inner tunnel
 # configuration for WPA Enterprise (EAP-TTLS-PAP) authentication.
 # Defaults to "templates/freeradius/eap/inner_tunnel.j2" shipped in the role.
 freeradius_eap_inner_tunnel_template_src: custom_eap_inner_tunnel.j2
 # Sets the source path of the template that contains freeradius EAP configuration
 # for WPA Enterprise (EAP-TTLS-PAP) authentication.
 # Defaults to "templates/freeradius/eap/eap.j2" shipped in the role.
 freeradius_eap_template_src: custom_eap.j2
 cron_delete_old_notifications: "'hour': 0, 'minute': 0"
 cron_deactivate_expired_users: "'hour': 0, 'minute': 5"
 cron_delete_old_radiusbatch_users: "'hour': 0, 'minute': 10"
 cron_cleanup_stale_radacct: "'hour': 0, 'minute': 20"
 cron_delete_old_postauth: "'hour': 0, 'minute': 30"
 cron_delete_old_radacct: "'hour': 1, 'minute': 30"
 cron_password_expiration_email: "'hour': 1, 'minute': 0"
 cron_unverify_inactive_users: "'hour': 1, 'minute': 45"
 cron_delete_inactive_users: "'hour': 1, 'minute': 55"
 # cross-origin resource sharing (CORS) settings
 # https://pypi.org/project/django-cors-headers/
 openwisp2_django_cors:
 # Setting this to "true" will install the django-cors-headers package
 # and configure the Django middleware setting to support CORS.
 # By default, it is set to false.
 enabled: true
 # Configures "CORS_ALLOWED_ORIGINS" setting of the django-cors-headers
 # package. A list of origins that are authorized to make cross-site
 # HTTP requests. Read https://github.com/adamchainz/django-cors-headers#cors_allowed_origins-sequencestr
 # for detail. By default, it is set to an empty list.
 allowed_origins_list: ["https://log.openwisp.org"]
 # Configures "CORS_REPLACE_HTTPS_REFERER" setting of the django-cors-headers
 # package. Read https://github.com/adamchainz/django-cors-headers#cors_replace_https_referer-bool
 # for detail. Setting this to "true" will also configure the
 # Django middleware setting to add "CorsPostCsrfMiddleware".
 # By default, it is set to false.
 replace_https_referer: true

Note

The default settings for controlling the number of processes and threads in uWSGI and Daphne are set
conservatively. Users are encouraged to adjust these settings to match the scale of their project. The same
applies to the concurrency and auto-scaling settings for Celery workers.

Installers

39

Developer Installation instructions

Note

This page is for developers who want to customize or extend the Ansible role of OpenWISP, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• Ansible OpenWISP2 User Docs

Installing for Development 40

How to Run Tests 40

Installing for Development

First of all, create the directory where you want to place the repositories of the ansible roles and create directory
roles.

mkdir -p ~/openwisp-dev/roles
cd ~/openwisp-dev/roles

Clone ansible-openwisp2 and Stouts.postfix as follows:

git clone https://github.com/openwisp/ansible-openwisp2.git openwisp.openwisp2
git clone https://github.com/Stouts/Stouts.postfix
git clone https://github.com/openwisp/ansible-ow-influxdb openwisp.influxdb

Now, go to the parent directory & create hosts file and playbook.yml:

cd ../
touch hosts
touch playbook.yml

From here on you can follow the instructions available at the following sections:

• Install Ansible

• Create Inventory File

• Create Playbook File

• Run the Playbook

All done!

How to Run Tests

If you want to contribute to ansible-openwisp2 you should run tests in your development environment to ensure
your changes are not breaking anything.

To do that, proceed with the following steps:

Step 1: Clone ansible-openwisp2

Clone repository by:

git clone https://github.com/<your_fork>/ansible-openwisp2.git openwisp.openwisp2
cd openwisp.openwisp2

Installers

40

Step 2: Install docker

If you haven't installed docker yet, you need to install it (example for linux debian/ubuntu systems):

sudo apt install docker.io

Step 3: Install molecule and dependencies

pip install molecule[docker] molecule-plugins yamllint ansible-lint docker

Step 4: Download docker images

docker pull geerlingguy/docker-ubuntu2204-ansible:latest
docker pull geerlingguy/docker-ubuntu2004-ansible:latest
docker pull geerlingguy/docker-debian11-ansible:latest

Step 5: Run molecule test

molecule test -s local

If you don't get any error message it means that the tests ran successfully without errors.

Tip

Use molecule test --destroy=never to speed up subsequent test runs.

Docker OpenWISP

Seealso

Source code: github.com/openwisp/docker-openwisp.

Docker-OpenWISP makes it possible to set up isolated and reproducible OpenWISP environments, simplifying the
deployment and scaling process.

The following diagram illustrates the role of Docker OpenWISP within the OpenWISP architecture.

Installers

41

https://github.com/openwisp/docker-openwisp
../_images/architecture-v2-docker-openwisp.png

OpenWISP Architecture: highlighted Docker OpenWISP

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Quick Start Guide

This page explains how to deploy OpenWISP using the docker images provided by Docker OpenWISP.
Available Images 42

Auto Install Script 42

Using Docker Compose 43

Available Images

The images are hosted on Docker Hub and GitLab Container Registry.

Image Tags

All images are tagged using the following convention:

Tag Software Version

latest This is the most recent official release of OpenWISP.
On Github, this corresponds to the latest tagged release.

edge This is the development version of OpenWISP.
On Github, this corresponds to the current master branch.

Auto Install Script

The auto-install script can be used to quickly install an OpenWISP instance on your server.

It will install the required system dependencies and start the docker containers.

This script prompts the user for basic configuration parameters required to set up OpenWISP. Below are the prompts
and their descriptions:

• OpenWISP Version: Version of OpenWISP you want to install. If you leave this blank, the latest released
version will be installed.

• .env File Path: Path to an existing ".env" file file if you have one. If you leave this blank, the script will continue
prompting for additional configuration.

• Domains: The fully qualified domain names for the Dashboard, API, and OpenVPN services.

• Site Manager Email: Email address of the site manager. This email address will serve as the default sender
address for all email communications from OpenWISP.

Installers

42

https://hub.docker.com/u/openwisp
https://gitlab.com/openwisp/docker-openwisp/container_registry
../../_images/auto-install.png
https://github.com/openwisp/docker-openwisp/blob/master/deploy/auto-install.sh

• Let's Encrypt Email: Email address for Let's Encrypt to use for certificate generation. If you leave this blank, a
self-signed certificate will be generated.

Important

The Docker OpenWISP installation responds only to the fully qualified domain names (FQDN) defined in the
configuration. If you are deploying locally (for testing), you need to update the /etc/hosts file on your machine
to resolve the configured domains to localhost.

For example, the following command will update the /etc/hosts file to resolve the domains used in the default
configurations:

echo "127.0.0.1 dashboard.openwisp.org api.openwisp.org openvpn.openwisp.org" | \
 sudo tee -a /etc/hosts

Run the following commands to download the auto-install script and execute it:

curl https://raw.githubusercontent.com/openwisp/docker-openwisp/master/deploy/auto-install.sh -o auto-install.sh
sudo bash auto-install.sh

The auto-install script maintains a log, which is useful for debugging or checking the real-time output of the script.
You can view the log by running the following command:

tail -n 50 -f /opt/openwisp/autoinstall.log

The auto-install script can be used to upgrade installations that were originally deployed using this script. You can
upgrade your installation by using the following command

sudo bash auto-install.sh --upgrade

Note

• If you're having any installation issues with the latest version, you can try auto-installation with the edge
version, which ships the development version of OpenWISP.

• Still facing errors while installation? Please read the FAQ.

Using Docker Compose

This setup is suitable for single-server setup requirements. It is quicker and requires less prior knowledge about
OpenWISP & networking.

1. Install requirements:

sudo apt -y update
sudo apt -y install git docker.io make
Please ensure docker is installed properly and the following
command show system information. In most machines, you'll need to
add your user to the `docker` group and re-login to the shell.
docker info

2. Setup repository:

git clone https://github.com/openwisp/docker-openwisp.git
cd docker-openwisp

3. Configure:

Please refer to the Settings and Advanced Customization pages to configure any aspect of your OpenWISP
instance.

Installers

43

https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://github.com/openwisp/docker-openwisp/blob/master/deploy/auto-install.sh

Make sure to change the values for essential and security variables.

4. Deploy:

Use the make start command to pull images and start the containers.

Note

If you want to shutdown services for maintenance or any other purposes, please use make stop.

If you are facing errors during the installation process, read the FAQ for known issues.

Architecture

A typical OpenWISP installation is made of multiple components (e.g. application servers, background workers, web
servers, database, messaging queue, VPN server, etc.) that have different scaling requirements.

The aim of Docker OpenWISP is to allow deploying OpenWISP in cloud based environments which allow potentially
infinite horizontal scaling. That is the reason for which there are different docker images shipped in this repository.

Architecture

• openwisp-dashboard: Your OpenWISP device administration dashboard.

• openwisp-api: HTTP API from various OpenWISP modules which can be scaled simply by having multiple API
containers as per requirement.

• openwisp-websocket: Dedicated container for handling websocket requests, e.g. for updating location of
mobile network devices.

• openwisp-celery: Runs all the background tasks for OpenWISP, e.g. updating configurations of your device.

• openwisp-celery-monitoring: Runs background tasks that perform active monitoring checks, e.g. ping checks
and configuration checks. It also executes task for writing monitoring data to the timeseries DB.

• openwisp-celerybeat: Runs periodic background tasks. e.g. revoking all the expired certificates.

• openwisp-nginx: Internet facing container that facilitates all the HTTP and Websocket communication between
the outside world and the service containers.

• openwisp-freeradius: Freeradius container for OpenWISP.

• openwisp-openvpn: OpenVPN container for out-of-the-box management VPN.

Installers

44

https://raw.githubusercontent.com/openwisp/docker-openwisp/master/docs/images/architecture.jpg

• openwisp-postfix: Mail server for sending mails to MTA.

• openwisp-nfs: NFS server that allows shared storage between different machines. It does not run in single
server machines but provided for K8s setup.

• openwisp-base: It is the base image which does not run on your server, but openwisp-api &
openwisp-dashboard use it as a base.

• Redis: data caching service (required for actions like login).

• PostgreSQL: SQL database container for OpenWISP.

Settings

The OpenWISP Docker images are designed for customization. You can easily modify environment variables to
tailor the containers to your needs.

• Docker Compose: Simply change the values in the .env file.

Below are listed the available configuration options divided by section:
Essential 46

Security 47

OpenWISP 47

Enabled OpenWISP Modules 53

PostgreSQL Database 53

InfluxDB 55

Postfix 56

uWSGI 58

Nginx 58

OpenVPN 61

X509 Certificates 61

Misc Services 62

NFS Server 64

Additionally, you can search for the following prefixes:

• OPENWISP_: OpenWISP application settings.

• DB_: PostgreSQL Database settings.

• INFLUXDB_: InfluxDB settings.

• DJANGO_: Django settings.

• EMAIL_: Email settings (see also POSTFIX_).

• POSTFIX_: Postfix settings (see also EMAIL_).

• NGINX_: Nginx web server settings.

• UWSGI_: uWSGI application server settings.

• DASHBOARD_: Settings specific to the OpenWISP dashboard.

• API_: Settings specific to the OpenWISP API.

• X509_: Configurations related to x509 CA and certificates.

• VPN_: Default VPN and VPN template configurations.

• CRON_: Periodic task configurations.

• EXPORT_: NFS server configurations.

Installers

45

Essential

You will need to adapt these values to get the docker images working properly on your system.

DASHBOARD_DOMAIN

• Explanation: Domain on which you want to access OpenWISP dashboard.

• Valid Values: Any valid domain.

• Default: dashboard.example.com.

API_DOMAIN

• Explanation: Domain on which you want to access OpenWISP APIs.

• Valid Values: Any valid domain.

• Default: api.example.com.

VPN_DOMAIN

• Explanation: Valid domain / IP address to reach the OpenVPN server.

• Valid Values: Any valid domain or IP address.

• Default: openvpn.example.com.

TZ

• Explanation: Sets the timezone for the OpenWISP containers.

• Valid Values: Find list of timezone database here.

• Default: UTC.

CERT_ADMIN_EMAIL

• Explanation: Required by certbot. Email used for registration and recovery contact.

• Valid Values: A comma separated list of valid email addresses.

• Default: example@example.com.

SSL_CERT_MODE

• Explanation: Flag to enable or disable HTTPs. If it is set to Yes, letsencrypt certificates are automatically
fetched with the help of certbot and a cronjob to ensure they stay updated is added. If it is set to SelfSigned,
self-signed certificates are used and cronjob for the certificates is set. If set to No, site is accessible via HTTP, if
set if EXTERNAL, it tells HTTPs is used but managed by external tool like loadbalancer / provider. Setting this
option as No is not recommended and might break some features, only do it when you know what you are
doing.

• Valid Values: External, Yes, SelfSigned, No.

• Default: Yes.

Installers

46

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Security

Tune these options to strengthen the security of your instance.

DJANGO_SECRET_KEY

• Explanation: A random unique string that must be kept secret for security reasons. You can generate it with
the command: python build.py get-secret-key at the root of the repository to get a key or make a
random key yourself.

• Valid Values: STRING.

• Default: default_secret_key

DJANGO_ALLOWED_HOSTS

• Explanation: Used to validate a request's HTTP Host header. The default value * allows all domains. For
security, it is recommended to specify only trusted domains, such as .mydomain.com. If left blank, it defaults
to your dashboard's root domain.

• Valid Values: Refer to the Django documentation for ALLOWED_HOSTS.

• Default: Root domain extracted from DASHBOARD_DOMAIN.

• Example: .openwisp.org,.example.org,www.example.com.

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS

• Explanation: Default IP address or subnet of your freeradius instance.

• Valid Values: A comma separated string of valid IP address or IP Networks.

• Default: 172.18.0.0/16.

• Example: 127.0.0.1,192.0.2.20,172.18.0.0/16.

OpenWISP

Settings for the OpenWISP application and the underlying Django web framework.

Note

Any OpenWISP Configuration of type string. int, bool or json is supported and can be used as per the
documentation in the module.

If you need to change a Django setting that has a more complex datatype, please refer to Supplying Custom
Django Settings.

EMAIL_HOST

• Explanation: Host to be used when connecting to the STMP. localhost or empty string are not allowed.

• Valid Values: A valid hostname or IP address.

• Example: smtp.gmail.com.

• Default: postfix.

Installers

47

https://docs.djangoproject.com/en/4.2/ref/settings/#std-setting-ALLOWED_HOSTS

EMAIL_DJANGO_DEFAULT

• Explanation: It is the email address to use for various automated correspondence from the site manager(s).

• Valid Values: Any valid email address.

• Default: example@example.com.

EMAIL_HOST_PORT

• Explanation: Port to use for the SMTP server defined in EMAIL_HOST.

• Valid Values: INTEGER.

• Default: 25.

EMAIL_HOST_USER

• Explanation: Username to use for the SMTP server defined in EMAIL_HOST. If empty, Django won't attempt
authentication.

• Valid Values: STRING.

• Default: "" (empty string).

• Example: example@example.com

EMAIL_HOST_PASSWORD

• Explanation: Password to use for the SMTP server defined in EMAIL_HOST.. If empty, Django won't attempt
authentication.

• Valid Values: STRING.

• Default: "" (empty string)

EMAIL_HOST_TLS

• Explanation: Whether to use a TLS (secure) connection when talking to the SMTP server. This is used for
explicit TLS connections, generally on port 587.

• Valid Values: True, False.

• Default: False.

EMAIL_TIMEOUT

• Explanation: Specifies a timeout in seconds used by Django for blocking operations like the connection
attempt.

• Valid Values: INTEGER.

• Default: 10.

EMAIL_BACKEND

• Explanation: Email will be sent using this backend.

• Valid Values: Refer to the "Email backends" section on the Django documentation.

Installers

48

https://docs.djangoproject.com/en/4.2/topics/email/#email-backends

• Default: djcelery_email.backends.CeleryEmailBackend.

DJANGO_X509_DEFAULT_CERT_VALIDITY

• Explanation: Validity of your x509 cert in days.

• Valid Values: INTEGER.

• Default: 1825

DJANGO_X509_DEFAULT_CA_VALIDITY

• Explanation: Validity of your x509 CA in days.

• Valid Values: INTEGER.

• Default: 3650.

DJANGO_CORS_HOSTS

• Explanation: Hosts for which CORS. is whitelisted.

• Valid Values: Comma separated list of CORS domains.

• Default: http://localhost

• Example: https://www.openwisp.org,openwisp.example.org

DJANGO_LANGUAGE_CODE

• Explanation: Language for your OpenWISP application.

• Valid Values: Refer to the related Django documentation section.

• Default: en-gb.

DJANGO_SENTRY_DSN

• Explanation: Sentry DSN.

• Valid Values: Your DSN value provided by sentry.

• Example: https://example@sentry.io/example.

• Default: "" (empty string).

DJANGO_LEAFET_CENTER_X_AXIS

• Explanation: X-axis coordinate of the leaflet default center property. Refer to the django-leaflet docs for more
information.

• Valid Values: FLOAT.

• Example: 26.357896.

• Default: 0.

DJANGO_LEAFET_CENTER_Y_AXIS

Installers

49

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.djangoproject.com/en/4.2/ref/settings/#language-code
https://sentry.io/for/django/
https://django-leaflet.readthedocs.io/en/latest/templates.html#configuration
https://django-leaflet.readthedocs.io/en/latest/templates.html#configuration

• Explanation: Y-axis coordinate of the leaflet default center property. Refer to the django-leaflet docs for more
information.

• Valid Values: FLOAT.

• Example: 127.783809.

• Default: 0.

DJANGO_LEAFET_ZOOM

• Explanation: Default zoom for leaflet. Refer to the django-leaflet docs for more information.

• Valid Values: INT (1-16).

• Default: 1.

DJANGO_WEBSOCKET_HOST

• Explanation: Host on which Daphne should listen for websocket connections.
• Valid Values: Any valid domain or IP Address.

• Default: 0.0.0.0.

OPENWISP_GEOCODING_CHECK

• Explanation: Used to check if geocoding is working as expected or not.

• Valid Values: True, False.

• Default: True.

USE_OPENWISP_CELERY_TASK_ROUTES_DEFAULTS

• Explanation: Whether the default celery task routes should be used by celery. Turn this off if you're defining
custom task routing rules.

• Valid Values: True, False.

• Default: True.

OPENWISP_CELERY_COMMAND_FLAGS

• Explanation: Additional flags passed to the command that starts the celery worker for the default queue. It
can be used to configure different attributes of the celery worker (e.g. auto-scaling, concurrency, etc.). Refer to
the celery worker documentation for more information on configurable properties.

• Valid Values: STRING.

• Default: --concurrency=1.

USE_OPENWISP_CELERY_NETWORK

• Explanation: Whether the dedicated worker for the celery "network" queue is enabled. Must be turned on
unless there's another server running a worker for this queue.

• Valid Values: True, False.

• Default: True.

Installers

50

https://django-leaflet.readthedocs.io/en/latest/templates.html#configuration
https://django-leaflet.readthedocs.io/en/latest/templates.html#configuration
https://django-leaflet.readthedocs.io/en/latest/templates.html#configuration
https://docs.celeryq.dev/en/stable/userguide/workers.html#workers-guide

OPENWISP_CELERY_NETWORK_COMMAND_FLAGS

• Explanation: Additional flags passed to the command that starts the celery worker for the network queue. It
can be used to configure different attributes of the celery worker (e.g. auto-scaling, concurrency, etc.). Refer to
the celery worker documentation for more information on configurable properties.

• Valid Values: STRING.

• Default: --concurrency=1

USE_OPENWISP_CELERY_FIRMWARE

• Explanation: Whether the dedicated worker for the celery firmware_upgrader queue is enabled. Must be
turned on unless there's another server running a worker for this queue.

• Valid Values: True, False.

• Default: True.

OPENWISP_CELERY_FIRMWARE_COMMAND_FLAGS

• Explanation: Additional flags passed to the command that starts the celery worker for the
firmware_upgrader queue. It can be used to configure different attributes of the celery worker (e.g.
auto-scaling, concurrency, etc.). Refer to the celery worker documentation for more information on configurable
properties.

• Valid Values: STRING

• Default: --concurrency=1

USE_OPENWISP_CELERY_MONITORING

• Explanation: Whether the dedicated worker for the celery monitoring queue is enabled. Must be turned on
unless there's another server running a worker for this queue.

• Valid Values: True, False.

• Default: True.

OPENWISP_CELERY_MONITORING_COMMAND_FLAGS

• Explanation: Additional flags passed to the command that starts the celery worker for the monitoring queue.
It can be used to configure different attributes of the celery worker (e.g. auto-scaling, concurrency, etc.). Refer
to the celery worker documentation for more information on configurable properties.

• Valid Values: STRING.

• Default: --concurrency=1.

OPENWISP_CELERY_MONITORING_CHECKS_COMMAND_FLAGS

• Explanation: Additional flags passed to the command that starts the celery worker for the
monitoring_checks queue. It can be used to configure different attributes of the celery worker (e.g.
auto-scaling, concurrency, etc.). Refer to the celery worker documentation for more information on configurable
properties.

• Valid Values: STRING.

• Default: --concurrency=1.

Installers

51

https://docs.celeryq.dev/en/stable/userguide/workers.html#workers-guide
https://docs.celeryq.dev/en/stable/userguide/workers.html#workers-guide
https://docs.celeryq.dev/en/stable/userguide/workers.html#workers-guide
https://docs.celeryq.dev/en/stable/userguide/workers.html#workers-guide

OPENWISP_CUSTOM_OPENWRT_IMAGES

• Explanation: JSON representation of the related Firmware Upgrader setting.

• Valid Values: JSON

• Default: None

• Example: [{"name": "Name1","label": "Label1","boards": ["TestA",
"TestB"]}, {"name": "Name2","label": "Label2","boards": ["TestC", "TestD"]}]

METRIC_COLLECTION

• Explanation: Whether Collection of Usage Metrics is enabled or not.

• Valid Values: True, False.

• Default: True.

CRON_DELETE_OLD_RADACCT

• Explanation: (Value in days) Deletes RADIUS accounting sessions older than given number of days.

• Valid Values: INTEGER.

• Default: 365.

CRON_DELETE_OLD_POSTAUTH

• Explanation: (Value in days) Deletes RADIUS post-auth logs older than given number of days.

• Valid Values: INTEGER.

• Default: 365.

CRON_CLEANUP_STALE_RADACCT

• Explanation: (Value in days) Closes stale RADIUS sessions that have remained open for the number of
specified days.

• Valid Values: INTEGER.

• Default: 365.

CRON_DELETE_OLD_RADIUSBATCH_USERS

• Explanation: (Value in months) Deactivates expired user accounts which were created temporarily and have
an expiration date set.

• Valid Values: INTEGER.

• Default: 12.

DEBUG_MODE

• Explanation: Enable Django Debugging. Refer to the related Django documentation section for details.

• Valid Values: True, False.

• Default: False.

Installers

52

https://docs.djangoproject.com/en/4.2/ref/settings/#debug

DJANGO_LOG_LEVEL

• Explanation: Logging level for Django. Refer to the related Django documentation section for details.

• Valid Values: STRING.

• Default: ERROR.

Enabled OpenWISP Modules

These options allow to disable the optional OpenWISP modules.

USE_OPENWISP_TOPOLOGY

• Explanation: Whether the Network Topology module is enabled or not.

• Valid Values: True, False.

• Default: True.

USE_OPENWISP_RADIUS

• Explanation: Whether the RADIUS module is enabled or not.

• Valid Values: True, False.

• Default: True.

USE_OPENWISP_FIRMWARE

• Explanation: Whether the Firmware Upgrader module is enabled or not.

• Valid Values: True, False.

• Default: True.

USE_OPENWISP_MONITORING

• Explanation: Whether the Monitoring module is enabled or not.

• Valid Values: True, False.

• Default: True.

PostgreSQL Database

DB_NAME

• Explanation: The name of the database to use.

• Valid Values: STRING.

• Default: openwisp_db.

DB_USER

• Explanation: The username to use when connecting to the database.

Installers

53

https://docs.djangoproject.com/en/4.2/topics/logging/#topic-logging-parts-loggers

• Valid Values: STRING.

• Default: admin.

DB_PASS

• Explanation: The password to use when connecting to the database.

• Valid Values: STRING.

• Default: admin.

DB_HOST

• Explanation: Host to be used when connecting to the database. localhost or empty string are not allowed.

• Valid Values: A hostname or an IP address.

• Default: postgres.

DB_PORT

• Explanation: The port to use when connecting to the database.

• Valid Values: INTEGER.

• Default: 5432.

DB_SSLMODE

• Explanation: Postgresql SSLMode option.

• Valid Values: Consult the related PostgreSQL documentation.

• Default: disable.

DB_SSLCERT

• Explanation: Path inside container to a valid client certificate.

• Valid Values: STRING.

• Default: None.

DB_SSLKEY

• Explanation: Path inside container to valid client private key.

• Valid Values: STRING.

• Default: None.

DB_SSLROOTCERT

• Explanation: Path inside container to a valid server certificate for the database.

• Valid Values: STRING.

• Default: None.

Installers

54

https://www.postgresql.org/docs/14/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS

DB_OPTIONS

• Explanation: Additional database options to connect to the database. These options must be supported by
your DB_HOST.

• Valid Values: JSON.

• Default: {}.

DB_ENGINE

• Explanation: Django spatial database backend to use.

• Valid Values: Refer to Spatial Backends on the Django documentation.

• Default: django.contrib.gis.db.backends.postgis

InfluxDB

InfluxDB is the default time series database used by the Monitoring module.

INFLUXDB_USER

• Explanation: Username of InfluxDB user.

• Valid Values: STRING.

• Default: admin.

INFLUXDB_PASS

• Explanation: Password for InfluxDB user.

• Valid Values: STRING.

• Default: admin.

INFLUXDB_NAME

• Explanation: Name of InfluxDB database.

• Valid Values: STRING.

• Default: openwisp.

INFLUXDB_HOST

• Explanation: Host to be used when connecting to influxDB. Values as localhost or empty string are not
allowed.

• Valid Values: any valid hostname or IP address.

• Default: influxdb.

INFLUXDB_PORT

• Explanation: Port on which InfluxDB is listening to.

Installers

55

https://docs.djangoproject.com/en/4.2/ref/contrib/gis/db-api/#module-django.contrib.gis.db.backends
https://docs.djangoproject.com/en/4.2/ref/contrib/gis/db-api/#module-django.contrib.gis.db.backends

• Valid Values: INTEGER.

• Default: 8086.

INFLUXDB_DEFAULT_RETENTION_POLICY

• Explanation: The default retention policy that applies to the time series data.

• Valid Values: STRING.

• Default: 26280h0m0s (3 years).

Postfix

Note

Keep in mind that Postfix is optional. You can avoid running the Postfix container if you already have an external
SMTP server available.

POSTFIX_ALLOWED_SENDER_DOMAINS

• Explanation: Due to in-built spam protection in Postfix you will need to specify sender domains.

• Valid Values: Any valid domain name.

• Default: example.org.

POSTFIX_MYHOSTNAME

• Explanation: You may configure a specific hostname that the SMTP server will use to identify itself.

• Valid Values: STRING.

• Default: example.org.

POSTFIX_DESTINATION

• Explanation: Destinations of the postfix service.

• Valid Values: Any valid domain name.

• Default: $mydomain, $myhostname.

POSTFIX_MESSAGE_SIZE_LIMIT

• Explanation: By default, this limit is set to 0 (zero), which means unlimited. Why would you want to set this?
Well, this is especially useful in relation with RELAYHOST setting.

• Valid Values: INTEGER.

• Default: 0

• Example: 26214400

Installers

56

POSTFIX_MYNETWORKS

• Explanation: Postfix is exposed only in mynetworks to prevent any issues with this postfix being inadvertently
exposed on the internet.

• Valid Values: space separated IP Networks.

• Default: 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128.

POSTFIX_RELAYHOST_TLS_LEVEL

• Explanation: Define relay host TLS connection level.

• Valid Values: See list.

• Default: may.

POSTFIX_RELAYHOST

• Explanation: Host that relays your mails.

• Valid Values: any valid IP address or domain name.

• Default: null.

• Example: [smtp.gmail.com]:587.

POSTFIX_RELAYHOST_USERNAME

• Explanation: Username for the relay server.

• Valid Values: STRING.

• Default: null.

• Example: example@example.com.

POSTFIX_RELAYHOST_PASSWORD

• Explanation: Login password for the relay server.

• Valid Values: STRING.

• Default: null.

• Example: example.

POSTFIX_DEBUG_MYNETWORKS

• Explanation: Set debug_peer_list for given list of networks.

• Valid Values: STRING.

• Default: null.

• Example: 127.0.0.0/8.

Installers

57

http://www.postfix.org/postconf.5.html#smtp_tls_security_level

uWSGI

UWSGI_PROCESSES

• Explanation: Number of uWSGI process to spawn.

• Valid Values: INTEGER.

• Default: 2.

UWSGI_THREADS

• Explanation: Number of threads each uWSGI process will have.

• Valid Values: INTEGER.

• Default: 2.

UWSGI_LISTEN

• Explanation: Value of the listen queue of uWSGI.

• Valid Values: INTEGER.

• Default: 100.

Nginx

NGINX_HTTP2

• Explanation: Used by nginx to enable http2. Refer to the related Nginx documentation section for details.

• Valid Values: http2 or empty string.

• Default: http2.

NGINX_CLIENT_BODY_SIZE

• Explanation: Client body size. Refer to the related Nginx documentation section for details.

• Valid Values: INTEGER.

• Default: 30.

NGINX_IP6_STRING

• Explanation: Nginx listen on IPv6 for SSL connection. You can either enter a valid nginx statement or leave
this value empty.

• Valid Values: listen [::]:443 ssl http2; or empty string.

• Default: "" (empty string).

NGINX_IP6_80_STRING

• Explanation: Nginx listen on IPv6 connection. You can either enter a valid nginx statement or leave this value
empty.

Installers

58

https://www.nginx.com/blog/http2-module-nginx/#overview
http://nginx.org/en/docs/http/ngx_http_core_module.html#client_max_body_size

• Valid Values: listen [::]:80; or empty string.

• Default: "" (empty string).

NGINX_ADMIN_ALLOW_NETWORK

• Explanation: IP address allowed to access OpenWISP services.

• Valid Values: all, IP network.

• Example: 12.213.43.54/16.

• Default: all.

NGINX_SERVER_NAME_HASH_BUCKET

• Explanation: Define the Nginx domain hash bucket size. Values should be only in powers of 2.

• Valid Values: INTEGER.

• Default: 32.

NGINX_SSL_CONFIG

• Explanation: Additional nginx configurations. You can add any valid server block element here. As an example
index option is configured. You may add options to this string or leave this variable blank. This variable is only
applicable when SSL_CERT_MODE is Yes or SelfSigned.

• Example: index index.html index.htm;.

• Default: "" (empty string).

NGINX_80_CONFIG

• Explanation: Additional nginx configurations. You can add any valid server block element here. As an example
index option is configured. You may add options to this string or leave this variable blank. This variable is only
applicable when SSL_CERT_MODE is False.

• Example: index index.html index.htm;.

• Default: "" (empty string).

NGINX_GZIP_SWITCH

• Explanation: Turn on/off Nginx GZIP.

• Valid Values: on, off.

• Default: on.

NGINX_GZIP_LEVEL

• Explanation: Sets a gzip compression level of a response. Acceptable values are in the range from 1 to 9.

• Valid Values: INTEGER.

• Default: 6.

Installers

59

http://nginx.org/en/docs/hash.html

NGINX_GZIP_PROXIED

• Explanation: Enables or disables gzipping of responses for proxied requests depending on the request and
response.

• Valid Values: off, expired, no-cache, no-store | private, no_last_modified, no_etag, auth, any.

• Default: any.

NGINX_GZIP_MIN_LENGTH

• Explanation: Sets the minimum length of a response that will be gzipped. The length is determined only from
the "Content-Length" response header field.

• Valid Values: INTEGER.

• Default: 1000.

NGINX_GZIP_TYPES

• Explanation: Enables gzipping of responses for the specified MIME types in addition to "text/html". The special
value "*" matches any MIME type. Responses with the "text/html" type are always compressed.

• Valid Values: MIME type

• Example: text/plain image/svg+xml application/json
application/javascript text/xml text/css application/xml
application/x-font-ttf font/opentype.

• Default: *.

NGINX_HTTPS_ALLOWED_IPS

• Explanation: Allow these IP addresses to access the website over http when SSL_CERT_MODE is set to Yes .

• Valid Values: all, any valid IP address.

• Example: 12.213.43.54/16.

• Default: all.

NGINX_HTTP_ALLOW

• Explanation: Allow http access with https access. Valid only when SSL_CERT_MODE is set to Yes or
SelfSigned.

• Valid Values: True, False.

• Default: True.

NGINX_CUSTOM_FILE

• Explanation: If you have a custom configuration file mounted, set this to True.

• Valid Values: True, False.

• Default: False.

NINGX_REAL_REMOTE_ADDR

Installers

60

• Explanation: The nginx header to get the value of the real IP address of Access points. Example if a reverse
proxy is used in your cluster (Example if you are using an Ingress), then the real IP of the AP is most likely the
$http_x_forwarded_for. If $http_x_forwarded_for returns a list, you can use $real_ip for getting
first element of the list.

• Valid Values: $remote_addr, $http_x_forwarded_for, $realip_remote_addr, $real_ip.

• Default: $real_ip.

OpenVPN

VPN_NAME

• Explanation: Name of the VPN Server that will be visible on the OpenWISP dashboard.

• Valid Values: STRING.

• Default: default.

VPN_CLIENT_NAME

• Explanation: Name of the VPN client template that will be visible on the OpenWISP dashboard.

• Valid Values: STRING.

• Default: default-management-vpn.

X509 Certificates

X509_NAME_CA

• Explanation: Name of the default certificate authority visible on the OpenWISP dashboard.

• Valid Values: STRING.

• Default: default.

X509_NAME_CERT

• Explanation: Name of the default certificate visible on the OpenWISP dashboard.

• Valid Values: STRING.

• Default: default.

X509_COUNTRY_CODE

• Explanation: ISO code of the country of issuance of the certificate.

• Valid Values: Country code, see list here.

• Default: IN.

X509_STATE

• Explanation: Name of the state / province of issuance of the certificate.

• Valid Values: STRING.

• Default: Delhi.

Installers

61

https://countrycode.org/

X509_CITY

• Explanation: Name of the city of issuance of the certificate.

• Valid Values: STRING.

• Default: New Delhi.

X509_ORGANIZATION_NAME

• Explanation: Name of the organization issuing the certificate.

• Valid Values: STRING.

• Default: OpenWISP.

X509_ORGANIZATION_UNIT_NAME

• Explanation: Name of the unit of the organization issuing the certificate.

• Valid Values: STRING.

• Default: OpenWISP.

X509_EMAIL

• Explanation: Organization email address that'll be available to view in the certificate.

• Valid Values: STRING.

• Default: certificate@example.com.

X509_COMMON_NAME

• Explanation: Common name for the CA and certificate.

• Valid Values: STRING.

• Default: OpenWISP.

Misc Services

REDIS_HOST

• Explanation: Host to establish redis connection.

• Valid Values: A valid hostname or IP address.

• Default: redis.

REDIS_PORT

• Explanation: Port to establish redis connection.

• Valid Values: INTEGER.

• Default: 6379.

Installers

62

REDIS_PASS

• Explanation: Redis password, optional.

• Valid Values: STRING.

• Default: None.

DASHBOARD_APP_SERVICE

• Explanation: Host to establish OpenWISP dashboard connection.

• Valid Values: Any hostname or IP address.

• Default: dashboard.

API_APP_SERVICE

• Explanation: Host to establish OpenWISP api connection.

• Valid Values: Any hostname or IP address.

• Default: api.

DASHBOARD_APP_PORT

• Explanation: The port on which nginx tries to get the OpenWISP dashboard container. Don't Change unless
you know what you are doing.

• Valid Values: INTEGER.

• Default: 8000.

API_APP_PORT

• Explanation: The port on which nginx tries to get the OpenWISP api container. Don't Change unless you know
what you are doing.

• Valid Values: INTEGER.

• Default: 8001.

WEBSOCKET_APP_PORT

• Explanation: The port on which nginx tries to get the OpenWISP websocket container. Don't Change unless
you know what you are doing.

• Valid Values: INTEGER.

• Default: 8002.

DASHBOARD_INTERNAL

• Explanation: Internal dashboard domain to reach dashboard from other containers.

• Valid Values: STRING.

• Default: dashboard.internal.

Installers

63

API_INTERNAL

• Explanation: Internal api domain to reach api from other containers.

• Valid Values: STRING.

• Default: api.internal.

NFS Server

EXPORT_DIR

• Explanation: Directory to be exported by the NFS server. Don't change this unless you know what you are
doing.

• Valid Values: STRING.

• Default: /exports.

EXPORT_OPTS

• Explanation: NFS export options for the directory in EXPORT_DIR variable.

• Valid Values: STRING.

• Default: 10.0.0.0/8(rw,fsid=0,insecure,no_root_squash,no_subtree_check,sync).

Advanced Customization

This page describes advanced customization options for the OpenWISP Docker images.

The table of contents below provides a quick overview of the specific areas that can be customized.
Creating the customization Directory 64

Supplying Custom Django Settings 65

Supplying Custom CSS and JavaScript Files 65

Supplying Custom uWSGI configuration 66

Supplying Custom Nginx Configurations 66

Supplying Custom Freeradius Configurations 66

Supplying Custom Python Source Code 67

Disabling Services 67

Creating the customization Directory

The following commands will create the directory structure required for adding customizations. Execute these
commands in the same location as the docker-compose.yml file.

mkdir -p customization/configuration/django
touch customization/configuration/django/__init__.py
touch customization/configuration/django/custom_django_settings.py
mkdir -p customization/theme

You can also refer to the directory structure of Docker OpenWISP repository for an example.

Installers

64

https://github.com/openwisp/docker-openwisp/tree/master/customization

Supplying Custom Django Settings

The customization/configuration/django directory created in the previous section is mounted at
/opt/openwisp/openwisp/configuration in the dashboard, api, celery, celery_monitoring and
celerybeat containers.

You can specify additional Django settings (e.g. SMTP configuration) in the
customization/configuration/django/custom_django_settings.py file. OpenWISP will include these
settings during the startup phase.

You can also put additional files in customization/configuration/django that need to be mounted at
/opt/openwisp/openwisp/configuration in the containers.

Supplying Custom CSS and JavaScript Files

If you want to use your custom styles, add custom JavaScript you can follow the following guide.

1. Read about the option OPENWISP_ADMIN_THEME_LINKS. Please make ensure the value you have enter is
a valid JSON and add the desired JSON in .env file. example:

OPENWISP_ADMIN_THEME_LINKS = [
{
"type": "text/css",
"href": "/static/custom/css/custom-theme.css",
"rel": "stylesheet",
"media": "all",
},
{
"type": "image/x-icon",
"href": "/static/custom/bootload.png",
"rel": "icon",
},
{
"type": "image/svg+xml",
"href": "/static/ui/openwisp/images/openwisp-logo-small.svg",
"rel": "icons",
},
]
JSON string of the above configuration:
OPENWISP_ADMIN_THEME_LINKS='[{"type": "text/css", "href": "/static/custom/css/custom-theme.css", "rel": "stylesheet", "media": "all"}, {"type": "image/x-icon", "href": "/static/custom/bootload.png", "rel": "icon"}, {"type": "image/svg+xml", "href": "/static/ui/openwisp/images/openwisp-logo-small.svg", "rel": "icons"}]'

2. Create your custom CSS / Javascript file in customization/theme directory created in the above section.
E.g. customization/theme/static/custom/css/custom-theme.css.

3. Start the nginx containers.

Note

1. You can edit the styles / JavaScript files now without restarting the container, as long as file is in the correct
place, it will be picked.

2. You can create a maintenance.html file inside the customize directory to have a custom maintenance
page for scheduled downtime.

Installers

65

https://jsonlint.com/
https://jsonlint.com/

Supplying Custom uWSGI configuration

By default, you can only configure "processes", "threads" and "listen" settings of uWSGI using environment
variables. If you want to configure more uWSGI settings, you can supply your uWSGI configuration by following
these steps:

1. Create the uWSGI configuration file in the customization/configuration directory. For the sake of this
example, let's assume the filename is custom_uwsgi.ini.

2. In dashboard and api services of docker-compose.yml, add volumes as following

services:
 dashboard:
 ... # other configuration
 volumes:
 ... # other volumes
 - ${PWD}/customization/configuration/custom_uwsgi.ini:/opt/openwisp/uwsgi.ini:ro
 api:
 ... # other configuration
 volumes:
 ... # other volumes
 - ${PWD}/customization/configuration/custom_uwsgi.ini:/opt/openwisp/uwsgi.ini:ro

Supplying Custom Nginx Configurations

Docker

1. Create nginx your configuration file.

2. Set NGINX_CUSTOM_FILE to True in .env file.

3. Mount your file in docker-compose.yml as following:

nginx:
 ...
 volumes:
 ...
 PATH/TO/YOUR/FILE:/etc/nginx/nginx.conf
 ...

Supplying Custom Freeradius Configurations

Note: /etc/raddb/clients.conf, /etc/raddb/radiusd.conf, /etc/raddb/sites-enabled/default,
/etc/raddb/mods-enabled/, /etc/raddb/mods-available/ are the default files you may want to overwrite
and you can find all of default files in build/openwisp_freeradius/raddb. The following are examples for
including custom radiusd.conf and sites-enabled/default files.

Docker

1. Create file configuration files that you want to edit / add to your container.

2. Mount your file in docker-compose.yml as following:

nginx:
 ...
 volumes:
 ...
 PATH/TO/YOUR/RADIUSD:/etc/raddb/radiusd.conf
 PATH/TO/YOUR/DEFAULT:/etc/raddb/sites-enabled/default
 ...

Installers

66

Supplying Custom Python Source Code

You can build the images and supply custom python source code by creating a file named .build.env in the root
of the repository, then set the variables inside .build.env file in <variable>=<value> format. Multiple variable
should be separated in newline.

These are the variables that can be changed:

• OPENWISP_MONITORING_SOURCE

• OPENWISP_FIRMWARE_SOURCE

• OPENWISP_CONTROLLER_SOURCE

• OPENWISP_NOTIFICATION_SOURCE

• OPENWISP_TOPOLOGY_SOURCE

• OPENWISP_RADIUS_SOURCE

• OPENWISP_IPAM_SOURCE

• OPENWISP_USERS_SOURCE

• OPENWISP_UTILS_SOURCE

• DJANGO_X509_SOURCE

• DJANGO_SOURCE

For example, if you want to supply your own Django and OpenWISP Controller source, your .build.env should be
written like this:

DJANGO_SOURCE=https://github.com/<username>/Django/tarball/master
OPENWISP_CONTROLLER_SOURCE=https://github.com/<username>/openwisp-controller/tarball/master

Disabling Services

• openwisp-dashboard: You cannot disable the openwisp-dashboard. It is the heart of OpenWISP and
performs core functionalities.

• openwisp-api: You cannot disable the openwisp-api. It is required for interacting with your devices.

• openwisp-websocket: Removing this container will cause the system to not able to update real-time location
for mobile devices.

If you want to disable a service, you can simply remove the container for that service, however, there are additional
steps for some images:

• openwisp-network-topology: Set the USE_OPENWISP_TOPOLOGY variable to False.

• openwisp-firmware-upgrader : Set the USE_OPENWISP_FIRMWARE variable to False.

• openwisp-monitoring : Set the USE_OPENWISP_MONITORING variable to False.

• openwisp-radius : Set the USE_OPENWISP_RADIUS variable to False.

• openwisp-postgres: If you are using a separate database instance,

• Ensure your database instance is reachable by the following OpenWISP containers: openvpn,
freeradius, celerybeat, celery, celery_monitoring, websocket, api, dashboard.

• Ensure your database server supports GeoDjango. (Install PostGIS for PostgreSQL)

• Change the PostgreSQL Database Setting to point to your instances, if you are using SSL, remember to
set DB_SSLMODE, DB_SSLKEY, DB_SSLCERT, DB_SSLROOTCERT.

• If you are using SSL, remember to mount volume containing the certificates and key in all the containers
which contact the database server and make sure that the private key permission is 600 and owned by
root:root.

• In your database, create database with name <DB_NAME>.

Installers

67

• openwisp-postfix:

• Ensure your SMTP instance reachable by the OpenWISP containers.

• Change the email configuration variables to point to your instances.

Docker OpenWISP FAQs

1. Setup fails, it couldn't find the images on DockerHub? 68

2. Makefile failed without any information, what's wrong? 68

3. Can I run the containers as the root or docker 68

1. Setup fails, it couldn't find the images on DockerHub?

Answer: The setup requires following ports and destinations to be unblocked, if you are using a firewall or any
external control to block traffic, please whitelist:

User
Id

Protoc
ol DstPort Destination Process

1 0 tcp,udp 443,53 gitlab.com /usr/bin/dockerd

2 0 tcp,udp 443,53 registry.gitlab.com /usr/bin/dockerd

3 0 tcp,udp 443,53 storage.googleapis.com /usr/bin/dockerd

4 0 udp 53 registry.gitlab.com /usr/bin/docker

5 0 tcp,udp 443,53 github.com /usr/lib/git-core/git-remote-http

6 0 tcp 443,80 172.18.0.0/16 /usr/bin/docker-proxy

7 0 udp 1812,
1813

172.18.0.0/16 /usr/bin/docker-proxy

8 0 tcp 25 172.18.0.0/16 /usr/bin/docker-proxy

2. Makefile failed without any information, what's wrong?

Answer: You are using an old version of a requirement, please consider upgrading:

$ git --version
git version 2.25.1
$ docker --version
Docker version 27.0.2, build 912c1dd
$ docker compose version
Docker Compose version v2.28.1
$ make --version
GNU Make 4.2.1
$ bash --version
GNU bash, version 5.0.3(1)-release (x86_64-pc-linux-gnu)
$ uname -v # kernel-version
#1 SMP Debian 4.19.181-1 (2021-03-19)

3. Can I run the containers as the root or docker

No, please do not run the Docker containers as these users.

Ensure you use a less privileged user and tools like sudo or su to escalate privileges during the installation phase.

Installers

68

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Controller, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• Docker OpenWISP User Docs

Building and Running Images 69

Running Tests 70

Using Chromedriver 70

Using Geckodriver 70

Finish Setup and Run Tests 70

Run Quality Assurance Checks 70

Makefile Options 70

Important

The Docker OpenWISP installation responds only to the fully qualified domain names (FQDN) defined in the
configuration. If you are deploying locally (for testing), you need to update the /etc/hosts file on your machine
to resolve the configured domains to localhost.

For example, the following command will update the /etc/hosts file to resolve the domains used in the default
configurations:

echo "127.0.0.1 dashboard.openwisp.org api.openwisp.org openvpn.openwisp.org" | \
 sudo tee -a /etc/hosts

Building and Running Images

1. Install Docker.

2. In the root directory of the repository, run make develop. Once the containers are ready, you can test them by
accessing the domain names of the modules.

Important

• The default username and password are admin.

• The default domains are dashboard.openwisp.org and api.openwisp.org.

• You will need to repeat step 2 each time you make changes and want to rebuild the images.

• If you want to perform actions such as cleaning everything produced by docker-openwisp, please refer to
the makefile options.

Installers

69

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

Running Tests

You can run tests using either geckodriver (Firefox) or chromedriver (Chromium).

Chromium is preferred as it also checks for console log errors.

Using Chromedriver

Install WebDriver for Chromium for your browser version from https://chromedriver.chromium.org/home and extract
chromedriver to one of directories from your $PATH (example: ~/.local/bin/).

Using Geckodriver

Install Geckodriver for Firefox for your browser version from https://github.com/mozilla/geckodriver/releases and
extract geckodriver to one of directories from your $PATH (example: ~/.local/bin/).

Finish Setup and Run Tests

1. Install test requirements:

python3 -m pip install -r requirements-test.txt

2. (Optional) Modify configuration options in tests/config.json:

driver: Name of the driver to use for tests, "chromium" or "firefox"
logs: Print container logs if an error occurs
logs_file: Location of the log file for saving logs generated during tests
headless: Run Selenium Chrome driver in headless mode
load_init_data: Flag for running tests/data.py, only needs to be done once after database creation
app_url: URL to reach the admin dashboard
username: Username for logging into the admin dashboard
password: Password for logging into the admin dashboard
services_max_retries: Maximum number of retries to check if services are running
services_delay_retries: Delay time (in seconds) for each retry when checking if services are running

3. Run tests with:

make runtests

4. To run a single test suite, use the following command:

python3 tests/runtests.py <TestSuite>.<TestCase>

Run Quality Assurance Checks

We use shfmt to format shell scripts and hadolint to lint Dockerfiles.

To format all files, run:

./qa-format

To run quality assurance checks, use the run-qa-checks script:

Run QA checks before committing code
./run-qa-checks

Makefile Options

Most commonly used:

• make start [USER=docker-username] [TAG=image-tag]: Start OpenWISP containers on your server.

Installers

70

https://chromedriver.chromium.org/home
https://github.com/mozilla/geckodriver/releases
https://github.com/mvdan/sh#shfmt
https://github.com/hadolint/hadolint#install

• make pull [USER=docker-username] [TAG=image-tag]: Pull images from the registry.

• make stop: Stop OpenWISP containers on your server.

• make develop: Bundle all the commands required to build the images and run containers.

• make runtests: Start containers and run test cases to ensure all services are working. It stops containers
after the test suite passes.

• make clean: Aggressively purge all containers, images, volumes, and networks related to
docker-openwisp.

Other options:

• make publish [USER=docker-username] [TAG=image-tag]: Build, test, and publish images.

• make python-build: Generate a random Django secret and set it in the .env file.

• make nfs-build: Build the OpenWISP NFS server image.

• make base-build: Build the OpenWISP base image. The base image is used in other OpenWISP images.

• make compose-build: (default) Build OpenWISP images for development.

• make develop-runtests: Similar to runtests, but it doesn't stop the containers after running the tests,
which may be desired for debugging and analyzing failing container logs.

• make develop-pythontests: Similar to develop-runtests, but it requires containers to be already
running.

Modules

Users

Seealso

Source code: github.com/openwisp/openwisp-users.

The OpenWISP Users module leverages the capabilities of the Django Framework and its rich ecosystem to provide
OpenWISP with features for managing user accounts, permission groups, supporting different authentication
schemes, implementing multi-tenancy for allowing multiple organizations to be managed by different users within a
single OpenWISP instance and more.

For a full introduction please refer to Users: Structure & Features.

The following diagram illustrates the role of the Users module within the OpenWISP architecture.

OpenWISP Architecture: highlighted users module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Modules

71

https://github.com/openwisp/openwisp-users
https://djangoproject.com/
../_images/architecture-v2-openwisp-users.png

Users: Structure & Features

The OpenWISP Users module leverages the capabilities of the Django Framework and its rich ecosystem to provide
OpenWISP with features for managing user accounts, permission groups, supporting different authentication
schemes, and implementing multi-tenancy. This allows multiple organizations to be managed by different users
within a single OpenWISP instance, among other functionalities.
User Management 72

Multi-tenancy 72

Permissions and Roles 72

API Integration 72

Admin Interface 72

Extensible Authentication 73

User Management

• Create, read, update, and delete user accounts.

• Support for custom user fields through extensible models (see Extending OpenWISP Users for more
information).

• Export user data through a management command (from the Linux shell).

Multi-tenancy

• Create multiple organizations (also commonly referred to as tenants).

• Users can be associated with one or multiple organizations as members, managers, or owners.

• Each organization can access only their data.

• Shared data: some objects can be shared among multiple organizations.

See Basic Concepts for more information.

Permissions and Roles

• Granular permission control for users and organizations.

• Default roles for administrators, managers, and regular users.

• Customizable permission sets for specific needs.

See Basic Concepts for more information.

API Integration

• RESTful API endpoints for user and organization management.

• Secure API access with token-based authentication.

See REST API for more information.

Admin Interface

• User-friendly Django admin interface.

• Customizable admin views for user and organization management (see Extending OpenWISP Users for more
information).

Modules

72

https://djangoproject.com/

Extensible Authentication

With some additional work, it is possible to leverage the rich ecosystem of Django third party apps to implement the
following:

• Possibility to log in in the admin interface via authentication schemes like OAuth, SAML, MS Azure
Authentication, etc.

• Support multi-factor authentication (MFA).

On a similar note, the OpenWISP RADIUS module ships logic that allows end-users to log into WiFi services using
OAuth (e.g.: social login provided by Google, Facebook) or SAML (e.g.: EIDAS, SPID).

Basic Concepts

Superusers 73

Staff Users 74

Permissions 74

Default Permission Groups 75

Administrator 75

Operator 75

Organizations & Multi-Tenancy 75

Organization Membership and Roles 76

Organization Manager 76

Organization Members (End-Users) 76

Organization Owners 77

Shared Objects 77

Superusers

A superuser, also known as a "super administrator," is a special type of admin user account with full access to all
aspects of an OpenWISP instance.

The Superuser status flag in the user details page indicates whether a user is a superuser or not. Only superusers
are allowed to edit this flag.

Superusers have all permissions enabled by default and can create, manage and delete any organization available
in the system.

However, it's essential to use superuser accounts sparingly due to their elevated privileges.

Modules

73

https://www.eid.as/
https://www.spid.gov.it/en/
https://github.com/openwisp/openwisp-users/raw/docs/docs/images/superuser.png

To grant access to specific features and organizations within your OpenWISP system, consider creating staff users
without the "superuser status" flag enabled. Assign them to one of the available permission groups, as explained in
the following sections. These users will have limited administrative capabilities, managing only the objects permitted
by their assigned permissions and associated organization.

Staff Users

Users with the Staff status flag enabled, as shown in the screenshot above, have access to the OpenWISP Admin
interface. This access allows them to manage various aspects of the OpenWISP instance according to their assigned
permissions and organizational role.

Users with this flag disabled will still be able to interact with OpenWISP, but in a more limited way. They can use
non-administrative user interfaces or specific REST API HTTP endpoints designed for end-users.

Note

An example of an end-user is someone who signs up for a public WiFi hotspot service via the WiFi Login Pages
module. This optional OpenWISP module is commonly used in public WiFi hotspot deployments.

Permissions

The permission system used by OpenWISP is based on the Django Permission System.

In short, a permission indicates whether a user has the authority to perform the following operations:

• View: Access the details of a specific class of objects, e.g., view the details of users.

• Add: Create a new object of a specific class, e.g., add a new user.

• Change: Edit the details of a specific class, e.g., modify existing user details.

• Delete: Remove an object of a specific class, e.g., delete users.

Note

For more detailed technical information, please refer to the Django Documentation.

Modules

74

https://docs.djangoproject.com/en/4.2/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/4.2/topics/auth/default/

Default Permission Groups

A permission group is a collection of permissions that can be assigned to multiple users.

It is then possible to change the permissions on the group to reflect the changes on all the users who are part of the
permission group.

This allows to avoid having to assign permissions to individual users, which is hard to maintain and leads to
inconsistent permission configuration over time.

OpenWISP provides a few permission groups which are explained below.

Administrator

This permission group is designed for users who need to manage most aspects of an organization without having
superuser access.

Operator

This permission group is designed for users who need to be able to perform a limited amount of operations like
provisioning new devices and perform regular network maintenance operations but are not allowed to create new
users or change the permissions settings of other users.

Use this for users who have very specific and limited responsibilities in the network.

Organizations & Multi-Tenancy

The concept of multi-tenancy in OpenWISP is implemented through "organizations".

An organization in OpenWISP represents a distinct entity or tenant within the system. Each organization has its own
set of users, configurations, data, and administrative controls, allowing for isolation and management of network
resources.

Key Features of Organizations:

Modules

75

https://github.com/openwisp/openwisp-users/raw/docs/docs/images/permission-groups.png

• Isolation & Privacy: Organizations provide a logical separation of resources, ensuring that data and
configurations are segregated between different entities or tenants. Each tenant can only see and interact with
the data of their organizations and Shared Objects defined by super administrators.

• User Management: Each organization can have its own set of users with specific roles and permissions
tailored to their responsibilities within that organization.

• Administrative Controls: Super administrators can define, oversee, and manage Shared Objects, permission
policies, and any other processes relating to organizations to ensure consistency across the entire system.

By leveraging organizations, OpenWISP provides a robust framework for implementing multi-tenancy, allowing for
the efficient management of network resources across diverse entities or tenants within a single instance of the
platform.

Note

Multi-Tenancy and Organizations are implemented in OpenWISP with the django-organizations third-party app.

Organization Membership and Roles

A user can be associated to one or multiple organizations and have different roles in each.

Here's a summary of the default organization roles.

Organization Manager

Any user with the "Is admin" flag enabled for a specific organization (as shown in the screenshot above) is
considered by the system a manager of that organization. Organization managers have the authority to view and
interact with the data belonging to that organization according to their set of permissions (as defined in Permission
Groups).

To modify this flag, navigate to the "ORGANIZATION USERS" section on the "Change user" page.

Organization Members (End-Users)

Any user with the "Is admin" flag disabled for a specific organization (as shown in the screenshot above) is
considered by the system a regular end-user of that organization.

These users are consumers of a service provided by the organization. They will not be able to see or interact with
any object of that organization via the administrative interface, even if they are flagged as Staff users.

They can only consume REST API endpoints or other non administrative user interface pages.

A real-world example of this is the User API endpoints of OpenWISP RADIUS, which allow users to sign up to an
organization, verify their phone number by receiving a verification code via SMS, see their RADIUS sessions, etc. All
those endpoints are tied to an organization because different organizations can have very different configurations.
Users are allowed to consume those endpoints only if they're members.

Modules

76

https://github.com/bennylope/django-organizations
https://github.com/openwisp/openwisp-users/raw/docs/docs/images/org-manager.png
https://github.com/openwisp/openwisp-users/raw/docs/docs/images/org-member.png

Organization Owners

An organization owner is a user designated as the owner of a particular organization. This owner cannot be deleted
or edited by other administrators; only superusers have permission to perform these actions.

By default, the first manager of an organization is designated as the owner of that organization.

Only superusers and organization owners are allowed to change the owner of an organization. Organization owners
can be changed from the "Change organization" page by navigating to the "ORGANIZATION OWNER" section.

If the OrganizationUser instance related to the owner of an organization is deleted or flagged as
is_admin=False, the admin interface will return an error informing users that the operation is not allowed. The
owner should be changed before attempting to perform such actions.

Shared Objects

A shared object is a resource that can be used by multiple organizations or tenants within the system.

Shared objects do not belong to any specific organization. In the user interface, the organization field is empty, and it
displays "Shared systemwide (no organization)" as shown in the screenshot above. These objects are defined and
managed by super administrators and can include configurations, policies, or other data that need to be consistent
across all organizations.

By sharing common resources, global uniformity and consistency can be enforced across the entire system.

Note

Only a specific subset of object classes can be shared. You can determine if an object can be shared by
attempting to create a new object for that class while logged in as a superuser. If the organization field shows the
option "Shared systemwide (no organization)", it means the object can be shared.

Examples of shared objects include:

• Shared Configuration Templates

• Shared VPN servers

Modules

77

https://github.com/openwisp/openwisp-users/raw/docs/docs/images/shared-object.png

• Shared Subnets

Management Commands

export_users

This command exports user data to a CSV file, including related data such as organizations.

Arguments:

• --exclude-fields: Optional, comma-separated list of fields to exclude from the export.

• --filename: Optional, filename for the exported CSV, defaults to "openwisp_exported_users.csv".

Example usage:

./manage.py export_users --exclude-fields birth_date,location --filename users.csv

For advanced customizations (e.g., adding fields for export), you can use the
OPENWISP_USERS_EXPORT_USERS_COMMAND_CONFIG setting.

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

OPENWISP_ORGANIZATION_USER_ADMIN

type: boolean

default: True

Indicates whether the admin section for managing OrganizationUser items is enabled or not.

OPENWISP_ORGANIZATION_OWNER_ADMIN

type: boolean

default: True

Indicates whether the admin section for managing OrganizationOwner items is enabled or not.

Refer to Organization Owners for more information.

OPENWISP_USERS_AUTH_API

type: boolean

default: True

Indicates whether the REST API is enabled or not.

Modules

78

OPENWISP_USERS_AUTH_THROTTLE_RATE

type: str

default: 100/day

Indicates the rate throttling for the Obtain Authentication Token API endpoint.

Please note that the current rate throttler is very basic and will also count valid requests for rate limiting. For more
information, check Django-rest-framework throttling guide.

OPENWISP_USERS_AUTH_BACKEND_AUTO_PREFIXES

type: tuple

default: tuple()

A tuple or list of international prefixes which will be automatically tested by the authentication backend of OpenWISP
Users when parsing phone numbers.

Each prefix will be prepended to the username string automatically and parsed with the phonenumbers library to
find out if the result is a valid number of not.

This allows users to log in by using only the national phone number, without having to specify the international prefix.

OPENWISP_USERS_EXPORT_USERS_COMMAND_CONFIG

type: dict

default:
{
 "fields": [
 "id",
 "username",
 "email",
 "password",
 "first_name",
 "last_name",
 "is_staff",
 "is_active",
 "date_joined",
 "phone_number",
 "birth_date",
 "location",
 "notes",
 "language",
 "organizations",
],
 "select_related": [],
}

This setting can be used to configure the exported fields for the export_users command.

The select_related property can be used to optimize the database query.

OPENWISP_USERS_USER_PASSWORD_EXPIRATION

type: integer

default: 0

Modules

79

https://www.django-rest-framework.org/api-guide/throttling/

Number of days after which a user's password will expire. In other words, it determines when users will be prompted
to change their passwords.

If set to 0, this feature is disabled, and users are not required to change their passwords.

OPENWISP_USERS_STAFF_USER_PASSWORD_EXPIRATION

type: integer

default: 0

Similar to OPENWISP_USERS_USER_PASSWORD_EXPIRATION, but for staff users.

REST API

Live Documentation 80

Browsable Web Interface 81

Obtain Authentication Token 81

Authenticating with the User Token 81

List of Endpoints 82

Note

The REST API is enabled by default but can be disabled by setting OPENWISP_USERS_AUTH_API to False.

Live Documentation

General live API documentation, following the OpenAPI specification, is available at /api/v1/docs/.

Modules

80

https://github.com/openwisp/openwisp-users/raw/docs/docs/images/live-api-docs.png

Browsable Web Interface

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

Obtain Authentication Token

/api/v1/users/token/

This endpoint only accepts the POST method and is used to retrieve the Bearer token that is required to make API
requests to other endpoints.

Example usage:

curl -i -X POST http://localhost:8000/api/v1/users/token/ -d "username=openwisp" -d "password=1234"

HTTP/1.1 200 OK
Date: Wed, 05 Jun 2024 16:31:33 GMT
Server: WSGIServer/0.2 CPython/3.8.10
Content-Type: application/json
Vary: Accept
Allow: POST, OPTIONS
X-Frame-Options: DENY
Content-Length: 52
X-Content-Type-Options: nosniff
Referrer-Policy: same-origin
Cross-Origin-Opener-Policy: same-origin

{"token": "7a2e1d3d008253c123c61d56741003db5a194256"}

Authenticating with the User Token

The authentication class openwisp_users.api.authentication.BearerAuthentication is used across
the different OpenWISP modules for authentication.

To use it, first of all get the user token as described above in Obtain Authentication Token, then send the token in the
Authorization header:

Get the bearer token
TOKEN=$(curl -X POST http://localhost:8000/api/v1/users/token/ -d "username=openwisp" -d "password=1234" | jq -r .token)

Modules

81

https://github.com/openwisp/openwisp-users/raw/docs/docs/images/api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Get user list, send bearer token in authorization header
curl http://localhost:8000/api/v1/users/user/ -H "Authorization: Bearer $TOKEN"

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
endpoint, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

Change User password

PUT /api/v1/users/user/{id}/password/

List Groups

GET /api/v1/users/group/

Create New Group

POST /api/v1/users/group/

Get Group Detail

GET /api/v1/users/group/{id}/

Change Group Detail

PUT /api/v1/users/group/{id}/

Patch Group Detail

PATCH /api/v1/users/group/{id}/

Delete Group

DELETE /api/v1/users/group/{id}/

List Email Addresses

GET /api/v1/users/user/{id}/email/

Add Email Address

POST/api/v1/users/user/{id}/email/

Modules

82

Get Email Address

GET /api/v1/users/user/{id}/email/{id}/

Change Email Address

PUT /api/v1/users/user/{id}/email/{id}/

Patch Email Address

PATCH /api/v1/users/user/{id}/email/{id}/

Make/Unmake Email Address Primary

PATCH /api/v1/users/user/{id}/email/{id}/

Mark/Unmark Email Address as Verified

PATCH /api/v1/users/user/{id}/email/{id}/

Remove Email Address

DELETE /api/v1/users/user/{id}/email/{id}/

List Organizations

GET /api/v1/users/organization/

Create new Organization

POST /api/v1/users/organization/

Get Organization Detail

GET /api/v1/users/organization/{id}/

Change Organization Detail

PUT /api/v1/users/organization/{id}/

Patch Organization Detail

PATCH /api/v1/users/organization/{id}/

Modules

83

Delete Organization

DELETE /api/v1/users/organization/{id}/

List Users

GET /api/v1/users/user/

Create User

POST /api/v1/users/user/

Note

Passing true to the optional is_verified field allows creating users with their email address flagged as
verified. This will also skip sending the verification link to their email address.

Get User Detail

GET /api/v1/users/user/{id}/

Change User Detail

PUT /api/v1/users/user/{id}/

Patch User Detail

PATCH /api/v1/users/user/{id}/

Delete User

DELETE /api/v1/users/user/{id}/

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Users, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Users Usage Docs

Modules

84

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP Users, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Users Usage Docs

Installing for Development 85

Alternative Sources 86

Pypi 86

Github 86

Installing for Development

Install sqlite:

sudo apt-get install sqlite3 libsqlite3-dev openssl libssl-dev

Install your forked repo:

git clone git://github.com/<your_fork>/openwisp-users
cd openwisp-users/
pip install -e .[rest]

Install test requirements:

pip install -r requirements-test.txt

Start Redis

docker-compose up -d

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Run celery and celery-beat with the following commands (separate terminal windows are needed):

cd tests/
celery -A openwisp2 worker -l info
celery -A openwisp2 beat -l info

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

--parallel and --keepdb are optional but help to speed up the operation
./runtests.py --parallel --keepdb

Modules

85

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-users

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-users/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-users#egg=openwisp_users

Admin Utilities

This section outlines the admin utilities provided by the OpenWISP Users module.
MultitenantAdminMixin 86

MultitenantOrgFilter 86

MultitenantRelatedOrgFilter 87

MultitenantAdminMixin

Full python path: openwisp_users.multitenancy.MultitenantAdminMixin.

Adding this mixin to a ModelAdmin class makes it multitenant-capable, allowing users to see only items of the
organizations they manage or own.

This class has two important attributes:

• multitenant_shared_relations: If the model has relations (e.g., ForeignKey, OneToOne) to other
multitenant models with an organization field, list those model attributes here as a list of strings. See how it
is used in OpenWISP Controller for a real-world example.

• multitenant_parent: If the admin model relies on a parent model with the organization field, specify the
field pointing to the parent here. See how it is used in OpenWISP Firmware Upgrader for a real-world example.

MultitenantOrgFilter

Full python path: openwisp_users.multitenancy.MultitenantOrgFilter.

This auto complete admin filter displays only organizations the current user can manage. Below is an example of
adding the auto complete organization filter in BookAdmin:

from django.contrib import admin
from openwisp_users.multitenancy import MultitenantOrgFilter

class BookAdmin(admin.ModelAdmin):
 list_filter = [
 MultitenantOrgFilter,
]
 # other attributes

Modules

86

https://github.com/openwisp/openwisp-controller/search?q=multitenant_shared_relations
https://github.com/openwisp/openwisp-controller/search?q=multitenant_shared_relations
https://github.com/openwisp/openwisp-firmware-upgrader/search?q=multitenant_parent

MultitenantRelatedOrgFilter

Full python path: openwisp_users.multitenancy.MultitenantRelatedOrgFilter.

This filter is similar to MultitenantOrgFilter but displays only objects related to organizations the current user
can manage. Use this for creating filters for related multitenant models.

Consider the following example from IpAddressAdmin in openwisp-ipam. IpAddressAdmin allows filtering
IpAddress objects by ``Subnet` belonging to organizations managed by the user.

from django.contrib import admin
from openwisp_users.multitenancy import MultitenantRelatedOrgFilter
from swapper import load_model

Subnet = load_model("openwisp_ipam", "Subnet")

class SubnetFilter(MultitenantRelatedOrgFilter):
 field_name = "subnet"
 parameter_name = "subnet_id"
 title = _("subnet")

@admin.register(IpAddress)
class IpAddressAdmin(
 VersionAdmin,
 MultitenantAdminMixin,
 TimeReadonlyAdminMixin,
 ModelAdmin,
):
 list_filter = [SubnetFilter]
 # other options

Django REST Framework Utilities

Note

This page is for developers who want to customize or extend OpenWISP Users, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Users Usage Docs

This page details the Django REST Framework classes and utilities provided in the OpenWISP Users module. These
tools support various REST API features such as authentication, permission enforcement, multi-tenancy, and
filtering.

These utilities ensure consistency and reusability across the OpenWISP modules.
Authentication 88

openwisp_users.api.authentication.BearerAuthentication 88

openwisp_users.api.authentication.SesameAuthentication 88

Permission Classes 88

organization_field 88

DjangoModelPermissions 89

Modules

87

https://github.com/openwisp/openwisp-ipam/blob/956d9d25fc1ac339cb148ec7faf80046cc14be37/openwisp_ipam/admin.py#L216-L227

ProtectedAPIMixin 89

Mixins for Multi-Tenancy 89

Filtering Items by Organization 89

Checking Parent Objects 90

Multi-tenant Serializers for the Browsable Web UI 91

Multi-tenant Filtering Capabilities for the Browsable Web UI 91

Authentication

openwisp_users.api.authentication.BearerAuthentication

BearerAuthentication is the primary authentication class used in OpenWISP's REST APIs. It is based on
TokenAuthentication from Django REST Framework.

For detailed usage instructions, please refer to the authenticating with the user token :ref:`authenticating_rest_api
section.

openwisp_users.api.authentication.SesameAuthentication

SesameAuthentication allows authentication using tokens generated by django-sesame.

This method is primarily used for password-less authentication, such as magic login links sent via email or SMS.

To use this authentication class, you must configure django-sesame.

For more details, please see the django-sesame documentation.

Permission Classes

The custom Django REST Framework permission classes IsOrganizationMember, IsOrganizationManager,
and IsOrganizationOwner ensure that the requesting user belongs to the same organization as the requested
object and has the appropriate role: member, manager, or owner, respectively.

Usage example:

from openwisp_users.api.permissions import IsOrganizationManager
from rest_framework import generics

class MyApiView(generics.APIView):
 permission_classes = (IsOrganizationManager,)

organization_field

type: string

default: organization

organization_field specifies where to find the organization of the current object. In most cases, this default
value does not need to be changed. However, it may need to be adjusted if the organization is defined only on a
parent object.

For example, in openwisp-firmware-upgrader, the organization is defined on Category, and Build has a
relation to Category. Therefore, the organization of Build instances is inferred from the Category organization.

To implement the permission class correctly in such cases, you would use:

from openwisp_users.api.permissions import IsOrganizationManager
from rest_framework import generics

Modules

88

https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://github.com/aaugustin/django-sesame
https://github.com/aaugustin/django-sesame#getting-started
https://www.django-rest-framework.org/

class MyApiView(generics.APIView):
 permission_classes = (IsOrganizationManager,)
 organization_field = "category__organization"

This setup translates to accessing obj.category.organization. Ensure your view's querysets use
select_related to avoid generating too many queries.

DjangoModelPermissions

The default DjangoModelPermissions class does not check for the view permission on objects for GET requests.
The extended DjangoModelPermissions class addresses this issue. It checks for the availability of either the
view or change permissions to allow GET requests on any object.

Usage example:

from openwisp_users.api.permissions import DjangoModelPermissions
from rest_framework.generics import ListCreateAPIView

class TemplateListCreateView(ListCreateAPIView):
 serializer_class = TemplateSerializer
 permission_classes = (DjangoModelPermissions,)
 queryset = Template.objects.all()

Note: DjangoModelPermissions allows users who are either organization managers or owners to view shared
objects in read-only mode.

Standard users will not be able to view or list shared objects.

ProtectedAPIMixin

Full python path: openwisp_users.api.mixins.ProtectedAPIMixin.

This mixin provides a set of authentication and permission classes that are commonly used across various
OpenWISP modules API views.

Usage example:

Used in openwisp-ipam
from openwisp_users.api.mixins import (
 ProtectedAPIMixin as BaseProtectedAPIMixin,
)

class ProtectedAPIMixin(BaseProtectedAPIMixin):
 throttle_scope = "ipam"

class SubnetView(ProtectedAPIMixin, RetrieveUpdateDestroyAPIView):
 serializer_class = SubnetSerializer
 queryset = Subnet.objects.all()

Mixins for Multi-Tenancy

Filtering Items by Organization

The custom Django REST Framework mixins FilterByOrganizationMembership,
FilterByOrganizationManaged and FilterByOrganizationOwned can be used in the API views to ensure
that the current user is able to see only the data related to their organization when accessing the API view.

Modules

89

https://docs.djangoproject.com/en/4.2/ref/models/querysets/#select-related
https://www.django-rest-framework.org/

These classes work by filtering the queryset so that only items related to organizations the user is member, manager
or owner of, respectively.

These mixins ship the Django REST Framework's IsAuthenticated permission class by default because the
organization filtering works only on authenticated users. Always remember to include this class when overriding
permission_classes in a view.

Usage example:

from openwisp_users.api.mixins import FilterByOrganizationManaged
from rest_framework import generics

class UsersListView(FilterByOrganizationManaged, generics.ListAPIView):
 """
 UsersListView will show only users from organizations managed
 by current user in the list.
 """

 pass

class ExampleListView(FilterByOrganizationManaged, generics.ListAPIView):
 """
 Example showing how to extend ``permission_classes``.
 """

 permission_classes = FilterByOrganizationManaged.permission_classes + [
 # additional permission classes here
]

Checking Parent Objects

Sometimes, the API view needs to check the existence and the organization field of a parent object.

In such cases, FilterByParentMembership, FilterByParentManaged and FilterByParentOwned can be
used.

For example, given a hypothetical URL /api/v1/device/{device_id}/config/, the view must check that
{device_id} exists and that the user has access to it, here's how to do it:

import swapper
from rest_framework import generics
from openwisp_users.api.mixins import FilterByParentManaged

Device = swapper.load_model("config", "Device")
Config = swapper.load_model("config", "Config")

URL is:
/api/v1/device/{device_id}/config/

class ConfigListView(FilterByParentManaged, generics.DetailAPIView):
 model = Config

 def get_parent_queryset(self):
 qs = Device.objects.filter(pk=self.kwargs["device_id"])
 return qs

Modules

90

https://www.django-rest-framework.org/api-guide/permissions/#isauthenticated

Multi-tenant Serializers for the Browsable Web UI

Django REST Framework provides a browsable API which can be used to create HTTP requests right from the
browser.

The relationship fields in this interface show all the relationships, without filtering by the organization the user has
access to, which breaks multi-tenancy.

The FilterSerializerByOrgMembership, FilterSerializerByOrgManaged and
FilterSerializerByOrgOwned can be used to solve this issue.

These serializers do not allow non-superusers to create shared objects.

Usage example:

from openwisp_users.api.mixins import FilterSerializerByOrgOwned
from rest_framework.serializers import ModelSerializer
from .models import Device

class DeviceSerializer(FilterSerializerByOrgOwned, ModelSerializer):
 class Meta:
 model = Device
 fields = "__all__"

The include_shared boolean attribute can be used to include shared objects in the accepted values of the
multi-tenant serializers.

Shared objects have the organization field set to None and can be used by any organization. A common use
case is shared templates in OpenWISP Controller.

Usage example:

from openwisp_users.api.mixins import FilterSerializerByOrgOwned
from rest_framework.serializers import ModelSerializer
from .models import Book

class BookSerializer(FilterSerializerByOrgOwned, ModelSerializer):
 include_shared = True

 class Meta:
 model = Book
 fields = "__all__"

To filter items based on the organization of their parent object, organization_field attribute can be defined
in the view function which is inheriting any of the mixin classes.

Usage example: organization_field.

Multi-tenant Filtering Capabilities for the Browsable Web UI

Integration of Django filters with Django REST Framework is provided through a DRF-specific FilterSet and a
filter backend.

The relationship fields of django-filters show all the available results, without filtering by the organization the
user has access to, which breaks multi-tenancy.

The FilterDjangoByOrgMembership, FilterDjangoByOrgManaged and FilterDjangoByOrgOwned can
be used to solve this issue.

Usage example:

from django_filters import rest_framework as filters
from openwisp_users.api.mixins import FilterDjangoByOrgManaged
from ..models import FloorPlan

Modules

91

https://www.django-rest-framework.org/
https://django-filter.readthedocs.io/en/stable/guide/rest_framework.html
https://www.django-rest-framework.org/

class FloorPlanOrganizationFilter(FilterDjangoByOrgManaged):
 organization_slug = filters.CharFilter(
 field_name="organization__slug"
)

 class Meta:
 model = FloorPlan
 fields = ["organization", "organization_slug"]

class FloorPlanListCreateView(
 ProtectedAPIMixin, generics.ListCreateAPIView
):
 serializer_class = FloorPlanSerializer
 queryset = FloorPlan.objects.select_related().order_by("-created")
 pagination_class = ListViewPagination
 filter_backends = [filters.DjangoFilterBackend]
 filterset_class = FloorPlanOrganizationFilter

You can also use the organization filter classes such as OrganizationManagedFilter from
openwisp_users.api.filters which includes organization and organization_slug filter fields by
default.

Usage example:

from django_filters import rest_framework as filters
from openwisp_users.api.filters import OrganizationManagedFilter
from ..models import FloorPlan

class FloorPlanFilter(OrganizationManagedFilter):
 class Meta(OrganizationManagedFilter.Meta):
 model = FloorPlan

class FloorPlanListCreateView(
 ProtectedAPIMixin, generics.ListCreateAPIView
):
 serializer_class = FloorPlanSerializer
 queryset = FloorPlan.objects.select_related().order_by("-created")
 pagination_class = ListViewPagination
 filter_backends = [filters.DjangoFilterBackend]
 filterset_class = FloorPlanFilter

Miscellaneous Utilities

Note

This page is for developers who want to customize or extend OpenWISP Users, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Users Usage Docs

Modules

92

This section covers miscellaneous utilities provided by the OpenWISP Users module.
Organization Membership Helpers 93

is_member(org) 93

is_manager(org) 93

is_owner(org) 94

organizations_dict 94

organizations_managed 94

organizations_owned 94

UsersAuthenticationBackend 94

PasswordExpirationMiddleware 95

PasswordReuseValidator 95

Organization Membership Helpers

The User model offers methods to efficiently check whether the user is a member, manager, or owner of an
organization.

Use these methods to distinguish between different user roles across organizations and minimize database queries.

import swapper

User = swapper.load_model("openwisp_users", "User")
Organization = swapper.load_model("openwisp_users", "Organization")

user = User.objects.first()
org = Organization.objects.first()
user.is_member(org)
user.is_manager(org)
user.is_owner(org)

Also valid (avoids query to retrieve Organization instance)
device = Device.objects.first()
user.is_member(device.organization_id)
user.is_manager(device.organization_id)
user.is_owner(device.organization_id)

is_member(org)

Returns True if the user is a member of the specified Organization instance. Alternatively, you can pass a UUID
or str representing the organization's primary key, which allows you to avoid an additional database query to fetch
the organization instance.

Use this check to grant access to end-users who need to consume services offered by organizations they're
members of, such as authenticating to public WiFi services.

is_manager(org)

Returns True if the user is a member of the specified Organization instance and has the
OrganizationUser.is_admin field set to True. Alternatively, you can pass a UUID or str representing the
organization's primary key, which allows you to avoid an additional database query to fetch the organization
instance.

Use this check to grant access to managers of organizations, who need to perform administrative tasks such as
creating, editing, or deleting objects of their organization, or accessing sensitive information like firmware images.

Modules

93

is_owner(org)

Returns True if the user is a member of the specified Organization instance and is the owner of the organization,
checked against the presence of an OrganizationOwner instance for the user. Alternatively, you can pass a UUID
or str representing the organization's primary key, which allows you to avoid an additional database query to fetch
the organization instance.

Use this check to prevent managers from taking control of organizations without the original owner's consent.

organizations_dict

The methods described above utilize the organizations_dict property method, which builds a dictionary
containing the primary keys of organizations the user is a member of, along with information about whether the user
is a manager (is_admin) or owner (is_owner).

This data structure is cached automatically to prevent multiple database queries across multiple requests.

The cache is automatically invalidated on the following events:

• An OrganizationUser is added, changed, or deleted.

• An OrganizationOwner is added, changed, or deleted.

• The is_active field of an Organization changes.

Usage example:

>>> user.organizations_dict
... {'20135c30-d486-4d68-993f-322b8acb51c4': {'is_admin': True, 'is_owner': False}}
>>> user.organizations_dict.keys()
... dict_keys(['20135c30-d486-4d68-993f-322b8acb51c4'])

organizations_managed

Returns a list of primary keys of organizations the user can manage.

Usage example:

>>> user.organizations_managed
... ['20135c30-d486-4d68-993f-322b8acb51c4']

organizations_owned

Returns a list of primary keys of organizations the user owns.

Usage example:

>>> user.organizations_owned
... ['20135c30-d486-4d68-993f-322b8acb51c4']

UsersAuthenticationBackend

Full python path: openwisp_users.backends.UsersAuthenticationBackend.

This authentication backend enables users to authenticate using their email or phone number, as well as their
username. Email authentication takes precedence over the username, while phone number authentication takes
precedence if the identifier passed as argument is a valid phone number.

Phone numbers are parsed using the phonenumbers library, ensuring recognition even if users include characters
like spaces, dots, or dashes.

The OPENWISP_USERS_AUTH_BACKEND_AUTO_PREFIXES setting allows specifying a list of international
prefixes that can be automatically prepended to the username string, enabling users to log in without typing the
international prefix.

Modules

94

https://github.com/daviddrysdale/python-phonenumbers

Additionally, the backend supports phone numbers with a leading zero, ensuring successful authentication even with
the leading zero included.

You can also use the backend programmatically:

from openwisp_users.backends import UsersAuthenticationBackend

backend = UsersAuthenticationBackend()
backend.authenticate(request, identifier, password)

PasswordExpirationMiddleware

Full python path: openwisp_users.middleware.PasswordExpirationMiddleware.

When the password expiration feature is enabled (see OPENWISP_USERS_USER_PASSWORD_EXPIRATION
and OPENWISP_USERS_STAFF_USER_PASSWORD_EXPIRATION), this middleware restricts users to the
password change view until they change their password.

Ensure this middleware follows AuthenticationMiddleware and MessageMiddleware:

in your_project/settings.py
MIDDLEWARE = [
 # Other middlewares
 "django.contrib.auth.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "openwisp_users.middleware.PasswordExpirationMiddleware",
]

PasswordReuseValidator

Full python path: openwisp_users.password_validation.PasswordReuseValidator.

On password change views, this validator ensures users cannot reuse their current password as the new password.

Add the validator to the AUTH_PASSWORD_VALIDATORS Django setting:

in your-project/settings.py
AUTH_PASSWORD_VALIDATORS = [
 # Other password validators
 {
 "NAME": "openwisp_users.password_validation.PasswordReuseValidator",
 },
]

Extending OpenWISP Users

Note

This page is for developers who want to customize or extend OpenWISP Users, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Users Usage Docs

One of the core values of the OpenWISP project is Software Reusability, which ensures long-term sustainability. For
this reason, OpenWISP Users provides a set of base classes that can be imported, extended, and reused to create
derivative apps.

Modules

95

This is extremely beneficial if you want to add additional fields to the User model, such as requesting a Social
Security Number during registration.

To implement your custom version of OpenWISP Users, follow the steps described in this section.

If you have any doubts, refer to the code in the test project and the sample app. These resources will serve as your
source of truth: replicate and adapt that code to get a basic derivative of OpenWISP Users working.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize Your Custom Module 96

2. Install OpenWISP Users 97

3. Add EXTENDED_APPS 97

4. Add openwisp_utils.staticfiles.DependencyFinder 97

5. Add openwisp_utils.loaders.DependencyLoader 97

6. Inherit the AppConfig Class 97

7. Create Your Custom Models 98

8. Add Swapper Configurations 98

9. Create Database Migrations 98

10. Create the admin 98

1. Monkey Patching 99

2. Inheriting Admin Classes 100

11. Create Root URL Configuration 101

12. Import the Automated Tests 101

Other Base Classes that can be Inherited and Extended 101

Extending the API Views 101

1. Initialize Your Custom Module

The first thing you need to do is create a new Django app which will contain your custom version of OpenWISP
Users.

A Django app is nothing more than a Python package (a directory of Python scripts). In the following examples, we'll
call this Django app myusers, but you can name it however you like:

django-admin startapp myusers

Keep in mind that the command mentioned above must be called from a directory that is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add myusers to INSTALLED_APPS in your settings.py, ensuring also that openwisp_users
has been removed:

INSTALLED_APPS = [
 # ... other apps ...
 # 'openwisp_users' <-- comment out or delete this line
 "myusers"
]

For more information about how to work with Django projects and Django apps, please refer to the Django
documentation.

Modules

96

https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/sample_users/
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

2. Install OpenWISP Users

Install (and add to the requirements of your project) openwisp-users:

pip install openwisp-users

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ("openwisp_users",)

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES before
django.template.loaders.app_directories.Loader in your settings.py:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "openwisp_utils.loaders.DependencyLoader",
 "django.template.loaders.app_directories.Loader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• openwisp_users/__init__.py

• openwisp_users/apps.py

You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

Modules

97

https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/__init__.py
https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/

7. Create Your Custom Models

For the purpose of showing an example, we added a simple social_security_number field in the User model to
the models of the sample app in the test project.

You can add fields in a similar way in your models.py file.

For doubts regarding how to use, extend, or develop models please refer to the "Models" section in the django
documentation.

8. Add Swapper Configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
AUTH_USER_MODEL = "myusers.User"
OPENWISP_USERS_GROUP_MODEL = "myusers.Group"
OPENWISP_USERS_ORGANIZATION_MODEL = "myusers.Organization"
OPENWISP_USERS_ORGANIZATIONUSER_MODEL = "myusers.OrganizationUser"
OPENWISP_USERS_ORGANIZATIONOWNER_MODEL = "myusers.OrganizationOwner"
The following model is not used in OpenWISP yet
but users are free to implement it in their projects if needed
for more information refer to the django-organizations docs:
https://django-organizations.readthedocs.io/
OPENWISP_USERS_ORGANIZATIONINVITATION_MODEL = (
 "myusers.OrganizationInvitation"
)

Substitute myusers with the name you chose in step 1.

9. Create Database Migrations

Create database migrations:

./manage.py makemigrations

Now, manually create a file 0004_default_groups.py in the migrations directory just created by the
makemigrations command and copy the contents of the sample_users/migrations/0004_default_groups.py.

Then, run the migrations:

./manage.py migrate

Note

The 0004_default_groups is required because other OpenWISP modules depend on it. If it's not created as
documented here, the migrations of other OpenWISP modules will fail.

10. Create the admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

For more information regarding how the Django admin works, or how it can be customized, please refer to "The
Django admin site" section in the Django documentation.

Modules

98

https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/sample_users/migrations/0004_default_groups.py
https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_users.admin import (
 UserAdmin,
 GroupAdmin,
 OrganizationAdmin,
 OrganizationOwnerAdmin,
 BaseOrganizationUserAdmin,
)

OrganizationAdmin.field += ['example_field'] <-- Monkey patching changes example

For your convenience in adding fields in User forms, we provide the following functions:

usermodel_add_form

When monkey patching the UserAdmin class to add fields in the "Add user" form, you can use this function. In the
example, Social Security Number is added in the add form:

usermodel_change_form

When monkey patching the UserAdmin class to add fields in the "Change user" form to change/modify the user
form's profile section, you can use this function. In the example, Social Security Number is added in the change form:

Modules

99

https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/sample_users/admin.py
https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/sample_users/admin.py

usermodel_list_and_search

When monkey patching the UserAdmin class, you can use this function to make a field searchable and add it to the
user display list view. In the example, Social Security Number is added in the changelist view:

2. Inheriting Admin Classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

from django.contrib import admin
from openwisp_users.admin import (
 UserAdmin as BaseUserAdmin,
 GroupAdmin as BaseGroupAdmin,
 OrganizationAdmin as BaseOrganizationAdmin,
 OrganizationOwnerAdmin as BaseOrganizationOwnerAdmin,
 OrganizationUserAdmin as BaseOrganizationUserAdmin,
)
from swapper import load_model
from django.contrib.auth import get_user_model

Group = load_model("openwisp_users", "Group")
Organization = load_model("openwisp_users", "Organization")
OrganizationOwner = load_model("openwisp_users", "OrganizationOwner")
OrganizationUser = load_model("openwisp_users", "OrganizationUser")
User = get_user_model()

admin.site.unregister(Group)
admin.site.unregister(Organization)
admin.site.unregister(OrganizationOwner)
admin.site.unregister(OrganizationUser)
admin.site.unregister(User)

@admin.register(Group)
class GroupAdmin(BaseGroupAdmin):
 pass

@admin.register(Organization)
class OrganizationAdmin(BaseOrganizationAdmin):

Modules

100

https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/sample_users/admin.py

 pass

@admin.register(OrganizationOwner)
class OrganizationOwnerAdmin(BaseOrganizationOwnerAdmin):
 pass

@admin.register(OrganizationUser)
class OrganizationUserAdmin(BaseOrganizationUserAdmin):
 pass

@admin.register(User)
class UserAdmin(BaseUserAdmin):
 pass

11. Create Root URL Configuration

Please refer to the urls.py file in the sample project.

For more information about URL configuration in Django, please refer to the "URL dispatcher" section in the Django
documentation.

12. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of OpenWISP
Users.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests of the sample app to find out how to do this.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel myusers

Substitute myusers with the name you chose in step 1.

Other Base Classes that can be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

Extending the API Views

The API view classes can be extended into other Django applications as well. Note that it is not required for
extending OpenWISP Users to your app and this change is required only if you plan to make changes to the API
views.

Create a view file as done in API views.py.

Remember to use these views in root URL configurations in point 11.

For more information about Django views, please refer to the views section in the Django documentation.

Other useful resources:

• REST API

• Settings

Modules

101

https://github.com/openwisp/openwisp-users/tree/master/tests/openwisp2/urls.py
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/tests.py
https://github.com/openwisp/openwisp-users/blob/master/tests/openwisp2/sample_users/views.py
https://docs.djangoproject.com/en/4.2/topics/http/views/

Controller

Seealso

Source code: github.com/openwisp/openwisp-controller.

OpenWISP Controller is responsible of of managing the core resources of the network and allows automating several
aspects like adoption, provisioning, VPN tunnel configuration, generation of X509 certificates, subnet and IP address
allocation and more.

For a full introduction please refer to Controller: Structure & Features.

The following diagram illustrates the role of the Controller module within the OpenWISP architecture.

Modules

102

https://github.com/openwisp/openwisp-controller
../_images/architecture-v2-openwisp-controller.png

OpenWISP Architecture: highlighted controller module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Controller: Structure & Features

OpenWISP Controller is a Python package which ships five Django apps.
Config App 103

PKI App 103

Connection App 104

Geo App 104

Subnet Division App 104

Config App

The config app is the core of the controller module and implements all the following features:

• Configuration management for embedded devices supporting:

• OpenWrt

• OpenWISP Firmware

• additional firmware can be added by specifying custom configuration backends

• Configuration editor based on JSON-Schema editor

• Advanced edit mode: edit NetJSON DeviceConfiguration objects for maximum flexibility

• Configuration Templates: reduce repetition to the minimum, configure default and required templates

• Configuration Variables: reference variables in the configuration and templates

• Device Groups: define different set of default configuration and metadata in device groups

• Template Tags: define different sets of default templates (e.g.: mesh, WDS, 4G)

• HTTP resources: allow devices to automatically check for and download configuration updates

• VPN management: automatically provision VPN tunnel configurations, including cryptographic keys and IP
addresses, e.g.: OpenVPN, WireGuard

• Import/Export Device Data

It exposes various REST API endpoints.

PKI App

The PKI app is based on django-x509, allowing you to create, import, and view x509 CAs and certificates directly
from the administration dashboard.

It exposes various REST API endpoints.

Modules

103

http://openwrt.org
https://github.com/openwisp/OpenWISP-Firmware
https://github.com/jdorn/json-editor
http://netjson.org
https://github.com/openwisp/django-x509

Connection App

This app enables OpenWISP Controller to use different protocols to reach network devices. Currently, the default
connection protocols are SSH and SNMP, but the protocol mechanism is extensible, allowing for implementation of
additional protocols if needed.

It exposes various REST API endpoints.

SSH

The SSH connector allows the controller to initialize connections to the devices in order to perform push operations,
e.g.:

• Sending configuration updates.

• Executing shell commands.

• Perform firmware upgrades via the additional firmware upgrade module.

The default connection protocol implemented is SSH, but other protocol mechanism is extensible and custom
protocols can be implemented as well.

Access via SSH key is recommended, the SSH key algorithms supported are:

• RSA

• Ed25519

SNMP

The SNMP connector is useful to collect monitoring information and it's used in OpenWISP Monitoring for performing
checks to collect monitoring information. Read more on how to use it.

Geo App

The geographic app is based on django-loci and allows to define the geographic coordinates of the devices, as well
as their indoor coordinates on floor plan images.

It exposes various REST API endpoints.

Subnet Division App

Note

This app is optional, if you don't need it you can avoid adding it to settings.INSTALLED_APPS.

This app allows to automatically provision subnets and IP addresses which will be available as system defined
configuration variables that can be used in Configuration Templates.

The purpose of this app is to allow users to automatically provision and configure specific subnets and IP addresses
to the devices without the need of manual intervention.

Refer to Automating Subnet and IP Address Provisioning for more information.

Modules

104

https://github.com/openwisp/openwisp-monitoring/pull/309#discussion_r692566202
https://github.com/openwisp/django-loci

Configuration Templates

What is a Template? 105

Template Ordering and Override 105

Shared Templates vs Organization Specific 105

Default Templates 106

Required Templates 107

Device Group Templates 107

Template Tags 107

Implementation Details of Templates 108

What is a Template?

Templates are designed to store configuration that can be reused by some or all the devices in the system.

Updating the configuration stored in a template allows to update the configuration of all the devices that have that
template assigned.

This means that configuration can be defined only once for multiple devices, and if the need to update a specific
piece of configuration arises, it can be easily achieved by updating the template.

Template Ordering and Override

A device can use multiple templates, the order in which templates are assigned to each device matters:
templates assigned last can override templates assigned earlier, the order can be changed by drag and dropping the
template in the device configuration page as in the animated screenshot below.

The device configuration can also override what is defined in templates.

Overriding means redefining a specific configuration section in a way that overwrites the template.

Overriding involves some form of duplication of information, which is not great, it should be used as a last
resort. The recommended way to define parts of the configuration that are specific for each device is to use
Configuration variables.

Shared Templates vs Organization Specific

Templates can be organization specific or shared (no organization specified).

Modules

105

../../_images/template-ordering.gif

Organization specific templates will be available and usable only within the same organization which they are
assigned to.

If no organization is specified when creating a template, a shared template will be created, shared templates are
available to any organization in the system.

Here are a few typical use cases of shared templates:

• Management VPN

• Authorized SSH keys belonging to network administrators

• Crontab with generic periodic management operations

Default Templates

When templates are flagged as "Enabled by default", they will be automatically assigned to new devices.

This is a very powerful feature: once default templates are correctly configured to implement the use case you
need, you will only have to register a device into OpenWISP for it to auto-configure itself.

Moreover, you can change the default templates any time you need, which is the reason this feature has replaced
the practice of storing default configuration in firmware images (which would need to be recompiled and
redistributed): with default templates, the default firmware image only needs to contain the bare minimum
configuration to connect to OpenWISP, once the device connects to OpenWISP it will download and apply the
default templates without the need of manual intervention from the network operators.

An organization specific template flagged as default will be automatically assigned to any new device which will be
created in the same organization.

A shared default template instead will be automatically assigned to all the new devices which will be created in the
system, regardless of organization.

Modules

106

../../_images/organization-specific-vs-shared.gif
../../_images/default-templates.gif

Required Templates

Required templates are similar to Default Templates but cannot be unassigned from a device configuration, they can
only be overridden.

They will be always assigned earlier than default templates, so they can be overridden if needed.

In the example above, the "SSID" template is flagged as "(required)" and its checkbox is always checked and
disabled.

Device Group Templates

Default Templates are an incredibly useful tool, but they're limited: only one set of default templates can be
created per each organization.

With Group Templates it is possible to specify a set of default templates for each device group.

Template Tags

In some cases, you may have multiple set of default settings to use, let's explain this with a practical example: you
may have 2 different device types in your network:

• Mesh routers: they connect to one another, forming a wireless mesh network

• Dumb access points: they connect to the mesh routers on the LAN port and offer internet access which is
routed via the mesh network by the routers

In this example case, the default configuration to use in each device type can greatly differ.

In such a setup, default templates would only contain configuration which is common to both device types, while
configuration which is specific for each type would be stored in specific templates which are then tagged with specific
keywords:

• mesh: tag to use for mesh configuration

• dumb-ap: tag to use for dumb AP configuration

The openwisp-config configuration of each device type must specify the correct tag before each device registers in
the system.

Here's the sample /etc/config/openwisp configuration for mesh devices:

config controller 'http'
 option url 'https://openwisp2.mynetwork.com'
 option shared_secret 'mySharedSecret123'
 option tags 'mesh'

Modules

107

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/required-templates.png
../../_images/template-tags.gif

Once devices with the above configuration will register into the system, any template tagged as mesh (as in the
screenshot below) will be assigned to them.

The sample /etc/config/openwisp configuration for dumb access points is the following:

config controller 'http'
 option url 'https://openwisp2.mynetwork.com'
 option shared_secret 'mySharedSecret123'
 option tags 'dumb-ap'

Once devices with the above configuration will register into the system, any template tagged as dumb-ap (as in the
screenshot below) will be assigned to them.

Implementation Details of Templates

Templates are implemented under the hood by the OpenWISP configuration engine: netjsonconfig.

For more advanced technical information about templates, consult the netjsonconfig documentation: Basic Concepts,
Template.

Configuration Variables

Sometimes the configuration is not exactly equal on all the devices, some parameters are unique to each device or
need to be changed by the user.

In these cases it is possible to use configuration variables in conjunction with templates, this feature is also known as
configuration context, think of it like a dictionary which is passed to the function which renders the configuration, so
that it can fill variables according to the passed context.

Modules

108

../../_images/mesh-template-tag.png
../../_images/dumb-ap-template-tag.png
https://netjsonconfig.openwisp.org/en/latest/general/basics.html#template
https://netjsonconfig.openwisp.org/en/latest/general/basics.html#template

Different Types of Variables

The different ways in which variables are defined are described below in the order (high to low) of their precedence.
1. User Defined Device Variables 109

2. Predefined Device Variables 109

3. Group Variables 109

4. Organization Variables 109

5. Global Variables 110

6. Template Default Values 110

7. System Defined Variables 111

1. User Defined Device Variables

In the device configuration section you can find a section named "Configuration variables" where it is possible to
define the configuration variables and their values, as shown in the example below:

2. Predefined Device Variables

Each device gets the following attributes passed as configuration variables:

• id

• key

• name

• mac_address

3. Group Variables

Variables can also be defined in Device Groups.

Refer to Group Configuration Variables for more information.

4. Organization Variables

Variables can also be defined at the organization level.

You can set the organization variables from the organization change page
/admin/openwisp_users/organization/<organization-id>/change/, under the Configuration
Management Settings.

Modules

109

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/device-context.png

5. Global Variables

Variables can also be defined globally using the OPENWISP_CONTROLLER_CONTEXT setting, see also How to
Edit Django Settings.

6. Template Default Values

It's possible to specify the default values of variables defined in a template.

This allows to achieve 2 goals:

1. pass schema validation without errors (otherwise it would not be possible to save the template in the first place)

2. provide good default values that are valid in most cases but can be overridden in the device if needed

These default values will be overridden by the User defined device variables.

The default values of variables can be manipulated from the section "configuration variables" in the edit template
page:

Modules

110

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/organization-variables.png

7. System Defined Variables

Predefined device variables, global variables and other variables that are automatically managed by the system
(e.g.: when using templates of type VPN-client) are displayed in the admin UI as System Defined Variables in
read-only mode.

Example Usage of Variables

Here's a typical use case, the WiFi SSID and WiFi password. You don't want to define this for every device, but you
may want to allow operators to easily change the SSID or WiFi password for a specific device without having to
re-define the whole wifi interface to avoid duplicating information.

This would be the template:

{
 "interfaces": [
 {
 "type": "wireless",

Modules

111

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/template-default-values.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/system-defined-variables.png

 "name": "wlan0",
 "wireless": {
 "mode": "access_point",
 "radio": "radio0",
 "ssid": "{{wlan0_ssid}}",
 "encryption": {
 "protocol": "wpa2_personal",
 "key": "{{wlan0_password}}",
 "cipher": "auto"
 }
 }
 }
]
}

These would be the default values in the template:

{
 "wlan0_ssid": "SnakeOil PublicWiFi",
 "wlan0_password": "Snakeoil_pwd!321654"
}

The default values can then be overridden at device level if needed, e.g.:

{
 "wlan0_ssid": "Room 23 ACME Hotel",
 "wlan0_password": "room_23pwd!321654"
}

Implementation Details of Variables

Variables are implemented under the hood by the OpenWISP configuration engine: netjsonconfig.

For more advanced technical information about variables, consult the netjsonconfig documentation: Basic Concepts,
Context (configuration variables).

Device Groups

Device groups allow to group similar devices together, the groups usually share not only a common characteristic but
also some kind of organizational need: they need to have specific configuration templates, variables and/or
associated metadata which differs from the rest of the network.
Group Templates 113

Group Configuration Variables 113

Group Metadata 113

Variables vs Metadata 113

Modules

112

https://netjsonconfig.openwisp.org/en/latest/general/basics.html#template
https://netjsonconfig.openwisp.org/en/latest/general/basics.html#template
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/1.1/device-groups.png

Group Templates

Groups allow to define templates which are automatically assigned to devices belonging to the group. When using
this feature, keep in mind the following important points:

• Templates of any configuration backend can be selected, when a device is assigned to a group, only the
templates which matches the device configuration backend are applied to the device.

• The system will not force group templates onto devices, this means that users can remove the applied group
templates from a specific device if needed.

• If a device group is changed, the system will automatically remove the group templates of the old group and
apply the new templates of the new group (this operation is implemented by leveraging the
group_templates_changed signal).

• If the group templates are changed, the devices which belong to the group will be automatically updated to
reflect the changes (this operation is executed in a background task).

• In case the configuration backend of a device is changed, the system will handle this automatically too and
update the group templates accordingly (this operation is implemented by leveraging the
config_backend_changed signal).

• If a device does not have a configuration defined yet, but it is assigned to a group which has templates defined,
the system will automatically create a configuration for it using the default backend specified in the
OPENWISP_CONTROLLER_DEFAULT_BACKEND setting.

Note: the list of templates shown in the edit group page do not contain templates flagged as "default" or "required" to
avoid redundancy because those templates are automatically assigned by the system to new devices.

This feature works also when editing group templates or the group assigned to a device via the REST API.

Group Configuration Variables

Groups allow to define configuration variables which are automatically added to the device's context in the System
Defined Variables. Check the Configuration Variables section to learn more about precedence of different
configuration variables.

This feature also works when editing group templates or the group assigned to a device via the REST API.

Group Metadata

Groups allow to store additional information regarding a group in the structured metadata field (which can be
accessed via the REST API).

The metadata field allows custom structure and validation to standardize information across all groups using the
OPENWISP_CONTROLLER_DEVICE_GROUP_SCHEMA setting.

Variables vs Metadata

Group configuration variables and Group metadata serves different purposes.

The group configuration variables should be used when the device configuration is required to be changed for
particular group of devices.

Group metadata should be used to store additional data for the device group, this data can be fetched and/or
tweaked via the REST API if needed. Group metadata is not designed to be used for configuration purposes.

Modules

113

Configuring Push Operations

Introduction 114

1. Generate SSH Key 114

2. Save SSH Private Key in "Access Credentials" 115

3. Add the Public Key to Your Devices 116

4. Test It 116

Introduction

Important

If you have installed OpenWISP with one of the Official installers you can skip the following steps, which are
handled automatically during the first installation.

The Ansible role automatically creates a default template to update authorized_keys on networking devices using
the default access credentials.

Follow the procedure described below to enable secure SSH access from OpenWISP to your devices, this is
required to enable push operations (whenever the configuration is changed, OpenWISP will trigger the update in the
background) and/or firmware upgrades (via the additional module openwisp-firmware-upgrader).

1. Generate SSH Key

First of all, we need to generate the SSH key which will be used by OpenWISP to access the devices, to do so, you
can use the following command:

ssh-keygen -f ./sshkey -t ed25519 -C "openwisp" -N ""

This will create two files in the current directory, one called sshkey (the private key) and one called sshkey.pub
(the public key).

Store the content of these files in a secure location.

Note

Support for ED25519 was added in OpenWrt 21.02 (requires Dropbear > 2020.79). If you are managing devices
with OpenWrt < 21, then you will need to use RSA keys:

ssh-keygen -f ./sshkey -t rsa -b 4096 -C "openwisp"

Modules

114

2. Save SSH Private Key in "Access Credentials"

From the first page of OpenWISP click on "CONFIGURATIONS" in the left navigation menu, then "Access
credentials", then click on the "ADD ACCESS CREDENTIALS" button in the upper right corner (alternatively, go to
the following URL path: /admin/connection/credentials/add/).

Select SSH as type, enable the Auto add checkbox, then at the field "Credentials type" select "SSH (private key)",
now type "root" in the username field, while in the key field you have to paste the contents of the private key just
created.

Now hit save.

The credentials just created will be automatically enabled for all the devices in the system (both existing devices and
devices which will be added in the future).

Modules

115

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/add-ssh-credentials-private-key.png

3. Add the Public Key to Your Devices

Now we need to instruct your devices to allow OpenWISP accessing via SSH, in order to do this we need to add the
contents of the public key file created in step 1 (sshkey.pub) in the file /etc/dropbear/authorized_keys on
the devices, the recommended way to do this is to create a configuration template in OpenWISP: from the first page
of OpenWISP, click on "CONFIGURATIONS" in the left navigation menu, then and click on the "ADD TEMPLATE"
button in the upper right corner (alternatively, go to the following URL: /admin/config/template/add/).

Check enabled by default, then scroll down the configuration section, click on "Configuration Menu", scroll down,
click on "Files" then close the menu by clicking again on "Configuration Menu". Now type
/etc/dropbear/authorized_keys in the path field of the file, then paste the contents of sshkey.pub in
contents.

Now hit save.

There's a catch: you will need to assign the template to any existing device.

4. Test It

Once you have performed the 3 steps above, you can test it as follows:

1. Ensure there's at least one device turned on and connected to OpenWISP, ensure this device has the "SSH
Authorized Keys" assigned to it.

2. Ensure the celery worker of OpenWISP Controller is running (e.g.: ps aux | grep celery)

3. SSH into the device and wait (maximum 2 minutes) until /etc/dropbear/authorized_keys appears as
specified in the template.

4. While connected via SSH to the device run the following command in the console: logread -f, now try
changing the device name in OpenWISP

5. Shortly after you change the name in OpenWISP, you should see some output in the SSH console indicating
another SSH access and the configuration update being performed.

Modules

116

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/add-authorized-ssh-keys-template.png

Sending Commands to Devices

Default Commands 117

Defining New Options in the Commands Menu 118

Command Configuration 119

1. label 119

2. schema 119

3. callable 120

How to register or unregister commands 120

Default Commands

By default, there are three options in the Send Command dropdown:

1. Reboot

2. Change Password

3. Custom Command

While the first two options are self-explanatory, the custom command option allows you to execute any command
on the device as shown in the example below.

Important

In order for this feature to work, a device needs to have at least one valid Access Credential (see How to
configure push updates).

The Send Command button will be hidden until the device has at least one Access Credential.

If you need to allow your users to quickly send specific commands that are used often in your network regardless of
your users' knowledge of Linux shell commands, you can add new commands by following instructions in the
Defining New Options in the Commands Menu section below.

Modules

117

https://github.com/openwisp/openwisp-controller/tree/docs/docs/commands_demo.gif

Note

If you're an advanced user and want to learn how to register commands programmatically, refer to the
Registering / Unregistering Commands section.

Defining New Options in the Commands Menu

Let's explore to define new custom commands to help users perform additional management actions without having
to be Linux/Unix experts.

We can do so by using the OPENWISP_CONTROLLER_USER_COMMANDS django setting.

The following example defines a simple command that can ping an input destination_address through a
network interface, interface_name.

In yourproject/settings.py

def ping_command_callable(destination_address, interface_name=None):
 command = f"ping -c 4 {destination_address}"
 if interface_name:
 command += f" -I {interface_name}"
 return command

OPENWISP_CONTROLLER_USER_COMMANDS = [
 (
 "ping",
 {
 "label": "Ping",
 "schema": {
 "title": "Ping",
 "type": "object",
 "required": ["destination_address"],
 "properties": {
 "destination_address": {
 "type": "string",
 "title": "Destination Address",
 },
 "interface_name": {
 "type": "string",
 "title": "Interface Name",
 },
 },
 "message": "Destination Address cannot be empty",
 "additionalProperties": False,
 },
 "callable": ping_command_callable,
 },
)
]

The above code will add the Ping command in the user interface as show in the GIF below:

Modules

118

The OPENWISP_CONTROLLER_USER_COMMANDS setting takes a list of tuple each containing two elements. The
first element of the tuple should contain an identifier for the command and the second element should contain a
dict defining configuration of the command.

Command Configuration

The dict defining configuration for command should contain following keys:

1. label

A str defining label for the command used internally by Django.

2. schema

A dict defining JSONSchema for inputs of command. You can specify the inputs for your command, add rules for
performing validation and make inputs required or optional.

Here is a detailed explanation of the schema used in above example:

{
 # Name of the command displayed in *Send Command* widget
 "title": "Ping",
 # Use type *object* if the command needs to accept inputs
 # Use type *null* if the command does not accepts any input
 "type": "object",
 # Specify list of inputs that are required
 "required": ["destination_address"],
 # Define the inputs for the commands along with their properties
 "properties": {
 "destination_address": {
 # type of the input value
 "type": "string",
 # label used for displaying this input field
 "title": "Destination Address",
 },
 "interface_name": {
 "type": "string",
 "title": "Interface Name",
 },

Modules

119

https://github.com/openwisp/openwisp-controller/tree/docs/docs/ping_command_example.gif
https://json-schema.org/

 },
 # Error message to be shown if validation fails
 "message": "Destination Address cannot be empty",
 # Whether specifying addtionaly inputs is allowed from the input form
 "additionalProperties": False,
}

This example uses only handful of properties available in JSONSchema. You can experiment with other properties of
JSONSchema for schema of your command.

3. callable

A callable or str defining dotted path to a callable. It should return the command (str) to be executed on the
device. Inputs of the command are passed as arguments to this callable.

The example above includes a callable(ping_command_callable) for ping command.

How to register or unregister commands

Refer to Registering / Unregistering Commands in the developer documentation.

Import/Export Device Data

The device list page offers two buttons to export and import device data in different formats.

Importing

For importing devices into the system, only the required fields are needed, for example, the following CSV file will
import a device named TestImport with mac address 00:11:22:09:44:55 in the organization with UUID
3cb5e18c-0312-48ab-8dbd-038b8415bd6f:

organization,name,mac_address
3cb5e18c-0312-48ab-8dbd-038b8415bd6f,TestImport,00:11:22:09:44:55

Exporting

The export feature respects any filters selected in the device list.

Modules

120

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/1.1/import-export/device-list.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/1.1/import-export/import-page.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/1.1/import-export/export-page.png

Organization Limits

You can restrict the number of devices managed by each organization.

To set these limits:

1. Navigate to USERS & ORGANIZATIONS on the left-hand navigation menu.

2. Go to Organizations.

3. Click on the specific organization you want to limit.

4. In the CONTROLLER LIMIT section, set the desired limit.

Refer to the screenshot below for guidance:

Automating WireGuard Tunnels

Important

This guide assumes your OpenWrt firmware has the wireguard-tools package and its dependencies
installed. If these packages are not present, you will need to install them.

This guide will help you to set up the automatic provisioning of WireGuard tunnels for your devices.

Note

This guide creates the VPN server and VPN client templates as Shared systemwide (no organization) objects.
This allows any device of any organization to use the automation.

If needed, you can use any organization as long as the VPN server, the VPN client template, and devices have
the same organization.

1. Create VPN Server Configuration for WireGuard 121

2. Deploy WireGuard VPN Server 123

3. Create VPN Client Template for WireGuard VPN Server 123

4. Apply WireGuard VPN Template to Devices 123

1. Create VPN Server Configuration for WireGuard

1. Visit /admin/config/vpn/add/ to add a new VPN server.

2. Set the Name of this VPN server as WireGuard and the Host as wireguard-server.mydomain.com
(update this to point to your WireGuard VPN server).

3. Select WireGuard from the dropdown as the VPN Backend.

4. When using WireGuard, OpenWISP takes care of managing IP addresses, assigning an IP address to each
VPN peer. Create a new subnet or select an existing one from the dropdown menu. You can also assign an
Internal IP to the WireGuard Server or leave it empty for OpenWISP to configure. This IP address will be used
by the WireGuard interface on the server.

Modules

121

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/1.1/organization-limits.png
https://www.wireguard.com/

5. Set the Webhook Endpoint as https://wireguard-server.mydomain.com:8081/trigger-update
for this example. Update this according to your VPN upgrader endpoint. Set Webhook AuthToken to any
strong passphrase; this will be used to ensure that configuration upgrades are requested from trusted sources.

Note

If you are setting up a WireGuard VPN server, substitute wireguard-server.mydomain.com with the
hostname of your VPN server and follow the steps in the next section.

6. Under the configuration section, set the name of the WireGuard tunnel 1 interface. In this example, we have
used wg0.

7. After clicking on Save and continue editing, you will see that OpenWISP has automatically created public and
private keys for the WireGuard server in System Defined Variables, along with internal IP address information.

Modules

122

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-tutorial/vpn-server-1.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-tutorial/vpn-server-2.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-tutorial/vpn-server-3.png

2. Deploy WireGuard VPN Server

If you haven't already set up WireGuard on your VPN server, this would be a good time to do so.

We recommend using the ansible-wireguard-openwisp role for installing WireGuard, as it also installs scripts that
allow OpenWISP to manage the WireGuard VPN server.

Ensure that the VPN server attributes used in your playbook match the VPN server configuration in OpenWISP.

3. Create VPN Client Template for WireGuard VPN Server

1. Visit /admin/config/template/add/ to add a new template.

2. Set WireGuard Client as Name (you can set whatever you want) and select VPN-client as type from the
dropdown list.

3. The Backend field refers to the backend of the device this template can be applied to. For this example, we will
leave it to OpenWrt.

4. Select the correct VPN server from the dropdown for the VPN field. Here it is WireGuard.

5. Ensure that Automatic tunnel provisioning is checked. This will make OpenWISP to automatically generate
public and private keys and provision IP address for each WireGuard VPN client.

6. After clicking on Save and continue editing button, you will see details of WireGuard VPN server in System
Defined Variables. The template configuration will be automatically generated which you can tweak
accordingly. We will use the automatically generated VPN client configuration for this example.

4. Apply WireGuard VPN Template to Devices

Note

This step assumes that you already have a device registered on OpenWISP. Register or create a device before
proceeding.

1. Open the Configuration tab of the concerned device.

2. Select the WireGuard Client template.

Modules

123

https://github.com/openwisp/ansible-wireguard-openwisp
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-tutorial/template.png

3. Upon clicking on Save and continue editing button, you will see some entries in System Defined Variables.
It will contain internal IP address, private and public key for the WireGuard client on the device along with
details of WireGuard VPN server.

Voila! You have successfully configured OpenWISP to manage WireGuard tunnels for your devices.

Seealso

You may also want to explore other automated VPN tunnel provisioning options:

• Wireguard over VXLAN

• Zerotier

• OpenVPN

Automating VXLAN over WireGuard Tunnels

Important

This guide assumes your OpenWrt firmware has the vxlan and wireguard-tools packages installed. If these
packages are not present, you will need to install them.

By following these steps, you will be able to setup layer 2 VXLAN tunnels encapsulated in WireGuard tunnels which
work on layer 3.

Note

This guide creates the VPN server and VPN client templates as Shared systemwide (no organization) objects.
This allows any device of any organization to use the automation.

If needed, you can use any organization as long as the VPN server, the VPN client template, and devices have
the same organization.

1. Create VPN Server Configuration for VXLAN Over WireGuard 125

2. Deploy Wireguard VXLAN VPN Server 126

3. Create VPN Client Template for WireGuard VXLAN VPN Server 126

4. Apply Wireguard VXLAN VPN Template to Devices 127

Modules

124

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-tutorial/device-configuration.png
https://www.wireguard.com/

1. Create VPN Server Configuration for VXLAN Over WireGuard

1. Visit /admin/config/vpn/add/ to add a new VPN server.

2. We will set Name of this VPN server Wireguard VXLAN and Host as
wireguard-vxlan-server.mydomain.com (update this to point to your WireGuard VXLAN VPN server).

3. Select VXLAN over WireGuard from the dropdown as VPN Backend.

4. When using VXLAN over WireGuard, OpenWISP takes care of managing IP addresses (assigning an IP
address to each VPN peer). You can create a new subnet or select an existing one from the dropdown menu.
You can also assign an Internal IP to the WireGuard Server or leave it empty for OpenWISP to configure. This
IP address will be used by the WireGuard interface on server.

5. We have set the Webhook Endpoint as
https://wireguard-vxlan-server.mydomain.com:8081/trigger-update for this example. You will
need to update this according to you VPN upgrader endpoint. Set Webhook AuthToken to any strong
passphrase, this will be used to ensure that configuration upgrades are requested from trusted sources.

Note

If you are following this tutorial for also setting up WireGuard VPN server, just substitute
wireguard-server.mydomain.com with hostname of your VPN server and follow the steps in next section.

6. Under the configuration section, set the name of WireGuard tunnel 1 interface. We have used wg0 in this
example.

Modules

125

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-vxlan-tutorial/vpn-server-1.png

7. After clicking on Save and continue editing, you will see that OpenWISP has automatically created public and
private key for WireGuard server in System Defined Variables along with internal IP address information.

2. Deploy Wireguard VXLAN VPN Server

If you haven't already set up WireGuard on your VPN server, this is a good time to do so. We recommend using the
ansible-wireguard-openwisp role for installing WireGuard since it also installs scripts that allow OpenWISP to
manage the WireGuard VPN server along with VXLAN tunnels.

Pay attention to the VPN server attributes used in your playbook. It should be the same as the VPN server
configuration in OpenWISP.

3. Create VPN Client Template for WireGuard VXLAN VPN Server

1. Visit /admin/config/template/add/ to add a new template.

2. Set Wireguard VXLAN Client as Name (you can set whatever you want) and select VPN-client as type
from the dropdown list.

3. The Backend field refers to the backend of the device this template can be applied to. For this example, we will
leave it as OpenWrt.

4. Select the correct VPN server from the dropdown for the VPN field. Here it is Wireguard VXLAN.

5. Ensure that Automatic tunnel provisioning is checked. This will make OpenWISP automatically generate
public and private keys and provision IP addresses for each WireGuard VPN client along with the VXLAN
Network Identifier (VNI).

Modules

126

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-vxlan-tutorial/vpn-server-2.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-vxlan-tutorial/vpn-server-3.png
https://github.com/openwisp/ansible-wireguard-openwisp

6. After clicking on Save and continue editing button, you will see details of the Wireguard VXLAN VPN server in
System Defined Variables. The template configuration will be automatically generated which you can tweak
accordingly. We will use the automatically generated VPN client configuration for this example.

4. Apply Wireguard VXLAN VPN Template to Devices

Note

This step assumes that you already have a device registered on OpenWISP. Register or create a device before
proceeding.

1. Open the Configuration tab of the concerned device.

2. Select the WireGuard VXLAN Client template.

3. Upon clicking on Save and continue editing button, you will see some entries in System Defined Variables.
It will contain internal IP address, private and public key for the WireGuard client on the device and details of
WireGuard VPN server along with VXLAN Network Identifier(VNI) of this device.

Voila! You have successfully configured OpenWISP to manage VXLAN over WireGuard tunnels for your devices.

Modules

127

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-vxlan-tutorial/template.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/wireguard-vxlan-tutorial/device-configuration.png

Seealso

You may also want to explore other automated VPN tunnel provisioning options:

• Wireguard

• Zerotier

• OpenVPN

Automating ZeroTier Tunnels

Important

This guide assumes your OpenWrt firmware has the zerotier package installed. If this package is not present,
you will need to install it.

Follow the procedure described below to set up ZeroTier tunnels on your devices.

Note

This guide creates the VPN server and VPN client templates as Shared systemwide (no organization) objects.
This allows any device of any organization to use the automation.

If needed, you can use any organization as long as the VPN server, the VPN client template, and devices have
the same organization.

1. Configure Self-Hosted ZeroTier Network Controller 128

2. Create VPN Server Configuration for ZeroTier 128

3. Create VPN Client Template for ZeroTier VPN Server 130

4. Apply ZeroTier VPN Template to Devices 131

1. Configure Self-Hosted ZeroTier Network Controller

If you haven't already set up a self-hosted ZeroTier network controller on your server, now is a good time to do so.
You can start by simply installing ZeroTier on your server from the official website.

2. Create VPN Server Configuration for ZeroTier

1. Visit /admin/config/vpn/add/ to add a new VPN server.

2. We will set Name of this VPN server ZeroTier and Host as my-zerotier-server.mydomain.com:9993
(update this to point to your ZeroTier VPN server).

3. Select ZeroTier from the dropdown as VPN Backend.

4. When using ZeroTier, OpenWISP takes care of managing IP addresses (assigning an IP address to each VPN
client (ZeroTier network members)). You can create a new subnet or select an existing one from the dropdown
menu. You can also assign an Internal IP to the ZeroTier controller or leave it empty for OpenWISP to
configure. This IP address will be used to assign it to the ZeroTier controller running on the server.

5. Set the Webhook AuthToken, this will be the ZeroTier authorization token which you can obtain by running the
following command on the ZeroTier controller:

Modules

128

https://www.zerotier.com/
https://www.zerotier.com/download/

sudo cat /var/lib/zerotier-one/authtoken.secret

Modules

129

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/vpn-server-1.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/vpn-server-2.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/vpn-server-3.png

6. After clicking on Save and continue editing, OpenWISP automatically detects the node address of the
ZeroTier controller and creates a ZeroTier network. The network_id of this network can be viewed in the
System Defined Variables section, where it also provides internal IP address information.

3. Create VPN Client Template for ZeroTier VPN Server

1. Visit /admin/config/template/add/ to add a new template.

2. Set ZeroTier Client as Name (you can set whatever you want) and select VPN-client as type from the
dropdown list.

3. The Backend field refers to the backend of the device this template can be applied to. For this example, we will
leave it to OpenWrt.

4. Select the correct VPN server from the dropdown for the VPN field. Here it is ZeroTier.

5. Ensure that the Automatic tunnel provisioning option is checked. This will enable OpenWISP to automatically
provision an IP address and ZeroTier identity secrets (used for assigning member IDs) for each ZeroTier VPN
client.

6. After clicking on Save and continue editing button, you will see details of ZeroTier VPN server in System
Defined Variables. The template configuration will be automatically generated which you can tweak
accordingly. We will use the automatically generated VPN client configuration for this example.

Modules

130

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/vpn-server-4.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/vpn-server-5.png

Note

OpenWISP uses zerotier-idtool to manage ZeroTier identity secrets. Please make sure that you have ZeroTier
package installed on the server.

4. Apply ZeroTier VPN Template to Devices

Note

This step assumes that you already have a device registered on OpenWISP. Register or create a device before
proceeding.

1. Open the Configuration tab of the concerned device.

2. Select the ZeroTier Client template.

3. Upon clicking the Save and Continue Editing button, you will see entries in the System Defined Variables
section. These entries will include zerotier_member_id, identity_secret, and the internal IP address of the
ZeroTier client (network member) on the device, along with details of the VPN server.

Modules

131

https://github.com/zerotier/ZeroTierOne/blob/dev/doc/zerotier-idtool.1.md
https://www.zerotier.com/download/
https://www.zerotier.com/download/
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/template.png

4. Once the configuration is successfully applied to the device, you will notice a new ZeroTier interface that is up
and running. This interface will have the name owzt89f498 (where owzt is followed by the last six
hexadecimal characters of the ZeroTier network ID).

Congratulations! You've successfully configured OpenWISP to manage ZeroTier tunnels on your devices.

Seealso

You may also want to explore other automated VPN tunnel provisioning options:

• Wireguard

• Wireguard over VXLAN

• OpenVPN

Automating OpenVPN Tunnels

Important

This guide assumes your OpenWrt firmware has the openvpn-mbedtls package (or equivalent versions like
openvpn-wolfssl or openvpn-openssl) installed. If this package is not present, you will need to install it.

In this guide, we will explore how to set up the automatic provisioning and management of OpenVPN tunnels.

Modules

132

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/device-configuration-1.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/zerotier-tutorial/device-configuration-2.png

Table of Contents:

Run the Playbook 20

Automating OpenVPN Tunnels 132

Setting up the OpenVPN Server 133

1. Install Ansible and Required Ansible Roles 133

2. Create Inventory File and Playbook YAML 133

3. Run the Playbook 134

Import the CA and the Server Certificate in OpenWISP 134

Import the CA 135

Import the Server Certificate 135

Create the VPN Server in OpenWISP 135

Create the VPN-Client Template in OpenWISP 135

Setting up the OpenVPN Server

The first step is to install the OpenVPN server. In this tutorial, to perform this step we will use Ansible.

If you already have experience installing an OpenVPN server, feel free to use any method you prefer.

Important

If you have already set up your OpenVPN server or prefer to install the OpenVPN server using a different
method, you can skip forward to Import the CA and the Server Certificate in OpenWISP.

For simplicity, the OpenVPN server must be installed on the same server where OpenWISP is also installed.

While it is possible to install the OpenVPN server on a different server, it requires additional steps not covered in this
tutorial.

1. Install Ansible and Required Ansible Roles

Install Ansible on your local machine (please ensure that you do not install it on the server).

To install Ansible, we suggest following the official Ansible installation guide.

After installing Ansible, you need to install Git (example for Linux Debian/Ubuntu systems):

sudo apt-get install git

After installing both Ansible and Git, install the required roles:

ansible-galaxy install git+https://github.com/Stouts/Stouts.openvpn,3.0.0 nkakouros.easyrsa

2. Create Inventory File and Playbook YAML

Create an Ansible inventory file named inventory on your local machine (not on the server) with the following
contents:

[openvpn]
your_server_domain_or_ip

For example, if your server IP is 192.168.56.2:

Modules

133

http://docs.ansible.com/ansible/latest/intro_installation.html

[openvpn]
192.168.56.2

In the same directory where you created the inventory file, create a file named playbook.yml with the following
content:

- hosts: openvpn
 vars:
 # EasyRSA
 easyrsa_generate_dh: true
 easyrsa_servers:
 - name: server
 easyrsa_clients: []
 easyrsa_pki_dir: /etc/easyrsa/pki

 # OpenVPN
 openvpn_keydir: "{{ easyrsa_pki_dir }}"
 openvpn_clients: []
 openvpn_use_pam: false
 roles:
 - role: nkakouros.easyrsa
 - role: Stouts.openvpn

Hint

You can further customize the configuration using the role variables. Read more about other options in EasyRSA
and OpenVPN.

3. Run the Playbook

Run the Ansible playbook:

ansible-playbook -i inventory playbook.yml -b -k -K --become-method=su

Import the CA and the Server Certificate in OpenWISP

Important

If you chose an alternative installation method for OpenVPN and you did not create the CA and certificate yet,
you can create the certificates from scratch via the OpenWISP web interface instead of importing them.

Follow the instructions below and instead of selecting Import Existing as Operation Type, select Create new.

You also won't need to copy any file from the server as OpenWISP generates the x509 certificates automatically.

To import the CA and Server Certificate into OpenWISP, you need to access your server via ssh or any other
method that suits you.

Change your directory to /etc/easyrsa/pki/.

Modules

134

https://github.com/nkakouros-original/ansible-role-easyrsa
https://github.com/Stouts/Stouts.openvpn

Note

If you incur in the following error: -bash: cd: /etc/easyrsa/pki: Permission denied, you may need
to log in as the root user.

Import the CA

In your OpenWISP dashboard, go to /admin/pki/ca/add/.

In Operation Type, choose Import Existing.

Get your CA certificate from the ca.crt file and the private key from the private/ca.key file, then enter them in
the respective fields.

Import the Server Certificate

In your OpenWISP dashboard, go to /admin/pki/cert/add/.

In Operation Type, choose Import Existing and in CA, choose the CA you just created.

Get your server certificate from the issued/server.crt file and the server private key from the
private/server.key file, then enter them in the respective fields.

Create the VPN Server in OpenWISP

In the OpenWISP dashboard, go to /admin/config/vpn/add/.

In the Host field, enter your server IP address. In the Certification Authority and X509 Certificate fields, select the CA
and certificate you created in the previous step.

Under Configuration, click on Configuration Menu, then change Server (Bridged) to Server (Routed).

Setting up a Bridged Server is similar to setting up a Routed Server but is not covered in this tutorial.

Adjust the rest of the VPN configuration to match the settings in /etc/openvpn/server.conf.

Tip

You can verify if your VPN configuration matches the server.conf file by using the Preview Configuration
button at the top right corner of the page.

Create the VPN-Client Template in OpenWISP

In your OpenWISP dashboard, go to /admin/config/template/add/.

Set the Type to VPN-client.

Once the VPN field appears, select the VPN you created in the previous step.

Ensure the Automatic tunnel provisioning flag remains enabled.

If this template is for your management VPN or the default VPN option, we recommend checking the Enabled by
default flag. For more information about this flag, refer to Default Templates.

Now, save the template.

After saving the template, you can tweak the VPN Client configuration, which is automatically generated to be
compatible with the server configuration.

Modules

135

Finally you can add the new template to your devices.

Tip

If you need to troubleshoot any issue, increase the verbosity of the OpenVPN logging, both on the server and the
clients, and check both logs (on the server and on the client).

Seealso

You may also want to explore other automated VPN tunnel provisioning options:

• Wireguard

• Wireguard over VXLAN

• Zerotier

Automating Subnet and IP Address Provisioning

This guide helps you automate provisioning subnets and IP addresses for your network devices.
1. Create a Subnet and a Subnet Division Rule 136

Device Subnet Division Rule 137

VPN Subnet Division Rule 137

2. Create a VPN Server 138

3. Create a VPN Client Template 138

4. Apply VPN Client Template to Devices 139

Important notes for using Subnet Division 139

Limitations of Subnet Division Rules 140

Size 140

Number of Subnets 140

Number of IPs 140

1. Create a Subnet and a Subnet Division Rule

Create a master subnet.

This is the parent subnet from which automatically generated subnets will be provisioned.

Note

Choose a subnet size appropriate for the needs of your network.

Modules

136

On the same page, add a subnet division rule. This rule defines the criteria for automatically provisioning subnets
under the master subnet.

The type of subnet division rule determines when subnets and IP addresses are assigned to devices.

The currently supported rule types are described below.

Note

For information on how to write your own subnet division rule types, please refer to: Custom Subnet Division Rule
Types.

Device Subnet Division Rule

This rule triggers when a device configuration (config.Config model) is created for the organization specified in
the rule.

Note

If a device object is created without any related configuration object, it will not trigger this rule.

Creating a new "Device" rule will also automatically provision subnets and IP addresses for existing devices within
the organization.

VPN Subnet Division Rule

This rule triggers when a template flagged as VPN-client is assigned to a device configuration, but only if the VPN
server associated with the VPN-client template uses the same subnet to which the subnet division rule is assigned
to.

Modules

137

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/subnet.png

In this example, VPN subnet division rule is used.

2. Create a VPN Server

Now create a VPN Server and choose the previously created master subnet as the subnet for this VPN Server.

3. Create a VPN Client Template

Create a template, setting the Type field to VPN Client and VPN field to use the previously created VPN Server.

Note

You can also check the Enable by default field if you want to automatically apply this template to devices that
will register in future.

Modules

138

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/subnet-division-rule.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/vpn-server.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/vpn-client.png

4. Apply VPN Client Template to Devices

With everything in place, you can now apply the VPN Client Template to devices.

After saving the device, you should see all provisioned Subnets and IPs for this device under System Defined
Variables.

You can now use these Configuration Variables in the configuration of devices of your network.

Important notes for using Subnet Division

• In the example provided, the Subnet, VPN Server, and VPN Client Template were associated with the default
organization. You can also utilize Systemwide Shared Subnet, VPN Server, or VPN Client Template; however,
remember that the Subnet Division Rule will always be linked to an organization. It will only be triggered when a
VPN Client Template is applied to a Device with the same organization as the Subnet Division Rule.

• Configuration variables can be used for provisioned subnets and IPs in the Template. Each variable will resolve
differently for different devices. For example, OW_subnet1_ip1 will resolve to 10.0.0.1 for one device and
10.0.0.55 for another. Every device receives its own set of subnets and IPs. Ensure to provide default
fallback values in the default values template field (mainly used for validation).

• The Subnet Division Rule automatically creates a reserved subnet, which can be utilized to provision any IP
addresses that need to be created manually. The remaining address space of the master subnet must not be
interfered with, or the automation implemented in this module will not function.

• The example provided used the VPN subnet division rule. Similarly, the device subnet division rule can be
employed, requiring only the creation of a subnet and a subnet division rule.

Modules

139

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/apply-template-to-device.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/subnet-division-rule/system-defined-variables.png

Limitations of Subnet Division Rules

In the current implementation, it is not possible to change Size, Number of Subnets and Number of IPs fields of an
existing subnet division rule due to following reasons:

Size

Allowing to change size of provisioned subnets of an existing subnet division rule will require rebuilding of Subnets
and IP addresses which has possibility of breaking existing configurations.

Number of Subnets

Allowing to decrease number of subnets of an existing subnet division rule can create patches of unused subnets
dispersed everywhere in the master subnet. Allowing to increase number of subnets will break the continuous
allocation of subnets for every device. It can also break configuration of devices.

Number of IPs

Decreasing the number of IPs in an existing subnet division rule is not allowed as it can lead to deletion of IP
addresses, potentially breaking configurations of existing devices.

Increasing the number of IPs is allowed.

If you need to modify any of these fields (Size, Number of Subnets, or Number of IPs), we recommend to proceed
as follows:

1. Delete the existing rule.

2. Create a new rule.

The automation will provision new subnets and addresses according to the new parameters to any existing devices
that are eligible to the subnet division rule.

However, be aware that existing devices will probably be reassigned different subnets and IP addresses than
the ones used previously.

REST API Reference

Live Documentation 141

Browsable Web Interface 141

Authentication 141

Pagination 142

List of Endpoints 142

Modules

140

Live Documentation

A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Browsable Web Interface

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

Authentication

See Authenticating with the User Token.

When browsing the API via the Live Documentation or the Browsable Web Interface, you can also use the session
authentication by logging in the django admin.

Modules

141

https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/live-docu-api.png
https://raw.githubusercontent.com/openwisp/openwisp-controller/docs/docs/browsable-api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Pagination

All list endpoints support the page_size parameter that allows paginating the results in conjunction with the page
parameter.

GET /api/v1/controller/template/?page_size=10
GET /api/v1/controller/template/?page_size=10&page=2

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
point, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

List Devices

GET /api/v1/controller/device/

Available filters

You can filter a list of devices based on their configuration status using the status (e.g modified, applied, or error).

GET /api/v1/controller/device/?config__status={status}

You can filter a list of devices based on their configuration backend using the backend (e.g
netjsonconfig.OpenWrt or netjsonconfig.OpenWisp).

GET /api/v1/controller/device/?config__backend={backend}

You can filter a list of devices based on their organization using the organization_id or organization_slug.

GET /api/v1/controller/device/?organization={organization_id}

GET /api/v1/controller/device/?organization_slug={organization_slug}

You can filter a list of devices based on their configuration templates using the template_id.

GET /api/v1/controller/device/?config__templates={template_id}

You can filter a list of devices based on their device group using the group_id.

GET /api/v1/controller/device/?group={group_id}

You can filter a list of devices that have a device location object using the with_geo (e.g. true or false).

GET /api/v1/controller/device/?with_geo={with_geo}

You can filter a list of devices based on their creation time using the creation_time.

Created exact
GET /api/v1/controller/device/?created={creation_time}

Created greater than or equal to
GET /api/v1/controller/device/?created__gte={creation_time}

Created is less than
GET /api/v1/controller/device/?created__lt={creation_time}

Create Device

POST /api/v1/controller/device/

Modules

142

Get Device Detail

GET /api/v1/controller/device/{id}/

Download Device Configuration

GET /api/v1/controller/device/{id}/configuration/

The above endpoint triggers the download of a tar.gz file containing the generated configuration for that specific
device.

Change Details of Device

PUT /api/v1/controller/device/{id}/

Patch Details of Device

PATCH /api/v1/controller/device/{id}/

Note

To assign, unassign, and change the order of the assigned templates add, remove, and change the order of the
{id} of the templates under the config field in the JSON response respectively. Moreover, you can also select
and unselect templates in the HTML Form of the Browsable API.

The required template(s) from the organization(s) of the device will added automatically to the config and cannot
be removed.

Example usage: For assigning template(s) add the/their {id} to the config of a device,

curl -X PATCH \
 http://127.0.0.1:8000/api/v1/controller/device/76b7d9cc-4ffd-4a43-b1b0-8f8befd1a7c0/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: application/json' \
 -d '{
 "config": {
 "templates": ["4791fa4c-2cef-4f42-8bb4-c86018d71bd3"]
 }
 }'

Example usage: For removing assigned templates, simply remove the/their {id} from the config of a device,

curl -X PATCH \
 http://127.0.0.1:8000/api/v1/controller/device/76b7d9cc-4ffd-4a43-b1b0-8f8befd1a7c0/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: application/json' \
 -d '{
 "config": {
 "templates": []
 }
 }'

Example usage: For reordering the templates simply change their order from the config of a device,

Modules

143

curl -X PATCH \
 http://127.0.0.1:8000/api/v1/controller/device/76b7d9cc-4ffd-4a43-b1b0-8f8befd1a7c0/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -H 'postman-token: b3f6a1cc-ff13-5eba-e460-8f394e485801' \
 -d '{
 "config": {
 "templates": [
 "c5bbc697-170e-44bc-8eb7-b944b55ee88f",
 "4791fa4c-2cef-4f42-8bb4-c86018d71bd3"
]
 }
 }'

Delete Device

DELETE /api/v1/controller/device/{id}/

List Device Connections

GET /api/v1/controller/device/{id}/connection/

Create Device Connection

POST /api/v1/controller/device/{id}/connection/

Get Device Connection Detail

GET /api/v1/controller/device/{id}/connection/{id}/

Change Device Connection Detail

PUT /api/v1/controller/device/{id}/connection/{id}/

Patch Device Connection Detail

PATCH /api/v1/controller/device/{id}/connection/{id}/

Delete Device Connection

DELETE /api/v1/controller/device/{id}/connection/{id}/

List Credentials

GET /api/v1/connection/credential/

Modules

144

Create Credential

POST /api/v1/connection/credential/

Get Credential Detail

GET /api/v1/connection/credential/{id}/

Change Credential Detail

PUT /api/v1/connection/credential/{id}/

Patch Credential Detail

PATCH /api/v1/connection/credential/{id}/

Delete Credential

DELETE /api/v1/connection/credential/{id}/

List Commands of a Device

GET /api/v1/controller/device/{id}/command/

Execute a Command a Device

POST /api/v1/controller/device/{id}/command/

Get Command Details

GET /api/v1/controller/device/{device_id}/command/{command_id}/

List Device Groups

GET /api/v1/controller/group/

Available filters

You can filter a list of device groups based on their organization using the organization_id or
organization_slug.

GET /api/v1/controller/group/?organization={organization_id}

GET /api/v1/controller/group/?organization_slug={organization_slug}

You can filter a list of device groups that have a device object using the empty (e.g. true or false).

GET /api/v1/controller/group/?empty={empty}

Modules

145

Create Device Group

POST /api/v1/controller/group/

Get Device Group Detail

GET /api/v1/controller/group/{id}/

Change Device Group Detail

PUT /api/v1/controller/group/{id}/

This endpoint allows to change the Group Templates too.

Get Device Group from Certificate Common Name

GET /api/v1/controller/cert/{common_name}/group/

This endpoint can be used to retrieve group information and metadata by the common name of a certificate used in a
VPN client tunnel, this endpoint is used in layer 2 tunneling solutions for firewall/captive portals.

It is also possible to filter device group by providing organization slug of certificate's organization as show in the
example below:

GET /api/v1/controller/cert/{common_name}/group/?org={org1_slug},{org2_slug}

Get Device Location

GET /api/v1/controller/device/{id}/location/

Create Device Location

PUT /api/v1/controller/device/{id}/location/

You can create DeviceLocation object by using primary keys of existing Location and FloorPlan objects as
shown in the example below.

{
 "location": "f0cb5762-3711-4791-95b6-c2f6656249fa",
 "floorplan": "dfeb6724-aab4-4533-aeab-f7feb6648acd",
 "indoor": "-36,264"
}

Note

The indoor field represents the coordinates of the point placed on the image from the top left corner. E.g. if you
placed the pointer on the top left corner of the floor plan image, its indoor coordinates will be 0,0.

curl -X PUT \
 http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/location/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: application/json' \
 -d '{

Modules

146

 "location": "f0cb5762-3711-4791-95b6-c2f6656249fa",
 "floorplan": "dfeb6724-aab4-4533-aeab-f7feb6648acd",
 "indoor": "-36,264"
 }'

You can also create related Location and FloorPlan objects for the device directly from this endpoint.

The following example demonstrates creating related location object in a single request.

{
 "location": {
 "name": "Via del Corso",
 "address": "Via del Corso, Roma, Italia",
 "geometry": {
 "type": "Point",
 "coordinates": [12.512124, 41.898903]
 },
 "type": "outdoor",
 }
}

curl -X PUT \
 http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/location/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: application/json' \
 -d '{
 "location": {
 "name": "Via del Corso",
 "address": "Via del Corso, Roma, Italia",
 "geometry": {
 "type": "Point",
 "coordinates": [12.512124, 41.898903]
 },
 "type": "outdoor"
 }
 }'

Note

You can also specify the geometry in Well-known text (WKT) format, like following:

{
 "location": {
 "name": "Via del Corso",
 "address": "Via del Corso, Roma, Italia",
 "geometry": "POINT (12.512124 41.898903)",
 "type": "outdoor",
 }
}

Similarly, you can create Floorplan object with the same request. But, note that a FloorPlan can be added to
DeviceLocation only if the related Location object defines an indoor location. The example below demonstrates
creating both Location and FloorPlan objects.

{
 "location.name": "Via del Corso",
 "location.address": "Via del Corso, Roma, Italia",
 "location.geometry.type": "Point",
 "location.geometry.coordinates": [12.512124, 41.898903],

Modules

147

 "location.type": "outdoor",
 "floorplan.floor": 1,
 "floorplan.image": "floorplan.png"
}

curl -X PUT \
 http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/location/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW' \
 -F 'location.name=Via del Corso' \
 -F 'location.address=Via del Corso, Roma, Italia' \
 -F location.geometry.type=Point \
 -F 'location.geometry.coordinates=[12.512124, 41.898903]' \
 -F location.type=indoor \
 -F floorplan.floor=1 \
 -F 'floorplan.image=@floorplan.png'

Note

The example above uses multipart content-type for uploading floor plan image.

You can also use an existing Location object and create a new floor plan for that location using this endpoint.

{
 "location": "f0cb5762-3711-4791-95b6-c2f6656249fa",
 "floorplan.floor": 1,
 "floorplan.image": "floorplan.png"
}

curl -X PUT \
 http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/location/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW' \
 -F location=f0cb5762-3711-4791-95b6-c2f6656249fa \
 -F floorplan.floor=1 \
 -F 'floorplan.image=@floorplan.png'

Change Details of Device Location

PUT /api/v1/controller/device/{id}/location/

Note

This endpoint can be used to update related Location and Floorplan objects. Refer to the examples in the
"Create device location" section for information on payload format.

Delete Device Location

DELETE /api/v1/controller/device/{id}/location/

Modules

148

Get Device Coordinates

GET /api/v1/controller/device/{id}/coordinates/

Note

This endpoint is intended to be used by devices.

This endpoint skips multi-tenancy and permission checks if the device key is passed as query_param because the
system assumes that the device is updating it's position.

curl -X GET \
 'http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/coordinates/?key=10a0cb5a553c71099c0e4ef236435496'

Update Device Coordinates

PUT /api/v1/controller/device/{id}/coordinates/

Note

This endpoint is intended to be used by devices.

This endpoint skips multi-tenancy and permission checks if the device key is passed as query_param because the
system assumes that the device is updating it's position.

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [12.512124, 41.898903]
 },
}

curl -X PUT \
 'http://127.0.0.1:8000/api/v1/controller/device/8a85cc23-bad5-4c7e-b9f4-ffe298defb5c/coordinates/?key=10a0cb5a553c71099c0e4ef236435496' \
 -H 'content-type: application/json' \
 -d '{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [12.512124, 41.898903]
 },
 }'

List Locations

GET /api/v1/controller/location/

Available filters

You can filter using organization_id or organization_slug to get list locations that belongs to an
organization.

Modules

149

GET /api/v1/controller/location/?organization={organization_id}

GET /api/v1/controller/location/?organization_slug={organization_slug}

Create Location

POST /api/v1/controller/location/

If you are creating an indoor location, you can use this endpoint to create floor plan for the location.

The following example demonstrates creating floor plan along with location in a single request.

{
 "name": "Via del Corso",
 "address": "Via del Corso, Roma, Italia",
 "geometry.type": "Point",
 "geometry.location": [12.512124, 41.898903],
 "type": "indoor",
 "is_mobile": "false",
 "floorplan.floor": "1",
 "floorplan.image": "floorplan.png",
 "organization": "1f6c5666-1011-4f1d-bce9-fc6fcb4f3a05"
}

curl -X POST \
 http://127.0.0.1:8000/api/v1/controller/location/ \
 -H 'authorization: Bearer dc8d497838d4914c9db9aad9b6ec66f6c36ff46b' \
 -H 'content-type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW' \
 -F 'name=Via del Corso' \
 -F 'address=Via del Corso, Roma, Italia' \
 -F geometry.type=Point \
 -F 'geometry.coordinates=[12.512124, 41.898903]' \
 -F type=indoor \
 -F is_mobile=false \
 -F floorplan.floor=1 \
 -F 'floorplan.image=@floorplan.png' \
 -F organization=1f6c5666-1011-4f1d-bce9-fc6fcb4f3a05

Note

You can also specify the geometry in Well-known text (WKT) format, like following:

{
 "name": "Via del Corso",
 "address": "Via del Corso, Roma, Italia",
 "geometry": "POINT (12.512124 41.898903)",
 "type": "indoor",
 "is_mobile": "false",
 "floorplan.floor": "1",
 "floorplan.image": "floorplan.png",
 "organization": "1f6c5666-1011-4f1d-bce9-fc6fcb4f3a05"
}

Modules

150

Get Location Details

GET /api/v1/controller/location/{pk}/

Change Location Details

PUT /api/v1/controller/location/{pk}/

Note

Only the first floor plan data present can be edited or changed. Setting the type of location to outdoor will
remove all the floor plans associated with it.

Refer to the examples in the "Create device location" section for information on payload format.

Delete Location

DELETE /api/v1/controller/location/{pk}/

List Devices in a Location

GET /api/v1/controller/location/{id}/device/

List Locations with Devices Deployed (in GeoJSON Format)

Note

this endpoint will only list locations that have been assigned to a device.

GET /api/v1/controller/location/geojson/

Available filters

You can filter using organization_id or organization_slug to get list location of devices from that
organization.

GET /api/v1/controller/location/geojson/?organization_id={organization_id}

GET /api/v1/controller/location/geojson/?organization_slug={organization_slug}

Floor Plan List

GET /api/v1/controller/floorplan/

Available filters

You can filter using organization_id or organization_slug to get list floor plans that belongs to an
organization.

Modules

151

GET /api/v1/controller/floorplan/?organization={organization_id}

GET /api/v1/controller/floorplan/?organization_slug={organization_slug}

Create Floor Plan

POST /api/v1/controller/floorplan/

Get Floor Plan Details

GET /api/v1/controller/floorplan/{pk}/

Change Floor Plan Details

PUT /api/v1/controller/floorplan/{pk}/

Delete Floor Plan

DELETE /api/v1/controller/floorplan/{pk}/

List Templates

GET /api/v1/controller/template/

Available filters

You can filter a list of templates based on their organization using the organization_id or
organization_slug.

GET /api/v1/controller/template/?organization={organization_id}

GET /api/v1/controller/template/?organization_slug={organization_slug}

You can filter a list of templates based on their backend using the backend (e.g netjsonconfig.OpenWrt or
netjsonconfig.OpenWisp).

GET /api/v1/controller/template/?backend={backend}

You can filter a list of templates based on their type using the type (e.g. vpn or generic).

GET /api/v1/controller/template/?type={type}

You can filter a list of templates that are enabled by default or not using the default (e.g. true or false).

GET /api/v1/controller/template/?default={default}

You can filter a list of templates that are required or not using the required (e.g. true or false).

GET /api/v1/controller/template/?required={required}

You can filter a list of templates based on their creation time using the creation_time.

Created exact

GET /api/v1/controller/template/?created={creation_time}

Created greater than or equal to

Modules

152

GET /api/v1/controller/template/?created__gte={creation_time}

Created is less than

GET /api/v1/controller/template/?created__lt={creation_time}

Create Template

POST /api/v1/controller/template/

Get Template Detail

GET /api/v1/controller/template/{id}/

Download Template Configuration

GET /api/v1/controller/template/{id}/configuration/

The above endpoint triggers the download of a tar.gz file containing the generated configuration for that specific
template.

Change Details of Template

PUT /api/v1/controller/template/{id}/

Patch Details of Template

PATCH /api/v1/controller/template/{id}/

Delete Template

DELETE /api/v1/controller/template/{id}/

List VPNs

GET /api/v1/controller/vpn/

Available filters

You can filter a list of vpns based on their backend using the backend (e.g
openwisp_controller.vpn_backends.OpenVpn or openwisp_controller.vpn_backends.Wireguard).

GET /api/v1/controller/vpn/?backend={backend}

You can filter a list of vpns based on their subnet using the subnet_id.

GET /api/v1/controller/vpn/?subnet={subnet_id}

You can filter a list of vpns based on their organization using the organization_id or organization_slug.

GET /api/v1/controller/vpn/?organization={organization_id}

GET /api/v1/controller/vpn/?organization_slug={organization_slug}

Modules

153

Create VPN

POST /api/v1/controller/vpn/

Get VPN detail

GET /api/v1/controller/vpn/{id}/

Download VPN Configuration

GET /api/v1/controller/vpn/{id}/configuration/

The above endpoint triggers the download of a tar.gz file containing the generated configuration for that specific
VPN.

Change Details of VPN

PUT /api/v1/controller/vpn/{id}/

Patch Details of VPN

PATCH /api/v1/controller/vpn/{id}/

Delete VPN

DELETE /api/v1/controller/vpn/{id}/

List CA

GET /api/v1/controller/ca/

Create New CA

POST /api/v1/controller/ca/

Import Existing CA

POST /api/v1/controller/ca/

Note

To import an existing CA, only name, certificate and private_key fields have to be filled in the HTML form
or included in the JSON format.

Modules

154

Get CA Detail

GET /api/v1/controller/ca/{id}/

Change Details of CA

PUT /api/v1/controller/ca/{id}/

Patch Details of CA

PATCH /api/v1/controller/ca/{id}/

Download CA(crl)

GET /api/v1/controller/ca/{id}/crl/

The above endpoint triggers the download of {id}.crl file containing up to date CRL of that specific CA.

Delete CA

DELETE /api/v1/controller/ca/{id}/

Renew CA

POST /api/v1/controller/ca/{id}/renew/

List Cert

GET /api/v1/controller/cert/

Create New Cert

POST /api/v1/controller/cert/

Import Existing Cert

POST /api/v1/controller/cert/

Note

To import an existing Cert, only name, ca, certificate and private_key fields have to be filled in the HTML
form or included in the JSON format.

Modules

155

Get Cert Detail

GET /api/v1/controller/cert/{id}/

Change Details of Cert

PUT /api/v1/controller/cert/{id}/

Patch Details of Cert

PATCH /api/v1/controller/cert/{id}/

Delete Cert

DELETE /api/v1/controller/cert/{id}/

Renew Cert

POST /api/v1/controller/cert/{id}/renew/

Revoke Cert

POST /api/v1/controller/cert/{id}/revoke/

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

OPENWISP_SSH_AUTH_TIMEOUT

type: int

default: 2

unit: seconds

Configure timeout to wait for an authentication response when establishing a SSH connection.

OPENWISP_SSH_BANNER_TIMEOUT

type: int

default: 60

Modules

156

unit: seconds

Configure timeout to wait for the banner to be presented when establishing a SSH connection.

OPENWISP_SSH_COMMAND_TIMEOUT

type: int

default: 30

unit: seconds

Configure timeout on blocking read/write operations when executing a command in a SSH connection.

OPENWISP_SSH_CONNECTION_TIMEOUT

type: int

default: 5

unit: seconds

Configure timeout for the TCP connect when establishing a SSH connection.

OPENWISP_CONNECTORS

type: tuple

default:
(
 ("openwisp_controller.connection.connectors.ssh.Ssh", "SSH"),
 (
 "openwisp_controller.connection.connectors.openwrt.snmp.OpenWRTSnmp",
 "OpenWRT SNMP",
),
 (
 "openwisp_controller.connection.connectors.airos.snmp.AirOsSnmp",
 "Ubiquiti AirOS SNMP",
),
)

Available connector classes. Connectors are python classes that specify ways in which OpenWISP can connect to
devices in order to launch commands.

OPENWISP_UPDATE_STRATEGIES

type: tuple

default:
(
 (
 "openwisp_controller.connection.connectors.openwrt.ssh.OpenWrt",
 "OpenWRT SSH",
),
)

Available update strategies. An update strategy is a subclass of a connector class which defines an
update_config method which is in charge of updating the configuration of the device.

This operation is launched in a background worker when the configuration of a device is changed.

Modules

157

It's possible to write custom update strategies and add them to this setting to make them available in OpenWISP.

OPENWISP_CONFIG_UPDATE_MAPPING

type: dict

default:
{
 "netjsonconfig.OpenWrt": OPENWISP_UPDATE_STRATEGIES[0][0],
}

A dictionary that maps configuration backends to update strategies in order to automatically determine the update
strategy of a device connection if the update strategy field is left blank by the user.

OPENWISP_CONTROLLER_BACKENDS

type: tuple

default:
(
 ("netjsonconfig.OpenWrt", "OpenWRT"),
 ("netjsonconfig.OpenWisp", "OpenWISP"),
)

Available configuration backends. For more information, see netjsonconfig backends.

OPENWISP_CONTROLLER_VPN_BACKENDS

type: tuple

default:
(
 ("openwisp_controller.vpn_backends.OpenVpn", "OpenVPN"),
 ("openwisp_controller.vpn_backends.Wireguard", "WireGuard"),
 (
 "openwisp_controller.vpn_backends.VxlanWireguard",
 "VXLAN over WireGuard",
),
 ("openwisp_controller.vpn_backends.ZeroTier", "ZeroTier"),
)

Available VPN backends for VPN Server objects. For more information, see netjsonconfig VPN backends.

A VPN backend must follow some basic rules in order to be compatible with openwisp-controller:

• it MUST allow at minimum and at maximum one VPN instance

• the main NetJSON property MUST match the lowercase version of the class name, e.g.: when using the
OpenVpn backend, the system will look into config['openvpn']

• it SHOULD focus on the server capabilities of the VPN software being used

OPENWISP_CONTROLLER_DEFAULT_BACKEND

type: str

default: OPENWISP_CONTROLLER_BACKENDS[0][0]

The preferred backend that will be used as initial value when adding new Config or Template objects in the admin.

Modules

158

http://netjsonconfig.openwisp.org/en/latest/general/basics.html#backend
https://netjsonconfig.openwisp.org/en/latest/backends/vpn-backends.html

This setting defaults to the raw value of the first item in the OPENWISP_CONTROLLER_BACKENDS setting, which is
netjsonconfig.OpenWrt.

Setting it to None will force the user to choose explicitly.

OPENWISP_CONTROLLER_DEFAULT_VPN_BACKEND

type: str

default: OPENWISP_CONTROLLER_VPN_BACKENDS[0][0]

The preferred backend that will be used as initial value when adding new Vpn objects in the admin.

This setting defaults to the raw value of the first item in the OPENWISP_CONTROLLER_VPN_BACKENDS setting, which
is openwisp_controller.vpn_backends.OpenVpn.

Setting it to None will force the user to choose explicitly.

OPENWISP_CONTROLLER_REGISTRATION_ENABLED

type: bool

default: True

Whether devices can automatically register through the controller or not.

This feature is enabled by default.

Auto-registration must be supported on the devices in order to work, see openwisp-config automatic registration for
more information.

OPENWISP_CONTROLLER_CONSISTENT_REGISTRATION

type: bool

default: True

Whether devices that are already registered are recognized when reflashed or reset, hence keeping the existing
configuration without creating a new one.

This feature is enabled by default.

Auto-registration must be enabled also on the devices in order to work, see openwisp-config consistent key
generation for more information.

OPENWISP_CONTROLLER_REGISTRATION_SELF_CREATION

type: bool

default: True

Whether devices that are not already present in the system are allowed to register or not.

Turn this off if you still want to use auto-registration to avoid having to manually set the device UUID and key in its
configuration file but also want to avoid indiscriminate registration of new devices without explicit permission.

OPENWISP_CONTROLLER_CONTEXT

type: dict

Modules

159

default: {}

Additional context that is passed to the default context of each device object.

OPENWISP_CONTROLLER_CONTEXT can be used to define system-wide configuration variables.

For more information regarding how to use configuration variables in OpenWISP, refer to Configuration Variables.

For technical information about how variables are handled in the lower levels of OpenWISP, see netjsonconfig
context: configuration variables.

OPENWISP_CONTROLLER_DEFAULT_AUTO_CERT

type: bool

default: True

The default value of the auto_cert field for new Template objects.

The auto_cert field is valid only for templates which have type set to VPN and indicates whether configuration
regarding the VPN tunnel is provisioned automatically to each device using the template, e.g.:

• when using OpenVPN, new x509 certificates will be generated automatically using the same CA assigned to
the related VPN object

• when using WireGuard, new pair of private and public keys (using Curve25519) will be generated, as well as an
IP address of the subnet assigned to the related VPN object

• when using VXLAN tunnels over Wireguard, in addition to the configuration generated for Wireguard, a new VID
will be generated automatically for each device if the configuration option "auto VNI" is turned on in the VPN
object

All these auto generated configuration options will be available as template variables.

The objects that are automatically created will also be removed when they are not needed anymore (e.g.: when the
VPN template is removed from a configuration object).

OPENWISP_CONTROLLER_CERT_PATH

type: str

default: /etc/x509

The file system path where x509 certificate will be installed when downloaded on routers when auto_cert is being
used (enabled by default).

OPENWISP_CONTROLLER_COMMON_NAME_FORMAT

type: str

default: {mac_address}-{name}

Defines the format of the common_name attribute of VPN client certificates that are automatically created when using
VPN templates which have auto_cert set to True. A unique slug generated using shortuuid is appended to the
common name to introduce uniqueness. Therefore, resulting common names will have
{OPENWISP_CONTROLLER_COMMON_NAME_FORMAT}-{unique-slug} format.

Modules

160

http://netjsonconfig.openwisp.org/en/latest/general/basics.html#context-configuration-variables
http://netjsonconfig.openwisp.org/en/latest/general/basics.html#context-configuration-variables
https://tools.ietf.org/html/rfc5280
http://cr.yp.to/ecdh.html
https://tools.ietf.org/html/rfc7348
https://github.com/skorokithakis/shortuuid/

Note

If the name and mac address of the device are equal, the name of the device will be omitted from the common
name to avoid redundancy.

OPENWISP_CONTROLLER_MANAGEMENT_IP_DEVICE_LIST

type: bool

default: True

In the device list page, the column IP will show the management_ip if available, defaulting to last_ip otherwise.

If this setting is set to False the management_ip won't be shown in the device list page even if present, it will be
shown only in the device detail page.

You may set this to False if for some reason the majority of your user doesn't care about the management ip
address.

OPENWISP_CONTROLLER_CONFIG_BACKEND_FIELD_SHOWN

type: bool

default: True

This setting toggles the backend fields in add/edit pages in Device and Template configuration, as well as the
backend field/filter in Device list and Template list.

If this setting is set to False these items will be removed from the UI.

Note

This setting affects only the configuration backend and NOT the VPN backend.

OPENWISP_CONTROLLER_DEVICE_NAME_UNIQUE

type: bool

default: True

This setting conditionally enforces unique Device names in an Organization. The query to enforce this is
case-insensitive.

Note: For this constraint to be optional, it is enforced on an application level and not on database.

OPENWISP_CONTROLLER_HARDWARE_ID_ENABLED

type: bool

default: False

The field hardware_id can be used to store a unique hardware id, for example a serial number.

If this setting is set to True then this field will be shown first in the device list page and in the add/edit device page.

Modules

161

This feature is disabled by default.

OPENWISP_CONTROLLER_HARDWARE_ID_OPTIONS

type: dict

default:
{
 "blank": not OPENWISP_CONTROLLER_HARDWARE_ID_ENABLED,
 "null": True,
 "max_length": 32,
 "unique": True,
 "verbose_name": _("Serial number"),
 "help_text": _("Serial number of this device"),
}

Options for the model field hardware_id.

• blank: whether the field is allowed to be blank

• null: whether an empty value will be stored as NULL in the database

• max_length: maximum length of the field

• unique: whether the value of the field must be unique

• verbose_name: text for the human readable label of the field

• help_text: help text to be displayed with the field

OPENWISP_CONTROLLER_HARDWARE_ID_AS_NAME

type: bool

default: True

When the hardware ID feature is enabled, devices will be referenced with their hardware ID instead of their name.

If you still want to reference devices by their name, set this to False.

OPENWISP_CONTROLLER_DEVICE_VERBOSE_NAME

type: tuple

default: ('Device', 'Devices')

Defines the verbose_name attribute of the Device model, which is displayed in the admin site. The first and
second element of the tuple represent the singular and plural forms.

For example, if we want to change the verbose name to "Hotspot", we could write:

OPENWISP_CONTROLLER_DEVICE_VERBOSE_NAME = ("Hotspot", "Hotspots")

OPENWISP_CONTROLLER_HIDE_AUTOMATICALLY_GENERATED_SUBNETS_AND_IPS

type: bool

default: False

Setting this to True will hide subnets and IP addresses generated by subnet division rules from being displayed in
the list of Subnets and IP addresses in the admin dashboard.

Modules

162

OPENWISP_CONTROLLER_SUBNET_DIVISION_TYPES

type: tuple

default:
(
 (
 "openwisp_controller.subnet_division.rule_types.device.DeviceSubnetDivisionRuleType",
 "Device",
),
 (
 "openwisp_controller.subnet_division.rule_types.vpn.VpnSubnetDivisionRuleType",
 "VPN",
),
)

Available types for Subject Division Rule objects.

For more information on how to write your own types, please refer to: Custom Subnet Division Rule Types.

OPENWISP_CONTROLLER_API

type: bool

default: True

Indicates whether the API for Openwisp Controller is enabled or not. To disable the API by default add
OPENWISP_CONTROLLER_API = False in your project settings.py file.

OPENWISP_CONTROLLER_API_HOST

type: str

default: None

Allows to specify backend URL for API requests, if the frontend is hosted separately.

OPENWISP_CONTROLLER_USER_COMMANDS

type: list

default: []

Allows to specify a list of tuples for adding commands as described in the section: Defining New Options in the
Commands Menu.

OPENWISP_CONTROLLER_ORGANIZATION_ENABLED_COMMANDS

type: dict

default:
{
 # By default all commands are allowed
 "__all__": "*",
}

Modules

163

This setting controls the command types that are enabled on the system By default, all command types are enabled
to all the organizations, but it's possible to disable a specific command for a specific organization as shown in the
following example:

OPENWISP_CONTROLLER_ORGANIZATION_ENABLED_COMMANDS = {
 "__all__": "*",
 # Organization UUID: # Tuple of enabled commands
 "7448a190-6e65-42bf-b8ea-bb6603e593a5": ("reboot", "change_password"),
}

In the example above, the organization with UUID 7448a190-6e65-42bf-b8ea-bb6603e593a5 will allow to send
only commands of type reboot and change_password, while all the other organizations will have all command
types enabled.

OPENWISP_CONTROLLER_DEVICE_GROUP_SCHEMA

type: dict

default: {'type': 'object', 'properties': {}}

Allows specifying JSONSchema used for validating the meta-data of Device Groups.

OPENWISP_CONTROLLER_SHARED_MANAGEMENT_IP_ADDRESS_SPACE

type: bool

default: True

By default, the system assumes that the address space of the management tunnel is shared among all the
organizations using the system, that is, the system assumes there's only one management VPN, tunnel or other
networking technology to reach the devices it controls.

When set to True, any device belonging to any organization will never have the same management_ip as another
device, the latest device declaring the management IP will take the IP and any other device who declared the same
IP in the past will have the field reset to empty state to avoid potential conflicts.

Set this to False if every organization has its dedicated management tunnel with a dedicated address space that is
reachable by the OpenWISP server.

OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY

type: bool

default: True

By default, only the management IP will be used to establish connection with the devices.

If the devices are connecting to your OpenWISP instance using a shared layer2 network, hence the OpenWSP
server can reach the devices using the last_ip field, you can set this to False.

OPENWISP_CONTROLLER_DSA_OS_MAPPING

type: dict

default: {}

OpenWISP Controller can figure out whether it should use the new OpenWrt syntax for DSA interfaces (Distributed
Switch Architecture) introduced in OpenWrt 21 by reading the os field of the Device object. However, if the firmware
you are using has a custom firmware identifier, the system will not be able to figure out whether it should use the new
syntax and it will default to OPENWISP_CONTROLLER_DSA_DEFAULT_FALLBACK.

Modules

164

If you want to make sure the system can parse your custom firmware identifier properly, you can follow the example
below.

For the sake of the example, the OS identifier MyCustomFirmware 2.0 corresponds to OpenWrt 19.07, while
MyCustomFirmware 2.1 corresponds to OpenWrt 21.02. Configuring this setting as indicated below will allow
OpenWISP to supply the right syntax automatically.

Example:

OPENWISP_CONTROLLER_DSA_OS_MAPPING = {
 "netjsonconfig.OpenWrt": {
 # OpenWrt >=21.02 configuration syntax will be used for
 # these OS identifiers.
 ">=21.02": [r"MyCustomFirmware 2.1(.*)"],
 # OpenWrt <=21.02 configuration syntax will be used for
 # these OS identifiers.
 "<21.02": [r"MyCustomFirmware 2.0(.*)"],
 }
}

Note

The OS identifier should be a regular expression as shown in above example.

OPENWISP_CONTROLLER_DSA_DEFAULT_FALLBACK

type: bool

default: True

The value of this setting decides whether to use DSA syntax (OpenWrt >=21 configuration syntax) if
openwisp-controller fails to make that decision automatically.

OPENWISP_CONTROLLER_GROUP_PIE_CHART

type: bool

default: False

Allows to show a pie chart like the one in the screenshot.

Modules

165

Active groups are groups which have at least one device in them, while empty groups do not have any device
assigned.

OPENWISP_CONTROLLER_API_TASK_RETRY_OPTIONS

type: dict

default: see below

default value of OPENWISP_CONTROLLER_API_TASK_RETRY_OPTIONS:

dict(
 max_retries=5, # total number of retries
 retry_backoff=True, # exponential backoff
 retry_backoff_max=600, # 10 minutes
 retry_jitter=True, # randomness into exponential backoff
)

This setting is utilized by background API tasks executed by ZeroTier VPN servers and ZeroTier VPN clients to
handle recoverable HTTP status codes such as 429, 500, 502, 503, and 504.

These tasks are retried with a maximum of 5 attempts with an exponential backoff and jitter, with a maximum delay of
10 minutes.

This feature ensures that ZeroTier Service API calls are resilient to recoverable failures, improving the reliability of
the system.

For more information on these settings, you can refer to the the celery documentation regarding automatic retries for
known errors.

Modules

166

https://docs.celeryq.dev/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions
https://docs.celeryq.dev/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Controller, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Controller User Docs

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP Controller, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Controller User Docs

Dependencies 167

Installing for Development 167

Alternative Sources 169

Pypi 169

Github 169

Install and Run on Docker 169

Troubleshooting Steps for Common Installation Issues 169

Unable to Load SpatiaLite library Extension? 169

Having Issues with Other Geospatial Libraries? 169

Dependencies

• Python >= 3.8

• OpenSSL

Installing for Development

Install the system dependencies:

sudo apt update
sudo apt install -y sqlite3 libsqlite3-dev openssl libssl-dev
sudo apt install -y gdal-bin libproj-dev libgeos-dev libspatialite-dev libsqlite3-mod-spatialite
sudo apt install -y chromium-browser

Modules

167

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-controller

Navigate into the cloned repository:

cd openwisp-controller/

Launch Redis and PostgreSQL:

docker-compose up -d redis postgres

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .
pip install -r requirements-test.txt
sudo npm install -g jshint stylelint

Install WebDriver for Chromium for your browser version from https://chromedriver.chromium.org/home and Extract
chromedriver to one of directories from your $PATH (example: ~/.local/bin/).

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch celery worker (for background jobs):

celery -A openwisp2 worker -l info

Launch development server:

./manage.py runserver 0.0.0.0:8000

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py --parallel

Some tests, such as the Selenium UI tests, require a PostgreSQL database to run. If you don't have a PostgreSQL
database running on your system, you can use the Docker Compose configuration provided in this repository. Once
set up, you can run these specific tests as follows:

Run database tests against PostgreSQL backend
POSTGRESQL=1 ./runtests.py --parallel

Run only specific selenium tests classes
cd tests/
DJANGO_SETTINGS_MODULE=openwisp2.postgresql_settings ./manage.py test openwisp_controller.config.tests.test_selenium.TestDeviceAdmin

Run quality assurance tests with:

./run-qa-checks

Modules

168

https://pypi.org/project/virtualenv/
https://chromedriver.chromium.org/home

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-controller

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-controller/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-controller#egg=openwisp_controller

Install and Run on Docker

Warning

This Docker image is for development purposes only.

For the official OpenWISP Docker images, see: docker-openwisp.

Build from the Dockerfile:

docker-compose build

Run the docker container:

docker-compose up

Troubleshooting Steps for Common Installation Issues

You may encounter some issues while installing GeoDjango.

Unable to Load SpatiaLite library Extension?

If you are incurring in the following exception:

django.core.exceptions.ImproperlyConfigured: Unable to load the SpatiaLite library extension

You need to specify SPATIALITE_LIBRARY_PATH in your settings.py as explained in django documentation
regarding how to install and configure spatialte.

Having Issues with Other Geospatial Libraries?

Please refer troubleshooting issues related to geospatial libraries.

Modules

169

https://docs.djangoproject.com/en/4.2/ref/contrib/gis/install/spatialite/
https://docs.djangoproject.com/en/4.2/ref/contrib/gis/install/spatialite/
https://docs.djangoproject.com/en/4.2/ref/contrib/gis/install/#library-environment-settings/

Important

If you want to add OpenWISP Controller to an existing Django project, then you can refer to the test project in the
openwisp-controller repository.

Code Utilities

Note

This page is for developers who want to customize or extend OpenWISP Controller, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart• OpenWISP Controller User Docs

Registering / Unregistering Commands 170

register_command 171

unregister_command 171

Controller Notifications 171

Registering Notification Types 171

Signals 171

config_modified 172

config_status_changed 172

config_backend_changed 172

checksum_requested 172

config_download_requested 173

is_working_changed 173

management_ip_changed 173

device_registered 173

device_name_changed 174

device_group_changed 174

group_templates_changed 174

subnet_provisioned 174

vpn_server_modified 174

vpn_peers_changed 175

Registering / Unregistering Commands

OpenWISP Controller allows to register new command options or unregister existing command options through two
utility functions:

• openwisp_controller.connection.commands.register_command

• openwisp_controller.connection.commands.unregister_command

You can use these functions to register new custom commands or unregister existing commands from your code.

Modules

170

https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2

Note

These functions are to be used as an alternative to the OPENWISP_CONTROLLER_USER_COMMANDS
setting when extending openwisp-controller or when developing custom applications based on OpenWISP
Controller.

register_command

Parameter Description

command_name A str defining identifier for the command.

command_config A dict like the one shown in Command Configuration: schema.

Note: It will raise ImproperlyConfigured exception if a command is already registered with the same name.

unregister_command

Parameter Description

command_name A str defining name of the command.

Note: It will raise ImproperlyConfigured exception if such command does not exists.

Controller Notifications

The notification types registered and used by OpenWISP Controller are listed in the following table.

Notification Type Use

config_error Fires when the status of a device configuration changes to error.

device_registered Fires when a new device registers itself.

Registering Notification Types

You can define your own notification types using register_notification_type function from OpenWISP
Notifications.

For more information, see the relevant documentation section about registering notification types in the Notifications
module.

Once a new notification type is registered, you can use the "notify" signal provided by the Notifications module to
send notifications with this new type.

Signals

Note

If you're not familiar with signals, please refer to the Django Signals documentation.

Modules

171

https://docs.djangoproject.com/en/4.2/topics/signals/

config_modified

Path: openwisp_controller.config.signals.config_modified

Arguments:

• instance: instance of Config which got its config modified

• previous_status: indicates the status of the config object before the signal was emitted

• action: action which emitted the signal, can be any of the list below: - config_changed: the configuration of
the config object was changed - related_template_changed: the configuration of a related template was
changed - m2m_templates_changed: the assigned templates were changed (either templates were added,
removed or their order was changed)

This signal is emitted every time the configuration of a device is modified.

It does not matter if Config.status is already modified, this signal will be emitted anyway because it signals that
the device configuration has changed.

This signal is used to trigger the update of the configuration on devices, when the push feature is enabled (requires
Device credentials).

The signal is also emitted when one of the templates used by the device is modified or if the templates assigned to
the device are changed.

Special cases in which config_modified is not emitted

This signal is not emitted when the device is created for the first time.

It is also not emitted when templates assigned to a config object are cleared (post_clear m2m signal), this is
necessary because sortedm2m, the package we use to implement ordered templates, uses the clear action to
reorder templates (m2m relationships are first cleared and then added back), therefore we ignore post_clear to
avoid emitting signals twice (one for the clear action and one for the add action). Please keep this in mind if you plan
on using the clear method of the m2m manager.

config_status_changed

Path: openwisp_controller.config.signals.config_status_changed

Arguments:

• instance: instance of Config which got its status changed

This signal is emitted only when the configuration status of a device has changed.

The signal is emitted also when the m2m template relationships of a config object are changed, but only on
post_add or post_remove actions, post_clear is ignored for the same reason explained in the previous section.

config_backend_changed

Path: openwisp_controller.config.signals.config_backend_changed Arguments:

• instance: instance of Config which got its backend changed

• old_backend: the old backend of the config object

• backend: the new backend of the config object

It is not emitted when the device or config is created.

checksum_requested

Path: openwisp_controller.config.signals.checksum_requested

Arguments:

Modules

172

https://github.com/jazzband/django-sortedm2m

• instance: instance of Device for which its configuration checksum has been requested

• request: the HTTP request object

This signal is emitted when a device requests a checksum via the controller views.

The signal is emitted just before a successful response is returned, it is not sent if the response was not successful.

config_download_requested

Path: openwisp_controller.config.signals.config_download_requested

Arguments:

• instance: instance of Device for which its configuration has been requested for download

• request: the HTTP request object

This signal is emitted when a device requests to download its configuration via the controller views.

The signal is emitted just before a successful response is returned, it is not sent if the response was not successful.

is_working_changed

Path: openwisp_controller.connection.signals.is_working_changed

Arguments:

• instance: instance of DeviceConnection

• is_working: value of DeviceConnection.is_working

• old_is_working: previous value of DeviceConnection.is_working, either None (for new connections),
True or False

• failure_reason: error message explaining reason for failure in establishing connection

• old_failure_reason: previous value of DeviceConnection.failure_reason

This signal is emitted every time DeviceConnection.is_working changes.

It is not triggered when the device is created for the first time.

management_ip_changed

Path: openwisp_controller.config.signals.management_ip_changed

Arguments:

• instance: instance of Device

• management_ip: value of Device.management_ip

• old_management_ip: previous value of Device.management_ip

This signal is emitted every time Device.management_ip changes.

It is not triggered when the device is created for the first time.

device_registered

Path: openwisp_controller.config.signals.device_registered

Arguments:

• instance: instance of Device which got registered.

• is_new: boolean, will be True when the device is new, False when the device already exists (e.g.: a device
which gets a factory reset will register again)

This signal is emitted when a device registers automatically through the controller HTTP API.

Modules

173

device_name_changed

Path: openwisp_controller.config.signals.device_name_changed

Arguments:

• instance: instance of Device.

The signal is emitted when the device name changes.

It is not emitted when the device is created.

device_group_changed

Path: openwisp_controller.config.signals.device_group_changed

Arguments:

• instance: instance of Device.

• group_id: primary key of DeviceGroup of Device

• old_group_id: primary key of previous DeviceGroup of Device

The signal is emitted when the device group changes.

It is not emitted when the device is created.

group_templates_changed

Path: openwisp_controller.config.signals.group_templates_changed

Arguments:

• instance: instance of DeviceGroup.

• templates: list of Template objects assigned to DeviceGroup

• old_templates: list of Template objects assigned earlier to DeviceGroup

The signal is emitted when the device group templates changes.

It is not emitted when the device is created.

subnet_provisioned

Path: openwisp_controller.subnet_division.signals.subnet_provisioned

Arguments:

• instance: instance of VpnClient.

• provisioned: dictionary of Subnet and IpAddress provisioned, None if nothing is provisioned

The signal is emitted when subnets and IP addresses have been provisioned for a VpnClient for a VPN server with
a subnet with subnet division rule.

vpn_server_modified

Path: openwisp_controller.config.signals.vpn_server_modified

Arguments:

• instance: instance of Vpn.

The signal is emitted when the VPN server is modified.

Modules

174

vpn_peers_changed

Path: openwisp_controller.config.signals.vpn_peers_changed

Arguments:

• instance: instance of Vpn.

The signal is emitted when the peers of VPN server gets changed.

It is only emitted for Vpn object with WireGuard or VXLAN over WireGuard backend.

Extending OpenWISP Controller

Note

This page is for developers who want to customize or extend OpenWISP Controller, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Controller User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason OpenWISP Controller
provides a set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of OpenWISP Controller, you need to perform the steps described in this
section.

When in doubt, the code in the test project will serve you as source of truth: just replicate and adapt that code to get
a basic derivative of OpenWISP Controller working.

If you want to add new users fields, please follow the tutorial to extend the openwisp-users module. As an example,
we have extended openwisp-users to sample_users app and added a field social_security_number in the
sample_users/models.py.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize Your Project & Custom Apps 176

2. Install openwisp-controller 176

3. Add Your Apps to INSTALLED_APPS 176

4. Add EXTENDED_APPS 177

5. Add openwisp_utils.staticfiles.DependencyFinder 177

6. Add openwisp_utils.loaders.DependencyLoader 178

7. Initial Database Setup 178

8. Django Channels Setup 178

9. Other Settings 179

10. Inherit the AppConfig Class 179

11. Create Your Custom Models 179

12. Add Swapper Configurations 180

Modules

175

https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-controller/blob/master/tests/openwisp2/sample_users/models.py

13. Create Database Migrations 180

14. Create the Admin 181

14.1. Monkey Patching 181

14.2. Inheriting admin classes 182

15. Create Root URL Configuration 187

16. Import the Automated Tests 187

Other Base Classes that Can Be Inherited and Extended 188

1. Extending the Controller API Views 188

2. Extending the Geo API Views 188

Custom Subnet Division Rule Types 188

More Utilities to Extend OpenWISP Controller 189

1. Initialize Your Project & Custom Apps

Firstly, to get started you need to create a django project:

django-admin startproject mycontroller

Now, you need to do is to create some new django apps which will contain your custom version of OpenWISP
Controller.

A django project is a collection of django apps. There are 4 django apps in the openwisp_controller project, namely
config, pki, connection & geo. You'll need to create 4 apps in your project for each app in openwisp-controller.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call these django app sample_config, sample_pki, sample_connection, sample_geo &
sample_subnet_division. but you can name it how you want:

django-admin startapp sample_config
django-admin startapp sample_pki
django-admin startapp sample_connection
django-admin startapp sample_geo
django-admin startapp sample_subnet_division

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

For more information about how to work with django projects and django apps, please refer to the django
documentation.

2. Install openwisp-controller

Install (and add to the requirement of your project) openwisp-controller:

pip install openwisp-controller

3. Add Your Apps to INSTALLED_APPS

Now you need to add mycontroller.sample_config, mycontroller.sample_pki,
mycontroller.sample_connection, mycontroller.sample_geo &
mycontroller.sample_subnet_division to INSTALLED_APPS in your settings.py, ensuring also that
openwisp_controller.config, openwisp_controller.geo, openwisp_controller.pki,
openwisp_controller.connnection & openwisp_controller.subnet_division have been removed:

Remember: Order in INSTALLED_APPS is important.
INSTALLED_APPS = [
 # other django installed apps
 "openwisp_utils.admin_theme",
 "admin_auto_filters",

Modules

176

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

 # all-auth
 "django.contrib.sites",
 "allauth",
 "allauth.account",
 "allauth.socialaccount",
 # openwisp2 module
 # 'openwisp_controller.config', <-- comment out or delete this line
 # 'openwisp_controller.pki', <-- comment out or delete this line
 # 'openwisp_controller.geo', <-- comment out or delete this line
 # 'openwisp_controller.connection', <-- comment out or delete this line
 # 'openwisp_controller.subnet_division', <-- comment out or delete this line
 "mycontroller.sample_config",
 "mycontroller.sample_pki",
 "mycontroller.sample_geo",
 "mycontroller.sample_connection",
 "mycontroller.sample_subnet_division",
 "openwisp_users",
 # admin
 "django.contrib.admin",
 # other dependencies
 "sortedm2m",
 "reversion",
 "leaflet",
 # rest framework
 "rest_framework",
 "rest_framework_gis",
 # channels
 "channels",
 # django-import-export
 "import_export",
]

Substitute mycontroller, sample_config, sample_pki, sample_connection, sample_geo &
sample_subnet_division with the name you chose in step 1.

4. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = (
 "django_x509",
 "django_loci",
 "openwisp_controller.config",
 "openwisp_controller.pki",
 "openwisp_controller.geo",
 "openwisp_controller.connection",
 "openwisp_controller.subnet_division",
)

5. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

Modules

177

6. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py, but ensure it
comes before django.template.loaders.app_directories.Loader:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "openwisp_utils.loaders.DependencyLoader",
 "django.template.loaders.app_directories.Loader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
 "openwisp_utils.admin_theme.context_processor.menu_items",
 "openwisp_notifications.context_processors.notification_api_settings",
],
 },
 }
]

7. Initial Database Setup

Ensure you are using one of the available geodjango backends, e.g.:

DATABASES = {
 "default": {
 "ENGINE": "openwisp_utils.db.backends.spatialite",
 "NAME": "openwisp-controller.db",
 }
}

For more information about GeoDjango, please refer to the geodjango documentation.

8. Django Channels Setup

Create asgi.py in your project folder and add following lines in it:

from channels.auth import AuthMiddlewareStack
from channels.routing import ProtocolTypeRouter, URLRouter
from channels.security.websocket import AllowedHostsOriginValidator
from django.core.asgi import get_asgi_application

from openwisp_controller.routing import get_routes

You can also add your routes like this
from my_app.routing import my_routes

application = ProtocolTypeRouter(
 {
 "http": get_asgi_application(),
 "websocket": AllowedHostsOriginValidator(
 AuthMiddlewareStack(URLRouter(get_routes() + my_routes))
),

Modules

178

https://docs.djangoproject.com/en/4.2/ref/contrib/gis/

 }
)

9. Other Settings

Add the following settings to settings.py:

FORM_RENDERER = "django.forms.renderers.TemplatesSetting"

ASGI_APPLICATION = "my_project.asgi.application"
CHANNEL_LAYERS = {
 "default": {"BACKEND": "channels.layers.InMemoryChannelLayer"},
}

For more information about FORM_RENDERER setting, please refer to the FORM_RENDERER documentation. For
more information about ASGI_APPLICATION setting, please refer to the ASGI_APPLICATION documentation. For
more information about CHANNEL_LAYERS setting, please refer to the CHANNEL_LAYERS documentation.

10. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• sample_config:

• sample_config/__init__.py.

• sample_config/apps.py.

• sample_geo:

• sample_geo/__init__.py.

• sample_geo/apps.py.

• sample_pki:

• sample_pki/__init__.py.

• sample_pki/apps.py.

• sample_connection:

• sample_connection/__init__.py.

• sample_connection/apps.py.

• sample_subnet_division:

• sample_subnet_division/__init__.py.

• sample_subnet_division/apps.py.
You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

11. Create Your Custom Models

For the purpose of showing an example, we added a simple "details" field to the models of the sample app in the test
project.

• sample_config models

• sample_geo models

• sample_pki models

Modules

179

https://docs.djangoproject.com/en/4.2/ref/settings/#form-renderer
https://channels.readthedocs.io/en/latest/deploying.html#configuring-the-asgi-application
https://channels.readthedocs.io/en/latest/deploying.html#setting-up-a-channel-backend
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/__init__.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/apps.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/__init__.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/apps.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/__init__.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/apps.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/__init__.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/apps.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/__init__.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/models.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/models.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/models.py

• sample_connection models

• sample_subnet_division

You can add fields in a similar way in your models.py file.

Note

If you have any doubt regarding how to use, extend or develop models please refer to the "Models" section in the
django documentation.

12. Add Swapper Configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
CONFIG_DEVICE_MODEL = "sample_config.Device"
CONFIG_DEVICEGROUP_MODEL = "sample_config.DeviceGroup"
CONFIG_CONFIG_MODEL = "sample_config.Config"
CONFIG_TEMPLATETAG_MODEL = "sample_config.TemplateTag"
CONFIG_TAGGEDTEMPLATE_MODEL = "sample_config.TaggedTemplate"
CONFIG_TEMPLATE_MODEL = "sample_config.Template"
CONFIG_VPN_MODEL = "sample_config.Vpn"
CONFIG_VPNCLIENT_MODEL = "sample_config.VpnClient"
CONFIG_ORGANIZATIONCONFIGSETTINGS_MODEL = (
 "sample_config.OrganizationConfigSettings"
)
CONFIG_ORGANIZATIONLIMITS_MODEL = "sample_config.OrganizationLimits"
DJANGO_X509_CA_MODEL = "sample_pki.Ca"
DJANGO_X509_CERT_MODEL = "sample_pki.Cert"
GEO_LOCATION_MODEL = "sample_geo.Location"
GEO_FLOORPLAN_MODEL = "sample_geo.FloorPlan"
GEO_DEVICELOCATION_MODEL = "sample_geo.DeviceLocation"
CONNECTION_CREDENTIALS_MODEL = "sample_connection.Credentials"
CONNECTION_DEVICECONNECTION_MODEL = "sample_connection.DeviceConnection"
CONNECTION_COMMAND_MODEL = "sample_connection.Command"
SUBNET_DIVISION_SUBNETDIVISIONRULE_MODEL = (
 "sample_subnet_division.SubnetDivisionRule"
)
SUBNET_DIVISION_SUBNETDIVISIONINDEX_MODEL = (
 "sample_subnet_division.SubnetDivisionIndex"
)

Substitute sample_config, sample_pki, sample_connection, sample_geo & sample_subnet_division
with the name you chose in step 1.

13. Create Database Migrations

Create database migrations:

./manage.py makemigrations

Now, to use the default administrator and operator user groups like the used in the openwisp_controller
module, you'll manually need to make a migrations file which would look like:

• sample_config/migrations/0002_default_groups_permissions.py

• sample_geo/migrations/0002_default_group_permissions.py

• sample_pki/migrations/0002_default_group_permissions.py

Modules

180

https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/models.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/migrations/0002_default_groups_permissions.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/migrations/0002_default_group_permissions.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/migrations/0002_default_group_permissions.py

• sample_connection/migrations/0002_default_group_permissions.py

• sample_subnet_division/migrations/0002_default_group_permissions.py

Create database migrations:

./manage.py migrate

For more information, refer to the "Migrations" section in the django documentation.

14. Create the Admin

Refer to the admin.py file of the sample app.

• sample_config admin.py.
• sample_geo admin.py.

• sample_pki admin.py.

• sample_connection admin.py.

• sample_subnet_division admin.py.

To introduce changes to the admin, you can do it in two main ways which are described below.

Note

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

14.1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

sample_config

from openwisp_controller.config.admin import (
 DeviceAdmin,
 DeviceGroupAdmin,
 TemplateAdmin,
 VpnAdmin,
)

DeviceAdmin.fields += ["example"] # <-- monkey patching example

sample_connection

from openwisp_controller.connection.admin import CredentialsAdmin

CredentialsAdmin.fields += ["example"] # <-- monkey patching example

Modules

181

https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/migrations/0002_default_group_permissions.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/migrations/0002_default_group_permissions.py
https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/admin.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/admin.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/admin.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/admin.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

sample_geo

from openwisp_controller.geo.admin import FloorPlanAdmin, LocationAdmin

FloorPlanAdmin.fields += ["example"] # <-- monkey patching example

sample_pki

from openwisp_controller.pki.admin import CaAdmin, CertAdmin

CaAdmin.fields += ["example"] # <-- monkey patching example

sample_subnet_division

from openwisp_controller.subnet_division.admin import (
 SubnetDivisionRuleInlineAdmin,
)

SubnetDivisionRuleInlineAdmin.fields += [
 "example"
] # <-- monkey patching example

14.2. Inheriting admin classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

Modules

182

sample_config

from django.contrib import admin
from openwisp_controller.config.admin import (
 DeviceAdmin as BaseDeviceAdmin,
 TemplateAdmin as BaseTemplateAdmin,
 VpnAdmin as BaseVpnAdmin,
 DeviceGroupAdmin as BaseDeviceGroupAdmin,
)
from swapper import load_model

Vpn = load_model("openwisp_controller", "Vpn")
Device = load_model("openwisp_controller", "Device")
DeviceGroup = load_model("openwisp_controller", "DeviceGroup")
Template = load_model("openwisp_controller", "Template")

admin.site.unregister(Vpn)
admin.site.unregister(Device)
admin.site.unregister(DeviceGroup)
admin.site.unregister(Template)

@admin.register(Vpn)
class VpnAdmin(BaseVpnAdmin):
 # add your changes here
 pass

@admin.register(Device)
class DeviceAdmin(BaseDeviceAdmin):
 # add your changes here
 pass

@admin.register(DeviceGroup)
class DeviceGroupAdmin(BaseDeviceGroupAdmin):
 # add your changes here
 pass

@admin.register(Template)
class TemplateAdmin(BaseTemplateAdmin):
 # add your changes here
 pass

Modules

183

sample_connection

from openwisp_controller.connection.admin import (
 CredentialsAdmin as BaseCredentialsAdmin,
)
from django.contrib import admin
from swapper import load_model

Credentials = load_model("openwisp_controller", "Credentials")

admin.site.unregister(Credentials)

@admin.register(Device)
class CredentialsAdmin(BaseCredentialsAdmin):
 pass
 # add your changes here

sample_geo

from openwisp_controller.geo.admin import (
 FloorPlanAdmin as BaseFloorPlanAdmin,
 LocationAdmin as BaseLocationAdmin,
)
from django.contrib import admin
from swapper import load_model

Location = load_model("openwisp_controller", "Location")
FloorPlan = load_model("openwisp_controller", "FloorPlan")

admin.site.unregister(FloorPlan)
admin.site.unregister(Location)

@admin.register(FloorPlan)
class FloorPlanAdmin(BaseFloorPlanAdmin):
 pass
 # add your changes here

@admin.register(Location)
class LocationAdmin(BaseLocationAdmin):
 pass
 # add your changes here

Modules

184

sample_pki

from openwisp_controller.geo.admin import (
 CaAdmin as BaseCaAdmin,
 CertAdmin as BaseCertAdmin,
)
from django.contrib import admin
from swapper import load_model

Ca = load_model("openwisp_controller", "Ca")
Cert = load_model("openwisp_controller", "Cert")

admin.site.unregister(Ca)
admin.site.unregister(Cert)

@admin.register(Ca)
class CaAdmin(BaseCaAdmin):
 pass
 # add your changes here

@admin.register(Cert)
class CertAdmin(BaseCertAdmin):
 pass
 # add your changes here

Modules

185

sample_subnet_division

from openwisp_controller.subnet_division.admin import (
 SubnetAdmin as BaseSubnetAdmin,
 IpAddressAdmin as BaseIpAddressAdmin,
 SubnetDivisionRuleInlineAdmin as BaseSubnetDivisionRuleInlineAdmin,
)
from django.contrib import admin
from swapper import load_model

Subnet = load_model("openwisp_ipam", "Subnet")
IpAddress = load_model("openwisp_ipam", "IpAddress")
SubnetDivisionRule = load_model("subnet_division", "SubnetDivisionRule")

admin.site.unregister(Subnet)
admin.site.unregister(IpAddress)
admin.site.unregister(SubnetDivisionRule)

@admin.register(Subnet)
class SubnetAdmin(BaseSubnetAdmin):
 pass
 # add your changes here

@admin.register(IpAddress)
class IpAddressAdmin(BaseIpAddressAdmin):
 pass
 # add your changes here

@admin.register(SubnetDivisionRule)
class SubnetDivisionRuleInlineAdmin(BaseSubnetDivisionRuleInlineAdmin):
 pass
 # add your changes here

Modules

186

15. Create Root URL Configuration

from django.contrib import admin
from openwisp_controller.config.utils import get_controller_urls
from openwisp_controller.geo.utils import get_geo_urls

from .sample_config import views as config_views
from .sample_geo import views as geo_views

urlpatterns = [
 # ... other urls in your project ...
 # Use only when changing controller API views (discussed below)
 # url(r'^controller/', include((get_controller_urls(config_views), 'controller'), namespace='controller'))
 # Use only when changing geo API views (discussed below)
 # url(r'^geo/', include((get_geo_urls(geo_views), 'geo'), namespace='geo')),
 # openwisp-controller urls
 url(
 r"",
 include(
 ("openwisp_controller.config.urls", "config"),
 namespace="config",
),
),
 url(r"", include("openwisp_controller.urls")),
]

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

16. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of OpenWISP
Controller.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests in sample_app to find out how to do this.

• project common tests.py

• sample_config tests.py

• sample_geo tests.py

• sample_geo pytest.py

• sample_pki tests.py

• sample_connection tests.py

• sample_subnet_division tests.py

For running the tests, you need to copy fixtures as well:

• Change sample_config to your config app's name in sample_config fixtures and paste it in the
sample_config/fixtures/ directory.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel mycontroller

Substitute mycontroller with the name you chose in step 1.

For more information about automated tests in django, please refer to "Testing in Django".

Modules

187

https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/pytest.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_pki/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_connection/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_subnet_division/tests.py
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/fixtures/
https://docs.djangoproject.com/en/4.2/topics/testing/

Other Base Classes that Can Be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

1. Extending the Controller API Views

Extending the sample_config/views.py is required only when you want to make changes in the controller API,
Remember to change config_views location in urls.py in point 11 for extending views.

For more information about django views, please refer to the views section in the django documentation.

2. Extending the Geo API Views

Extending the sample_geo/views.py is required only when you want to make changes in the geo API, Remember to
change geo_views location in urls.py in point 11 for extending views.

For more information about django views, please refer to the views section in the django documentation.

Custom Subnet Division Rule Types

It is possible to create your own subnet division rule types. The rule type determines when subnets and IPs will be
provisioned and when they will be destroyed.

You can create your custom rule types by extending
openwisp_controller.subnet_division.rule_types.base.BaseSubnetDivisionRuleType.

Below is an example to create a subnet division rule type that will provision subnets and IPs when a new device is
created and will delete them upon deletion for that device.

In mycontroller/sample_subnet_division/rules_types/custom.py

from django.db.models.signals import post_delete, post_save
from swapper import load_model

from openwisp_controller.subnet_division.rule_types.base import (
 BaseSubnetDivisionRuleType,
)

Device = load_model("config", "Device")

class CustomRuleType(BaseSubnetDivisionRuleType):
 # The signal on which provisioning should be triggered
 provision_signal = post_save
 # The sender of the provision_signal
 provision_sender = Device
 # Dispatch UID for connecting provision_signal to provision_receiver
 provision_dispatch_uid = "some_unique_identifier_string"

 # The signal on which deletion should be triggered
 destroyer_signal = post_delete
 # The sender of the destroyer_signal
 destroyer_sender = Device
 # Dispatch UID for connecting destroyer_signal to destroyer_receiver
 destroyer_dispatch_uid = "another_unique_identifier_string"

 # Attribute path to organization_id
 # Example 1: If organization_id is direct attribute of provision_signal
 # sender instance, then
 # organization_id_path = 'organization_id'
 # Example 2: If organization_id is indirect attribute of provision signal

Modules

188

https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_config/views.py
https://docs.djangoproject.com/en/4.2/topics/http/views/
https://github.com/openwisp/openwisp-controller/tree/master/tests/openwisp2/sample_geo/views.py
https://docs.djangoproject.com/en/4.2/topics/http/views/

 # sender instance, then
 # organization_id_path = 'some_attribute.another_intermediate.organization_id'
 organization_id_path = "organization_id"

 # Similar to organization_id_path but for the required subnet attribute
 subnet_path = "subnet"

 # An intermediate method through which you can specify conditions for provisions
 @classmethod
 def should_create_subnets_ips(cls, instance, **kwargs):
 # Using "post_save" provision_signal, the rule should be only
 # triggered when a new object is created.
 return kwargs["created"]

 # You can define logic to trigger provisioning for existing objects
 # using following classmethod. By default, BaseSubnetDivisionRuleType
 # performs no operation for existing objects.
 @classmethod
 def provision_for_existing_objects(cls, rule_obj):
 for device in Device.objects.filter(
 organization=rule_obj.organization
):
 cls.provision_receiver(device, created=True)

After creating a class for your custom rule type, you will need to set
OPENWISP_CONTROLLER_SUBNET_DIVISION_TYPES setting as follows:

OPENWISP_CONTROLLER_SUBNET_DIVISION_TYPES = (
 (
 "openwisp_controller.subnet_division.rule_types.vpn.VpnSubnetDivisionRuleType",
 "VPN",
),
 (
 "openwisp_controller.subnet_division.rule_types.device.DeviceSubnetDivisionRuleType",
 "Device",
),
 (
 "mycontroller.sample_subnet_division.rules_types.custom.CustomRuleType",
 "Custom Rule",
),
)

More Utilities to Extend OpenWISP Controller

See Code Utilities.

Other useful resources:

• REST API Reference

• Settings

Monitoring

Seealso

Source code: github.com/openwisp/openwisp-monitoring.

Modules

189

https://github.com/openwisp/openwisp-monitoring

The OpenWISP Monitoring module leverages the capabilities of Python and the Django Framework to provide
OpenWISP with robust network monitoring features. Designed to be extensible, programmable, scalable, and
user-friendly, this module automates monitoring checks, alerts, and metric collection, ensuring efficient and
comprehensive network management.

For a comprehensive overview of its features, please refer to the Monitoring: Features page.

The following diagram illustrates the role of the Monitoring module within the OpenWISP architecture.

Modules

190

../_images/architecture-v2-openwisp-monitoring.png

OpenWISP Architecture: highlighted monitoring module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Monitoring: Features

OpenWISP provides the following monitoring capabilities:

• An overview of the status of the network is shown in the admin dashboard, a chart shows the percentages of
devices which are online, offline or having issues; there are also two timeseries charts which show the total
unique WiFI clients and the traffic flowing to the network, a geographic map is also available for those who use
the geographic features of OpenWISP

• Collection of monitoring information in a timeseries database (currently only InfluxDB is supported)

• Allows to browse alerts easily from the user interface with one click

• Collects and displays device status information like uptime, RAM status, CPU load averages, Interface
properties and addresses, WiFi interface status and associated clients, Neighbors information, DHCP Leases,
Disk/Flash status

• Monitoring charts for ping success rate, packet loss, round trip time (latency), associated wifi clients, interface
traffic, RAM usage, CPU load, flash/disk usage, mobile signal (LTE/UMTS/GSM signal strength, signal quality,
access technology in use), bandwidth, transferred data, restransmits, jitter, datagram, datagram loss

• Maintains a record of WiFi sessions with clients' MAC address and vendor, session start and stop time and
connected device along with other information

• Charts can be viewed at resolutions of the last 1 day, 3 days, 7 days, 30 days, and 365 days

• Configurable alerts

• CSV Export of monitoring data

• Possibility to configure additional Metrics and Charts

• Extensible active check system: it's possible to write additional checks that are run periodically using python
classes

• Extensible metrics and charts: it's possible to define new metrics and new charts

• API to retrieve the chart metrics and status information of each device based on NetJSON DeviceMonitoring

• Iperf3 check that provides network performance measurements such as maximum achievable bandwidth, jitter,
datagram loss etc of the openwrt device using iperf3 utility

Quick Start Guide

Install Monitoring Packages on the Device 191

Make Sure OpenWISP can Reach your Devices 192

Install Monitoring Packages on the Device

First of all, Install the OpenWrt Monitoring Agent on your device.

The agent is responsible for collecting some of the monitoring metrics from the device and sending these to the
server. It's required to collect interface traffic, WiFi clients, CPU load, memory usage, storage usage, cellular signal
strength, etc.

Modules

191

http://netjson.org/docs/what.html#devicemonitoring
https://iperf.fr/

Make Sure OpenWISP can Reach your Devices

Please make sure that OpenWISP can reach your devices.

Device Health Status

The possible values for the health status field (DeviceMonitoring.status) are explained below.

UNKNOWN

Whenever a new device is created it will have UNKNOWN as it's default Heath Status.

It implies that the system doesn't know whether the device is reachable yet.

OK

Everything is working normally.

PROBLEM

One of the metrics has a value which is not in the expected range (the threshold value set in the alert settings has
been crossed).

Example: CPU usage should be less than 90% but current value is at 95%.

CRITICAL

One of the metrics defined in OPENWISP_MONITORING_CRITICAL_DEVICE_METRICS has a value which is not in
the expected range (the threshold value set in the alert settings has been crossed).

Example: ping is by default a critical metric which is expected to be always 1 (reachable).

Metrics

Device Status 192

Ping 193

Traffic 194

WiFi Clients 194

Memory Usage 195

CPU Load 195

Disk Usage 196

Mobile Signal Strength 196

Mobile Signal Quality 196

Mobile Access Technology in Use 197

Iperf3 197

Passive vs Active Metric Collection 199

Device Status

This metric stores the status of the device for viewing purposes.

Modules

192

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-1.png

Ping

measurement: ping

types: int (reachable and loss), float (rtt)

fields: reachable, loss, rtt_min, rtt_max, rtt_avg

configuration: ping

charts: uptime (Ping Success Rate), packet_loss, rtt

Ping Success Rate:

Packet loss:

Modules

193

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-2.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-3.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-4.png
https://github.com/openwisp/openwisp-monitoring/raw/docs/docs/1.1/ping-success-rate.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/packet-loss.png

Round Trip Time:

Traffic

measurement: traffic

type: int

fields: rx_bytes, tx_bytes

tags:
{
 "organization_id": "<organization-id-of-the-related-device>",
 "ifname": "<interface-name>",
 # optional
 "location_id": "<location-id-of-the-related-device-if-present>",
 "floorplan_id": "<floorplan-id-of-the-related-device-if-present>",
}

configuration: traffic

charts: traffic

WiFi Clients

measurement: wifi_clients

type: int

fields: clients

Modules

194

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/rtt.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/traffic.png

tags:
{
 "organization_id": "<organization-id-of-the-related-device>",
 "ifname": "<interface-name>",
 # optional
 "location_id": "<location-id-of-the-related-device-if-present>",
 "floorplan_id": "<floorplan-id-of-the-related-device-if-present>",
}

configuration: clients

charts: wifi_clients

Memory Usage

measurement: <memory>

type: float

fields: percent_used, free_memory, total_memory, buffered_memory,
shared_memory, cached_memory, available_memory

configuration: memory

charts: memory

CPU Load

measurement: load

type: float

fields: cpu_usage, load_1, load_5, load_15

configuration: load

charts: load

Modules

195

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/wifi-clients.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/memory.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/cpu-load.png

Disk Usage

measurement: disk

type: float

fields: used_disk

configuration: disk

charts: disk

Mobile Signal Strength

measurement: signal_strength

type: float

fields: signal_strength, signal_power

configuration: signal_strength

charts: signal_strength

Mobile Signal Quality

measurement: signal_quality

type: float

fields: signal_quality, signal_quality

configuration: signal_quality

charts: signal_quality

Modules

196

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/disk-usage.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/signal-strength.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/signal-quality.png

Mobile Access Technology in Use

measurement: access_tech

type: int

fields: access_tech

configuration: access_tech

charts: access_tech

Iperf3

measurement: iperf3

types:
int (iperf3_result, sent_bytes_tcp, received_bytes_tcp, retransmits,
sent_bytes_udp, total_packets, lost_packets),
float (sent_bps_tcp, received_bps_tcp, sent_bps_udp, jitter, lost_percent)

fields:
iperf3_result, sent_bps_tcp, received_bps_tcp, sent_bytes_tcp,
received_bytes_tcp, retransmits,
sent_bps_udp, sent_bytes_udp, jitter, total_packets, lost_packets,
lost_percent

configuration: iperf3

charts: bandwidth, transfer, retransmits, jitter, datagram, datagram_loss

Bandwidth:

Transferred Data:

Retransmits:

Modules

197

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/access-technology.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/bandwidth.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/transferred-data.png

Jitter:

Datagram:

Datagram loss:

For more info on how to configure and use Iperf3, please refer to Configuring Iperf3 Check.

Note

Iperf3 charts uses connect_points=True in default chart configuration that joins it's individual chart data
points.

Modules

198

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/retransmits.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/jitter.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/datagram.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/datagram-loss.png

Passive vs Active Metric Collection

The the different device metric collected by OpenWISP Monitoring can be divided in two categories:

1. metrics collected actively by OpenWISP: these metrics are collected by the celery workers running on the
OpenWISP server, which continuously sends network requests to the devices and store the results;

2. metrics collected passively by OpenWISP: these metrics are sent by the OpenWrt Monitoring Agent installed
on the network devices and are collected by OpenWISP via its REST API.

The Checks section of the documentation lists the currently implemented active checks.

Checks

Ping 199

Configuration Applied 199

Iperf3 199

Ping

This check returns information on Ping Success Rate and RTT (Round trip time). It creates charts like Ping Success
Rate, Packet Loss and RTT. These metrics are collected using the fping Linux program. You may choose to
disable auto creation of this check by setting OPENWISP_MONITORING_AUTO_PING to False.

You can change the default values used for ping checks using
OPENWISP_MONITORING_PING_CHECK_CONFIG setting.

Configuration Applied

This check ensures that the openwisp-config agent is running and applying configuration changes in a timely
manner. You may choose to disable auto creation of this check by using the setting
OPENWISP_MONITORING_AUTO_DEVICE_CONFIG_CHECK.

This check runs periodically, but it is also triggered whenever the configuration status of a device changes, this
ensures the check reacts quickly to events happening in the network and informs the user promptly if there's
anything that is not working as intended.

Iperf3

This check provides network performance measurements such as maximum achievable bandwidth, jitter, datagram
loss etc of the device using iperf3 utility.

This check is disabled by default. You can enable auto creation of this check by setting the
OPENWISP_MONITORING_AUTO_IPERF3 to True.

You can also add the iperf3 check directly from the device page.

It also supports tuning of various parameters. You can change the parameters used for iperf3 checks (e.g. timing,
port, username, password, rsa_publc_key, etc.) using the
OPENWISP_MONITORING_IPERF3_CHECK_CONFIG setting.

Note

When setting OPENWISP_MONITORING_AUTO_IPERF3 to True, you may need to update the metric
configuration to enable alerts for the iperf3 check.

Modules

199

https://iperf.fr/

Managing Device Checks & Alert Settings

We can add checks and define alert settings directly from the device page.

To add a check, you just need to select an available check type as shown below:

The following example shows how to use the OPENWISP_MONITORING_METRICS setting to reconfigure the
system for iperf3 check to send an alert if the measured TCP bandwidth has been less than 10Mbit/s for more than
2 days.

1. By default, Iperf3 checks come with default alert settings, but it is easy to customize alert settings through the
device page as shown below:

2. Now, add the following notification configuration to send an alert for TCP bandwidth:

Main project settings.py
from django.utils.translation import gettext_lazy as _

OPENWISP_MONITORING_METRICS = {
 "iperf3": {
 "notification": {
 "problem": {
 "verbose_name": "Iperf3 PROBLEM",
 "verb": _("Iperf3 bandwidth is less than normal value"),
 "level": "warning",
 "email_subject": _(
 "[{site.name}] PROBLEM: {notification.target} {notification.verb}"

Modules

200

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/device-inline-check.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/device-inline-alertsettings.png

),
 "message": _(
 "The device [{notification.target}]({notification.target_link}) "
 "{notification.verb}."
),
 },
 "recovery": {
 "verbose_name": "Iperf3 RECOVERY",
 "verb": _("Iperf3 bandwidth now back to normal"),
 "level": "info",
 "email_subject": _(
 "[{site.name}] RECOVERY: {notification.target} {notification.verb}"
),
 "message": _(
 "The device [{notification.target}]({notification.target_link}) "
 "{notification.verb}."
),
 },
 },
 },
}

Note

To access the features described above, the user must have permissions for Check and AlertSetting inlines,
these permissions are included by default in the "Administrator" and "Operator" groups and are shown in the
screenshot below.

Modules

201

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/alert_field_warn.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/alert_field_info.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/inline-permissions.png

Configuring Iperf3 Check

1. Make Sure Iperf3 is Installed on the Device 202

2. Ensure SSH Access from OpenWISP is Enabled on your Devices 202

3. Set Up and Configure Iperf3 Server Settings 202

4. Run the Check 204

Iperf3 Check Parameters 204

Iperf3 Client Options 204

Iperf3 Authentication 205

Server Side 205

Client Side (OpenWrt Device) 206

1. Make Sure Iperf3 is Installed on the Device

Register your device to OpenWISP and make sure the iperf3 openwrt package is installed on the device, e.g.:

opkg install iperf3 # if using without authentication
opkg install iperf3-ssl # if using with authentication (read below for more info)

2. Ensure SSH Access from OpenWISP is Enabled on your Devices

Follow the steps in "Configuring Push Operations" section of the documentation to allow SSH access to you device
from OpenWISP.

Important

Make sure device connection is enabled & working with right update strategy i.e. OpenWrt SSH.

3. Set Up and Configure Iperf3 Server Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

Modules

202

https://openwrt.org/packages/pkgdata/iperf3
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/enable-openwrt-ssh.png

After having deployed your Iperf3 servers, you need to configure the iperf3 settings on the Django side of
OpenWISP, see the test project settings for reference.

The host can be specified by hostname, IPv4 literal, or IPv6 literal. Example:

OPENWISP_MONITORING_IPERF3_CHECK_CONFIG = {
 # 'org_pk' : {'host' : [], 'client_options' : {}}
 "a9734710-db30-46b0-a2fc-01f01046fe4f": {
 # Some public iperf3 servers
 # https://iperf.fr/iperf-servers.php#public-servers
 "host": ["iperf3.openwisp.io", "2001:db8::1", "192.168.5.2"],
 "client_options": {
 "port": 5209,
 "udp": {"bitrate": "30M"},
 "tcp": {"bitrate": "0"},
 },
 },
 # another org
 "b9734710-db30-46b0-a2fc-01f01046fe4f": {
 # available iperf3 servers
 "host": ["iperf3.openwisp2.io", "192.168.5.3"],
 "client_options": {
 "port": 5207,
 "udp": {"bitrate": "50M"},
 "tcp": {"bitrate": "20M"},
 },
 },
}

Note

If an organization has more than one iperf3 server configured, then it enables the iperf3 checks to run
concurrently on different devices. If all of the available servers are busy, then it will add the check back in the
queue.

The celery-beat configuration for the iperf3 check needs to be added too:

from celery.schedules import crontab

Celery TIME_ZONE should be equal to Django TIME_ZONE
In order to schedule run_iperf3_checks on the correct time intervals
CELERY_TIMEZONE = TIME_ZONE
CELERY_BEAT_SCHEDULE.update(
 {
 # Other celery beat configurations
 # Celery beat configuration for iperf3 check
 "run_iperf3_checks": {
 "task": "openwisp_monitoring.check.tasks.run_checks",
 # https://docs.celeryq.dev/en/latest/userguide/periodic-tasks.html#crontab-schedules
 # Executes check every 5 mins from 00:00 AM to 6:00 AM (night)
 "schedule": crontab(minute="*/5", hour="0-6"),
 # Iperf3 check path
 "args": (["openwisp_monitoring.check.classes.Iperf3"],),
 "relative": True,
 }
 }
)

Modules

203

https://github.com/openwisp/openwisp-monitoring/blob/master/tests/openwisp2/settings.py

Once the changes are saved, you will need to restart all the processes.

Note

We recommended to configure this check to run in non peak traffic times to not interfere with standard traffic.

4. Run the Check

This should happen automatically if you have celery-beat correctly configured and running in the background. For
testing purposes, you can run this check manually using the run_checks command.

After that, you should see the iperf3 network measurements charts.

Iperf3 Check Parameters

Currently, iperf3 check supports the following parameters:

Parameter Type Default Value

host list []

username str ''

password str ''

rsa_public_key str ''

client_options dict Refer the Iperf3 Client Options table below for available parameters

Iperf3 Client Options

Parameters Type Default Value

port int 5201

time int 10

bytes str ''

blockcount str ''

Modules

204

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/iperf3-charts.png

window str 0

parallel int 1

reverse bool False

bidirectional bool False

connect_timeout int 1000

tcp dict Refer the Iperf3 Client's TCP Options table below for available
parameters

udp dict Refer the Iperf3 Client's UDP Options table below for available
parameters

Iperf3 Client's TCP Options

Parameters Type Default Value

bitrate str 0

length str 128K

Iperf3 Client's UDP Options

Parameters Type Default Value

bitrate str 30M

length str 0

To learn how to use these parameters, please see the iperf3 check configuration example.

Visit the official documentation to learn more about the iperf3 parameters.

Iperf3 Authentication

By default iperf3 check runs without any kind of authentication, in this section we will explain how to configure RSA
authentication between the client and the server to restrict connections to authenticated clients.

Server Side

1. Generate RSA Key Pair

openssl genrsa -des3 -out private.pem 2048
openssl rsa -in private.pem -outform PEM -pubout -out public_key.pem
openssl rsa -in private.pem -out private_key.pem -outform PEM

After running the commands mentioned above, the public key will be stored in public_key.pem which will be used
in rsa_public_key parameter in OPENWISP_MONITORING_IPERF3_CHECK_CONFIG and the private key will be
contained in the file private_key.pem which will be used with --rsa-private-key-path command option when
starting the iperf3 server.

Modules

205

https://www.mankier.com/1/iperf3

2. Create User Credentials

USER=iperfuser PASSWD=iperfpass
echo -n "{$USER}$PASSWD" | sha256sum | awk '{ print $1 }'

ee17a7f98cc87a6424fb52682396b2b6c058e9ab70e946188faa0714905771d7 #This is the hash of "iperfuser"

Add the above hash with username in credentials.csv

file format: username,sha256
iperfuser,ee17a7f98cc87a6424fb52682396b2b6c058e9ab70e946188faa0714905771d7

3. Now Start the Iperf3 Server with Authentication Options

iperf3 -s --rsa-private-key-path ./private_key.pem --authorized-users-path ./credentials.csv

Client Side (OpenWrt Device)

1. Install iperf3-ssl

Install the iperf3-ssl openwrt package instead of the normal iperf3 openwrt package because the latter comes without
support for authentication.

You may also check your installed iperf3 openwrt package features:

root@vm-openwrt:- iperf3 -v
iperf 3.7 (cJSON 1.5.2)
Linux vm-openwrt 4.14.171 #0 SMP Thu Feb 27 21:05:12 2020 x86_64
Optional features available: CPU affinity setting, IPv6 flow label, TCP congestion algorithm setting,
sendfile / zerocopy, socket pacing, authentication # contains 'authentication'

2. Configure Iperf3 Check Authentication Parameters

Now, add the following iperf3 authentication parameters to OPENWISP_MONITORING_IPERF3_CHECK_CONFIG
in the Django settings:

OPENWISP_MONITORING_IPERF3_CHECK_CONFIG = {
 "a9734710-db30-46b0-a2fc-01f01046fe4f": {
 "host": [
 "iperf1.openwisp.io",
 "iperf2.openwisp.io",
 "192.168.5.2",
],
 # All three parameters (username, password, rsa_publc_key)
 # are required for iperf3 authentication
 "username": "iperfuser",
 "password": "iperfpass",
 # Add RSA public key without any headers
 # ie. -----BEGIN PUBLIC KEY-----, -----BEGIN END KEY-----
 "rsa_public_key": (
 """
 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwuEm+iYrfSWJOupy6X3N
 dxZvUCxvmoL3uoGAs0O0Y32unUQrwcTIxudy38JSuCccD+k2Rf8S4WuZSiTxaoea
 6Du99YQGVZeY67uJ21SWFqWU+w6ONUj3TrNNWoICN7BXGLE2BbSBz9YaXefE3aqw
 GhEjQz364Itwm425vHn2MntSp0weWb4hUCjQUyyooRXPrFUGBOuY+VvAvMyAG4Uk
 msapnWnBSxXt7Tbb++A5XbOMdM2mwNYDEtkD5ksC/x3EVBrI9FvENsH9+u/8J9Mf
 2oPl4MnlCMY86MQypkeUn7eVWfDnseNky7TyC0/IgCXve/iaydCCFdkjyo1MTAA4
 BQIDAQAB
 """

Modules

206

https://openwrt.org/packages/pkgdata/iperf3-ssl
https://openwrt.org/packages/pkgdata/iperf3

),
 "client_options": {
 "port": 5209,
 "udp": {"bitrate": "20M"},
 "tcp": {"bitrate": "0"},
 },
 }
}

Dashboard Monitoring Charts

OpenWISP Monitoring adds two timeseries charts to the admin dashboard:

• General WiFi clients Chart: Shows the number of connected clients to the WiFi interfaces of devices in the
network.

• General traffic Chart: Shows the amount of traffic flowing in the network.

You can configure the interfaces included in the General traffic chart using the
OPENWISP_MONITORING_DASHBOARD_TRAFFIC_CHART setting.

Monitoring WiFi Sessions

OpenWISP Monitoring maintains a record of WiFi sessions created by clients joined to a radio of managed devices.
The WiFi sessions are created asynchronously from the monitoring data received from the device.

You can filter both currently open sessions and past sessions by their start or stop time or organization or group of
the device clients are connected to or even directly by a device name or ID.

Modules

207

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/dashboard-charts.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/wifi-session-changelist.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/wifi-session-change.png

You can disable this feature by configuring OPENWISP_MONITORING_WIFI_SESSIONS_ENABLED setting.

You can also view open WiFi sessions of a device directly from the device's change admin under the "WiFi Sessions"
tab.

Scheduled Deletion of WiFi Sessions

Important

If you have deployed OpenWISP using ansible-openwisp2 or docker-openwisp, then this feature has been
already configured for you. Refer to the documentation of your deployment method to know the default value.
This section is only for reference for users who wish to customize OpenWISP, or who have deployed OpenWISP
in a different way.

OpenWISP Monitoring provides a celery task to automatically delete WiFi sessions older than a preconfigured
number of days.

The celery task takes only one argument, i.e. number of days. You can provide any number of days in args key while
configuring CELERY_BEAT_SCHEDULE setting.

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

E.g., if you want WiFi Sessions older than 30 days to get deleted automatically, then configure
CELERY_BEAT_SCHEDULE as follows:

from datetime import timedelta

CELERY_BEAT_SCHEDULE.update(
 {
 "delete_wifi_clients_and_sessions": {
 "task": "openwisp_monitoring.monitoring.tasks.delete_wifi_clients_and_sessions",
 "schedule": timedelta(days=1),
 "args": (30,), # Here we have defined 30 days
 },
 }
)

Please refer to "Periodic Tasks" section of Celery's documentation to learn more.

REST API Reference

Live Documentation 209

Browsable Web Interface 209

List of Endpoints 210

Modules

208

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-wifi-session-inline.png
https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html

Live Documentation

A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Browsable Web Interface

Modules

209

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/api-doc.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/api-ui-1.png

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
point, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

Retrieve General Monitoring Charts

GET /api/v1/monitoring/dashboard/

This API endpoint is used to show dashboard monitoring charts. It supports multi-tenancy and allows filtering
monitoring data by organization_slug, location_id and floorplan_id e.g.:

GET /api/v1/monitoring/dashboard/?organization_slug=<org1-slug>,<org2-slug>&location_id=<location1-id>,<location2-id>&floorplan_id=<floorplan1-id>,<floorplan2-id>

• When retrieving chart data, the time parameter allows to specify the time frame, e.g.:

• 1d: returns data of the last day

• 3d: returns data of the last 3 days

• 7d: returns data of the last 7 days

• 30d: returns data of the last 30 days

• 365d: returns data of the last 365 days

• In alternative to time it is possible to request chart data for a custom date range by using the start and end
parameters, e.g.:

GET /api/v1/monitoring/dashboard/?start={start_datetime}&end={end_datetime}

Note

The start and end parameters should be in the format YYYY-MM-DD H:M:S, otherwise 400 Bad Response will
be returned.

Modules

210

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/api-ui-2.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Retrieve Device Charts and Device Status Data

GET /api/v1/monitoring/device/{pk}/?key={key}&status=true&time={timeframe}

The format used for Device Status is inspired by NetJSON DeviceMonitoring.

Note

• If the request is made without ?status=true the response will contain only charts data and will not include
any device status information (current load average, ARP table, DCHP leases, etc.).

• When retrieving chart data, the time parameter allows to specify the time frame, e.g.:

• 1d: returns data of the last day

• 3d: returns data of the last 3 days

• 7d: returns data of the last 7 days

• 30d: returns data of the last 30 days

• 365d: returns data of the last 365 days

• In alternative to time it is possible to request chart data for a custom date range by using the start and end
parameters, e.g.:

• The response contains device information, monitoring status (health status), a list of metrics with their
respective statuses, chart data and device status information (only if ?status=true).

• This endpoint can be accessed with session authentication, token authentication, or alternatively with the
device key passed as query string parameter as shown below (?key={key}); note: this method is meant to be
used by the devices.

GET /api/v1/monitoring/device/{pk}/?key={key}&status=true&start={start_datetime}&end={end_datetime}

Note

The start and end parameters must be in the format YYYY-MM-DD H:M:S, otherwise 400 Bad Response will
be returned.

List Device Monitoring Information

GET /api/v1/monitoring/device/

Note

• The response contains device information and monitoring status (health status), but it does not include the
information and health status of the specific metrics, this information can be retrieved in the detail endpoint
of each device.

• This endpoint can be accessed with session authentication and token authentication.

Available filters

Modules

211

http://netjson.org/docs/what.html#devicemonitoring

Data can be filtered by health status (e.g. critical, ok, problem, and unknown) to obtain the list of devices in the
corresponding status, for example, to retrieve the list of devices which are in critical conditions (e.g.: unreachable),
the following will work:

GET /api/v1/monitoring/device/?monitoring__status=critical

To filter a list of device monitoring data based on their organization, you can use the organization_id.

GET /api/v1/monitoring/device/?organization={organization_id}

To filter a list of device monitoring data based on their organization slug, you can use the organization_slug.

GET /api/v1/monitoring/device/?organization_slug={organization_slug}

Collect Device Metrics and Status

POST /api/v1/monitoring/device/{pk}/?key={key}&time={datetime}

If data is latest then an additional parameter current can also be passed. For e.g.:

POST /api/v1/monitoring/device/{pk}/?key={key}&time={datetime}¤t=true

The format used for Device Status is inspired by NetJSON DeviceMonitoring.

Note

The device data will be saved in the timeseries database using the date time specified time, this should be in the
format %d-%m-%Y_%H:%M:%S.%f, otherwise 400 Bad Response will be returned.

If the request is made without passing the time argument, the server local time will be used.

The time parameter was added to support resilient collection and sending of data by the OpenWISP Monitoring
Agent, this feature allows sending data collected while the device is offline.

List Nearby Devices

GET /api/v1/monitoring/device/{pk}/nearby-devices/

Returns list of nearby devices along with respective distance (in metres) and monitoring status.

Available filters

The list of nearby devices provides the following filters:

• organization (Organization ID of the device)

• organization__slug (Organization slug of the device)

• monitoring__status (Monitoring status (unknown, ok, problem, or critical))

• model (Pipe | separated list of device models)

• distance__lte (Distance in metres)

Here's a few examples:

GET /api/v1/monitoring/device/{pk}/nearby-devices/?organization={organization_id}
GET /api/v1/monitoring/device/{pk}/nearby-devices/?organization__slug={organization_slug}
GET /api/v1/monitoring/device/{pk}/nearby-devices/?monitoring__status={monitoring_status}
GET /api/v1/monitoring/device/{pk}/nearby-devices/?model={model1,model2}
GET /api/v1/monitoring/device/{pk}/nearby-devices/?distance__lte={distance}

Modules

212

http://netjson.org/docs/what.html#devicemonitoring

List WiFi Session

GET /api/v1/monitoring/wifi-session/

Available filters

The list of wifi session provides the following filters:

• device__organization (Organization ID of the device)

• device (Device ID)

• device__group (Device group ID)

• start_time (Start time of the wifi session)

• stop_time (Stop time of the wifi session)

Here's a few examples:

GET /api/v1/monitoring/wifi-session/?device__organization={organization_id}
GET /api/v1/monitoring/wifi-session/?device={device_id}
GET /api/v1/monitoring/wifi-session/?device__group={group_id}
GET /api/v1/monitoring/wifi-session/?start_time={stop_time}
GET /api/v1/monitoring/wifi-session/?stop_time={stop_time}

Note

Both start_time and stop_time support greater than or equal to, as well as less than or equal to, filter
lookups.

For example:

GET /api/v1/monitoring/wifi-session/?start_time__gt={start_time}
GET /api/v1/monitoring/wifi-session/?start_time__gte={start_time}
GET /api/v1/monitoring/wifi-session/?stop_time__lt={stop_time}
GET /api/v1/monitoring/wifi-session/?stop_time__lte={stop_time}

Get WiFi Session

GET /api/v1/monitoring/wifi-session/{id}/

Pagination

WiFi session endpoint support the page_size parameter that allows paginating the results in conjunction with the
page parameter.

GET /api/v1/monitoring/wifi-session/?page_size=10
GET /api/v1/monitoring/wifi-session/?page_size=10&page=1

Settings

Modules

213

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

TIMESERIES_DATABASE

type: str

default: see below

TIMESERIES_DATABASE = {
 "BACKEND": "openwisp_monitoring.db.backends.influxdb",
 "USER": "openwisp",
 "PASSWORD": "openwisp",
 "NAME": "openwisp2",
 "HOST": "localhost",
 "PORT": "8086",
 "OPTIONS": {
 "udp_writes": False,
 "udp_port": 8089,
 },
}

The following table describes all keys available in TIMESERIES_DATABASE setting:

Key Description

BACKEND The timeseries database backend to use. You can select one of the backends located in
openwisp_monitoring.db.backends

USER User for logging into the timeseries database

PASSWORD Password of the timeseries database user

NAME Name of the timeseries database

HOST IP address/hostname of machine where the timeseries database is running

PORT Port for connecting to the timeseries database

OPTIONS These settings depends on the timeseries backend. Refer the Timeseries Database Options
table below for available options

Timeseries Database Options

udp_writes Whether to use UDP for writing data to the timeseries database

udp_port Timeseries database port for writing data using UDP

Important

UDP packets can have a maximum size of 64KB. When using UDP for writing timeseries data, if the size of the
data exceeds 64KB, TCP mode will be used instead.

Modules

214

Note

If you want to use the openwisp_monitoring.db.backends.influxdb backend with UDP writes enabled,
then you need to enable two different ports for UDP (each for different retention policy) in your InfluxDB
configuration. The UDP configuration section of your InfluxDB should look similar to the following:

For writing data with the "default" retention policy
[[udp]]
enabled = true
bind-address = "127.0.0.1:8089"
database = "openwisp2"

For writing data with the "short" retention policy
[[udp]]
enabled = true
bind-address = "127.0.0.1:8090"
database = "openwisp2"
retention-policy = 'short'

If you are using ansible-openwisp2 for deploying OpenWISP, you can set the influxdb_udp_mode ansible
variable to true in your playbook, this will make the ansible role automatically configure the InfluxDB UDP
listeners. You can refer to the ansible-ow-influxdb's (a dependency of ansible-openwisp2) documentation to learn
more.

OPENWISP_MONITORING_DEFAULT_RETENTION_POLICY

type: str

default: 26280h0m0s (3 years)

The default retention policy that applies to the timeseries data.

OPENWISP_MONITORING_SHORT_RETENTION_POLICY

type: str

default: 24h0m0s

The default retention policy used to store raw device data.

This data is only used to assess the recent status of devices, keeping it for a long time would not add much benefit
and would cost a lot more in terms of disk space.

OPENWISP_MONITORING_AUTO_PING

type: bool

default: True

Whether ping checks are created automatically for devices.

OPENWISP_MONITORING_PING_CHECK_CONFIG

type: dict

Modules

215

https://github.com/openwisp/ansible-ow-influxdb#role-variables

default: {}

This setting allows to override the default ping check configuration defined in
openwisp_monitoring.check.classes.ping.DEFAULT_PING_CHECK_CONFIG.

For example, if you want to change only the timeout of ping you can use:

OPENWISP_MONITORING_PING_CHECK_CONFIG = {
 "timeout": {
 "default": 1000,
 },
}

If you are overriding the default value for any parameter beyond the maximum or minimum value defined in
openwisp_monitoring.check.classes.ping.DEFAULT_PING_CHECK_CONFIG, you will also need to
override the maximum or minimum fields as following:

OPENWISP_MONITORING_PING_CHECK_CONFIG = {
 "timeout": {
 "default": 2000,
 "minimum": 1500,
 "maximum": 2500,
 },
}

Note

Above maximum and minimum values are only used for validating custom parameters of a Check object.

OPENWISP_MONITORING_AUTO_DEVICE_CONFIG_CHECK

type: bool

default: True

This setting allows you to choose whether config_applied checks should be created automatically for newly
registered devices. It's enabled by default.

OPENWISP_MONITORING_CONFIG_CHECK_INTERVAL

type: int

default: 5

This setting allows you to configure the config check interval used by config_applied. By default it is set to 5 minutes.

OPENWISP_MONITORING_AUTO_IPERF3

type: bool

default: False

This setting allows you to choose whether iperf3 checks should be created automatically for newly registered
devices. It's disabled by default.

Modules

216

OPENWISP_MONITORING_IPERF3_CHECK_CONFIG

type: dict

default: {}

This setting allows to override the default iperf3 check configuration defined in
openwisp_monitoring.check.classes.iperf3.DEFAULT_IPERF3_CHECK_CONFIG.

For example, you can change the values of supported iperf3 check parameters.

OPENWISP_MONITORING_IPERF3_CHECK_CONFIG = {
 # 'org_pk' : {'host' : [], 'client_options' : {}}
 "a9734710-db30-46b0-a2fc-01f01046fe4f": {
 # Some public iperf3 servers
 # https://iperf.fr/iperf-servers.php#public-servers
 "host": ["iperf3.openwisp.io", "2001:db8::1", "192.168.5.2"],
 "client_options": {
 "port": 6209,
 # Number of parallel client streams to run
 # note that iperf3 is single threaded
 # so if you are CPU bound this will not
 # yield higher throughput
 "parallel": 5,
 # Set the connect_timeout (in milliseconds) for establishing
 # the initial control connection to the server, the lower the value
 # the faster the down iperf3 server will be detected (ex. 1000 ms (1 sec))
 "connect_timeout": 1000,
 # Window size / socket buffer size
 "window": "300K",
 # Only one reverse condition can be chosen,
 # reverse or bidirectional
 "reverse": True,
 # Only one test end condition can be chosen,
 # time, bytes or blockcount
 "blockcount": "1K",
 "udp": {"bitrate": "50M", "length": "1460K"},
 "tcp": {"bitrate": "20M", "length": "256K"},
 },
 }
}

OPENWISP_MONITORING_IPERF3_CHECK_DELETE_RSA_KEY

type: bool

default: True

This setting allows you to set whether iperf3 check RSA public key will be deleted after successful completion of the
check or not.

OPENWISP_MONITORING_IPERF3_CHECK_LOCK_EXPIRE

type: int

default: 600

Modules

217

This setting allows you to set a cache lock expiration time for the iperf3 check when running on multiple servers.
Make sure it is always greater than the total iperf3 check time, i.e. greater than the TCP + UDP test time. By default,
it is set to 600 seconds (10 mins).

OPENWISP_MONITORING_AUTO_CHARTS

type: list

default: ('traffic', 'wifi_clients', 'uptime', 'packet_loss', 'rtt')

Automatically created charts.

OPENWISP_MONITORING_CRITICAL_DEVICE_METRICS

type: list of dict objects

default: [{'key': 'ping', 'field_name': 'reachable'}]

Device metrics that are considered critical:

when a value crosses the boundary defined in the "threshold value" field of the alert settings related to one of these
metric types, the health status of the device related to the metric moves into CRITICAL.

By default, if devices are not reachable by pings they are flagged as CRITICAL.

OPENWISP_MONITORING_HEALTH_STATUS_LABELS

type: dict

default: {'unknown': 'unknown', 'ok': 'ok', 'problem': 'problem',
'critical': 'critical'}

This setting allows to change the health status labels, for example, if we want to use online instead of ok and
offline instead of critical, you can use the following configuration:

OPENWISP_MONITORING_HEALTH_STATUS_LABELS = {
 "ok": "online",
 "problem": "problem",
 "critical": "offline",
}

OPENWISP_MONITORING_WIFI_SESSIONS_ENABLED

type: bool

default: True

Setting this to False will disable Monitoring WiFi Sessions feature.

OPENWISP_MONITORING_MANAGEMENT_IP_ONLY

type: bool

default: True

By default, only the management IP will be used to perform active checks to the devices.

If the devices are connecting to your OpenWISP instance using a shared layer2 network, hence the OpenWSP
server can reach the devices using the last_ip field, you can set this to False.

Modules

218

Note

If this setting is not configured, it will fallback to the value of
OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY setting. If
OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY also not configured, then it will fallback to True.

OPENWISP_MONITORING_DEVICE_RECOVERY_DETECTION

type: bool

default: True

When device recovery detection is enabled, recoveries are discovered as soon as a device contacts the openwisp
system again (e.g.: to get the configuration checksum or to send monitoring metrics).

This feature is enabled by default.

If you use OpenVPN as the management VPN, you may want to check out a similar integration built in
openwisp-network-topology: when the status of an OpenVPN link changes (detected by monitoring the status
information of OpenVPN), the network topology module will trigger the monitoring checks. For more information see:
Network Topology Device Integration.

OPENWISP_MONITORING_MAC_VENDOR_DETECTION

type: bool

default: True

Indicates whether mac addresses will be complemented with hardware vendor information by performing lookups on
the OUI (Organization Unique Identifier) table.

This feature is enabled by default.

OPENWISP_MONITORING_WRITE_RETRY_OPTIONS

type: dict

default: see below

default value of OPENWISP_MONITORING_RETRY_OPTIONS:

dict(
 max_retries=None,
 retry_backoff=True,
 retry_backoff_max=600,
 retry_jitter=True,
)

Retry settings for recoverable failures during metric writes.

By default if a metric write fails (e.g.: due to excessive load on timeseries database at that moment) then the
operation will be retried indefinitely with an exponential random backoff and a maximum delay of 10 minutes.

This feature makes the monitoring system resilient to temporary outages and helps to prevent data loss.

For more information regarding these settings, consult the celery documentation regarding automatic retries for
known errors.

Modules

219

https://docs.celeryproject.org/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions
https://docs.celeryproject.org/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions

Note

The retry mechanism does not work when using UDP for writing data to the timeseries database. It is due to the
nature of UDP protocol which does not acknowledge receipt of data packets.

OPENWISP_MONITORING_TIMESERIES_RETRY_OPTIONS

type: dict

default: see below

default value of OPENWISP_MONITORING_RETRY_OPTIONS:

dict(max_retries=6, delay=2)

On busy systems, communication with the timeseries DB can occasionally fail. The timeseries DB backend will retry
on any exception according to these settings. The delay kicks in only after the third consecutive attempt.

This setting shall not be confused with OPENWISP_MONITORING_WRITE_RETRY_OPTIONS, which is used to
configure the infinite retrying of the celery task which writes metric data to the timeseries DB, while
OPENWISP_MONITORING_TIMESERIES_RETRY_OPTIONS deals with any other read/write operation on the
timeseries DB which may fail.

However these retries are not handled by celery but are simple python loops, which will eventually give up if a
problem persists.

OPENWISP_MONITORING_TIMESERIES_RETRY_DELAY

type: int

default: 2

This settings allow you to configure the retry delay time (in seconds) after 3 failed attempt in timeseries database.

This retry setting is used in retry mechanism to make the requests to the timeseries database resilient.

This setting is independent of celery retry settings.

OPENWISP_MONITORING_DASHBOARD_MAP

type: bool

default: True

Whether the geographic map in the dashboard is enabled or not. This feature provides a geographic map which
shows the locations which have devices installed in and provides a visual representation of the monitoring status of
the devices, this allows to get an overview of the network at glance.

This feature is enabled by default and depends on the setting OPENWISP_ADMIN_DASHBOARD_ENABLED from
openwisp-utils being set to True (which is the default).

You can turn this off if you do not use the geographic features of OpenWISP.

OPENWISP_MONITORING_DASHBOARD_TRAFFIC_CHART

type: dict

Modules

220

default: {'__all__': ['wan', 'eth1', 'eth0.2']}

This settings allows to configure the interfaces which should be included in the General Traffic chart in the admin
dashboard.

This setting should be defined in the following format:

E.g., if you want the General Traffic chart to show data from two interfaces for an organization, you need to
configure this setting as follows:

Note

The value of __all__ key is used if an organization does not have list of interfaces defined in
OPENWISP_MONITORING_DASHBOARD_TRAFFIC_CHART.

Note

If a user can manage more than one organization (e.g. superusers), then the General Traffic chart will always
show data from interfaces of __all__ configuration.

OPENWISP_MONITORING_METRICS

type: dict

default: {}

This setting allows to define additional metric configuration or to override the default metric configuration defined in
openwisp_monitoring.monitoring.configuration.DEFAULT_METRICS.

For example, if you want to change only the field_name of clients metric to wifi_clients you can use:

from django.utils.translation import gettext_lazy as _

OPENWISP_MONITORING_METRICS = {
 "clients": {
 "label": _("WiFi clients"),
 "field_name": "wifi_clients",
 },
}

For example, if you want to change only the default alert settings of memory metric you can use:

OPENWISP_MONITORING_METRICS = {
 "memory": {"alert_settings": {"threshold": 75, "tolerance": 10}},
}

For example, if you want to change only the notification of config_applied metric you can use:

from django.utils.translation import gettext_lazy as _

OPENWISP_MONITORING_METRICS = {
 "config_applied": {
 "notification": {
 "problem": {
 "verbose_name": "Configuration PROBLEM",
 "verb": _("has not been applied"),
 "email_subject": _(

Modules

221

 "[{site.name}] PROBLEM: {notification.target} configuration "
 "status issue"
),
 "message": _(
 "The configuration for device [{notification.target}]"
 "({notification.target_link}) {notification.verb} in a timely manner."
),
 },
 "recovery": {
 "verbose_name": "Configuration RECOVERY",
 "verb": _("configuration has been applied again"),
 "email_subject": _(
 "[{site.name}] RECOVERY: {notification.target} {notification.verb} "
 "successfully"
),
 "message": _(
 "The device [{notification.target}]({notification.target_link}) "
 "{notification.verb} successfully."
),
 },
 },
 },
}

Or if you want to define a new metric configuration, which you can then call in your custom code (e.g.: a custom
check class), you can do so as follows:

from django.utils.translation import gettext_lazy as _

OPENWISP_MONITORING_METRICS = {
 "top_fields_mean": {
 "name": "Top Fields Mean",
 "key": "{key}",
 "field_name": "{field_name}",
 "label": "_(Top fields mean)",
 "related_fields": ["field1", "field2", "field3"],
 },
}

OPENWISP_MONITORING_CHARTS

type: dict

default: {}

This setting allows to define additional charts or to override the default chart configuration defined in
openwisp_monitoring.monitoring.configuration.DEFAULT_CHARTS.

In the following example, we modify the description of the traffic chart:

OPENWISP_MONITORING_CHARTS = {
 "traffic": {
 "description": (
 "Network traffic, download and upload, measured on "
 'the interface "{metric.key}", custom message here.'
),
 }
}

Or if you want to define a new chart configuration, which you can then call in your custom code (e.g.: a custom check
class), you can do so as follows:

Modules

222

from django.utils.translation import gettext_lazy as _

OPENWISP_MONITORING_CHARTS = {
 "ram": {
 "type": "line",
 "title": "RAM usage",
 "description": "RAM usage",
 "unit": "bytes",
 "order": 100,
 "query": {
 "influxdb": (
 "SELECT MEAN(total) AS total, MEAN(free) AS free, "
 "MEAN(buffered) AS buffered FROM {key} WHERE time >= '{time}' AND "
 "content_type = '{content_type}' AND object_id = '{object_id}' "
 "GROUP BY time(1d)"
)
 },
 }
}

In case you just want to change the colors used in a chart here's how to do it:

OPENWISP_MONITORING_CHARTS = {
 "traffic": {"colors": ["#000000", "#cccccc", "#111111"]}
}

Adaptive Size Charts

When configuring charts, it is possible to flag their unit as adaptive_prefix, this allows to make the charts more
readable because the units are shown in either KB, MB, GB and TB depending on the size of each point, the
summary values and Y axis are also resized.

Example taken from the default configuration of the traffic chart:

OPENWISP_MONITORING_CHARTS = {
 "traffic": {
 # other configurations for this chart
 # traffic measured in 'B' (bytes)
 # unit B, KB, MB, GB, TB
 "unit": "adaptive_prefix+B",
 },
 "bandwidth": {
 # other configurations for this chart
 # adaptive unit for bandwidth related charts
 # bandwidth measured in 'bps'(bits/sec)
 # unit bps, Kbps, Mbps, Gbps, Tbps
 "unit": "adaptive_prefix+bps",
 },
}

Modules

223

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/1.1/adaptive-chart.png

OPENWISP_MONITORING_DEFAULT_CHART_TIME

type: str

default: 7d

possible values 1d, 3d, 7d, 30d or 365d

Allows to set the default time period of the time series charts.

OPENWISP_MONITORING_AUTO_CLEAR_MANAGEMENT_IP

type: bool

default: True

This setting allows you to automatically clear management_ip of a device when it goes offline. It is enabled by
default.

OPENWISP_MONITORING_API_URLCONF

type: string

default: None

Changes the urlconf option of django URLs to point the monitoring API URLs to another installed module,
example, myapp.urls. (Useful when you have a separate API instance.)

OPENWISP_MONITORING_API_BASEURL

type: string

default: None

If you have a separate instance of the OpenWISP Monitoring API on a different domain, you can use this option to
change the base of the URL, this will enable you to point all the API URLs to your API server's domain, example:
https://api.myservice.com.

OPENWISP_MONITORING_CACHE_TIMEOUT

type: int

default: 86400 (24 hours in seconds)

This setting allows to configure timeout (in seconds) for monitoring data cache.

Management Commands

run_checks

This command will execute all the available checks for all the devices. By default checks are run periodically by
celery beat.

Example usage:

cd tests/
./manage.py run_checks

Modules

224

migrate_timeseries

This command triggers asynchronous migration of the time-series database.

Example usage:

cd tests/
./manage.py migrate_timeseries

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Monitoring, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Monitoring User Docs

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP Monitoring, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Monitoring User Docs

Dependencies 225

Installing for Development 226

Alternative Sources 227

PyPI 227

Github 227

Install and Run on Docker 227

Dependencies

• Python >= 3.8

• InfluxDB 1.8

• fping

• OpenSSL

Modules

225

Installing for Development

Install the system dependencies:

Install system packages:

sudo apt update
sudo apt install -y sqlite3 libsqlite3-dev openssl libssl-dev
sudo apt install -y gdal-bin libproj-dev libgeos-dev libspatialite-dev libsqlite3-mod-spatialite
sudo apt install -y fping
sudo apt install -y chromium

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-monitoring

Navigate into the cloned repository:

cd openwisp-monitoring/

Start Redis and InfluxDB using Docker:

docker-compose up -d redis influxdb

Setup and activate a virtual-environment. (we'll be using virtualenv)

python -m virtualenv env
source env/bin/activate

Make sure that you are using pip version 20.2.4 before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .
pip install -r requirements-test.txt
npm install -g jshint stylelint

Install WebDriver for Chromium for your browser version from https://chromedriver.chromium.org/home and extract
chromedriver to one of directories from your $PATH (example: ~/.local/bin/).

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Run celery and celery-beat with the following commands (separate terminal windows are needed):

cd tests/
celery -A openwisp2 worker -l info
celery -A openwisp2 beat -l info

Launch development server:

./manage.py runserver 0.0.0.0:8000

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py # using --parallel is not supported in this module

Run quality assurance tests with:

./run-qa-checks

Modules

226

https://pypi.org/project/virtualenv/
https://chromedriver.chromium.org/home

Alternative Sources

PyPI

To install the latest Pypi:

pip install openwisp-monitoring

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-monitoring/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-monitoring#egg=openwisp_monitoring

Install and Run on Docker

Warning

This Docker image is for development purposes only.

For the official OpenWISP Docker images, see: Docker OpenWISP.

Build from the Dockerfile:

docker-compose build

Run the docker container:

docker-compose up

Code Utilities

Note

This page is for developers who want to customize or extend OpenWISP Monitoring, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Monitoring User Docs

Registering / Unregistering Metric Configuration 228

Registering / Unregistering Chart Configuration 230

Monitoring Notifications 232

Signals 232

Exceptions 233

Modules

227

Registering / Unregistering Metric Configuration

OpenWISP Monitoring provides registering and unregistering metric configuration through utility functions
openwisp_monitoring.monitoring.configuration.register_metric and
openwisp_monitoring.monitoring.configuration.unregister_metric. Using these functions you can
register or unregister metric configurations from anywhere in your code.

register_metric

This function is used to register a new metric configuration from anywhere in your code.

Parameter Description

metric_name: A str defining name of the metric configuration.

metric_configuration: A dict defining configuration of the metric.

An example usage has been shown below.

from django.utils.translation import gettext_lazy as _
from openwisp_monitoring.monitoring.configuration import register_metric

Define configuration of your metric
metric_config = {
 "label": _("Ping"),
 "name": "Ping",
 "key": "ping",
 "field_name": "reachable",
 "related_fields": ["loss", "rtt_min", "rtt_max", "rtt_avg"],
 "charts": {
 "uptime": {
 "type": "bar",
 "title": _("Ping Success Rate"),
 "description": _(
 "A value of 100% means reachable, 0% means unreachable, values in "
 "between 0% and 100% indicate the average reachability in the "
 "period observed. Obtained with the fping linux program."
),
 "summary_labels": [_("Average Ping Success Rate")],
 "unit": "%",
 "order": 200,
 "colorscale": {
 "max": 100,
 "min": 0,
 "label": _("Rate"),
 "scale": [
 [
 [0, "#c13000"],
 [0.1, "cb7222"],
 [0.5, "#deed0e"],
 [0.9, "#7db201"],
 [1, "#498b26"],
],
],
 "map": [
 [100, "#498b26", _("Flawless")],
 [90, "#7db201", _("Mostly Reachable")],
 [50, "#deed0e", _("Partly Reachable")],
 [10, "#cb7222", _("Mostly Unreachable")],
 [None, "#c13000", _("Unreachable")],
],

Modules

228

 "fixed_value": 100,
 },
 "query": chart_query["uptime"],
 },
 "packet_loss": {
 "type": "bar",
 "title": _("Packet loss"),
 "description": _(
 "Indicates the percentage of lost packets observed in ICMP probes. "
 "Obtained with the fping linux program."
),
 "summary_labels": [_("Average packet loss")],
 "unit": "%",
 "colors": "#d62728",
 "order": 210,
 "query": chart_query["packet_loss"],
 },
 "rtt": {
 "type": "scatter",
 "title": _("Round Trip Time"),
 "description": _(
 "Round trip time observed in ICMP probes, measuered in milliseconds."
),
 "summary_labels": [
 _("Average RTT"),
 _("Average Max RTT"),
 _("Average Min RTT"),
],
 "unit": _(" ms"),
 "order": 220,
 "query": chart_query["rtt"],
 },
 },
 "alert_settings": {"operator": "<", "threshold": 1, "tolerance": 0},
 "notification": {
 "problem": {
 "verbose_name": "Ping PROBLEM",
 "verb": "cannot be reached anymore",
 "level": "warning",
 "email_subject": _(
 "[{site.name}] {notification.target} is not reachable"
),
 "message": _(
 "The device [{notification.target}] {notification.verb} anymore by our ping "
 "messages."
),
 },
 "recovery": {
 "verbose_name": "Ping RECOVERY",
 "verb": "has become reachable",
 "level": "info",
 "email_subject": _(
 "[{site.name}] {notification.target} is reachable again"
),
 "message": _(
 "The device [{notification.target}] {notification.verb} again by our ping "
 "messages."
),
 },
 },

Modules

229

}

Register your custom metric configuration
register_metric("ping", metric_config)

The above example will register one metric configuration (named ping), three chart configurations (named rtt,
packet_loss, uptime) as defined in the charts key, two notification types (named ping_recovery,
ping_problem) as defined in notification key.

The AlertSettings of ping metric will by default use threshold and tolerance defined in the
alert_settings key. You can always override them and define your own custom values via the admin.

You can also use the alert_field key in metric configuration which allows AlertSettings to check the
threshold on alert_field instead of the default field_name key.

Note

It will raise ImproperlyConfigured exception if a metric configuration is already registered with same name
(not to be confused with verbose_name).

If you don't need to register a new metric but need to change a specific key of an existing metric configuration, you
can use OPENWISP_MONITORING_METRICS.

unregister_metric

This function is used to unregister a metric configuration from anywhere in your code.

Parameter Description

metric_name: A str defining name of the metric configuration.

An example usage is shown below.

from openwisp_monitoring.monitoring.configuration import unregister_metric

Unregister previously registered metric configuration
unregister_metric("metric_name")

Note

It will raise ImproperlyConfigured exception if the concerned metric configuration is not registered.

Registering / Unregistering Chart Configuration

OpenWISP Monitoring provides registering and unregistering chart configuration through utility functions
openwisp_monitoring.monitoring.configuration.register_chart and
openwisp_monitoring.monitoring.configuration.unregister_chart. Using these functions you can
register or unregister chart configurations from anywhere in your code.

register_chart

This function is used to register a new chart configuration from anywhere in your code.

Parameter Description

Modules

230

chart_name: A str defining name of the chart configuration.

chart_configuration: A dict defining configuration of the chart.

An example usage has been shown below.

from openwisp_monitoring.monitoring.configuration import register_chart

Define configuration of your chart
chart_config = {
 "type": "histogram",
 "title": "Histogram",
 "description": "Histogram",
 "top_fields": 2,
 "order": 999,
 "query": {
 "influxdb": (
 "SELECT {fields|SUM|/ 1} FROM {key} "
 "WHERE time >= '{time}' AND content_type = "
 "'{content_type}' AND object_id = '{object_id}'"
)
 },
}

Register your custom chart configuration
register_chart("chart_name", chart_config)

Note

It will raise ImproperlyConfigured exception if a chart configuration is already registered with same name
(not to be confused with verbose_name).

If you don't need to register a new chart but need to change a specific key of an existing chart configuration, you can
use OPENWISP_MONITORING_CHARTS.

unregister_chart

This function is used to unregister a chart configuration from anywhere in your code.

Parameter Description

chart_name: A str defining name of the chart configuration.

An example usage is shown below.

from openwisp_monitoring.monitoring.configuration import unregister_chart

Unregister previously registered chart configuration
unregister_chart("chart_name")

Note

It will raise ImproperlyConfigured exception if the concerned chart configuration is not registered.

Modules

231

Monitoring Notifications

OpenWISP Monitoring registers and uses the following notification types:

• threshold_crossed: Fires when a metric crosses the boundary defined in the threshold value of the alert
settings.

• threhold_recovery: Fires when a metric goes back within the expected range.

• connection_is_working: Fires when the connection to a device is working.

• connection_is_not_working: Fires when the connection (e.g.: SSH) to a device stops working (e.g.:
credentials are outdated, management IP address is outdated, or device is not reachable).

Registering Notification Types

You can define your own notification types using register_notification_type function from OpenWISP
Notifications.

For more information, see the relevant documentation section about registering notification types in the Notifications
module.

Once a new notification type is registered, you have to use the "notify" signal provided the Notifications module to
send notifications for this type.

Signals

Note

If you're not familiar with signals, please refer to the Django Signals documentation.

device_metrics_received

Full Python path: openwisp_monitoring.device.signals.device_metrics_received

Arguments:

• instance: instance of Device whose metrics have been received

• request: the HTTP request object

• time: time with which metrics will be saved. If none, then server time will be used

• current: whether the data has just been collected or was collected previously and sent now due to network
connectivity issues

This signal is emitted when device metrics are received to the DeviceMetric view (only when using HTTP POST).

The signal is emitted just before a successful response is returned, it is not sent if the response was not successful.

health_status_changed

Full Python path: openwisp_monitoring.device.signals.health_status_changed

Arguments:

• instance: instance of DeviceMonitoring whose status has been changed

• status: the status by which DeviceMonitoring's existing status has been updated with

This signal is emitted only if the health status of DeviceMonitoring object gets updated.

Modules

232

https://docs.djangoproject.com/en/4.2/topics/signals/

threshold_crossed

Full Python path: openwisp_monitoring.monitoring.signals.threshold_crossed

Arguments:

• metric: Metric object whose threshold defined in related alert settings was crossed

• alert_settings: AlertSettings related to the Metric

• target: related Device object

• first_time: it will be set to true when the metric is written for the first time. It shall be set to false afterwards.

• tolerance_crossed: it will be set to true if the metric has crossed the threshold for tolerance configured in
alert settings. Otherwise, it will be set to false.

first_time parameter can be used to avoid initiating unneeded actions. For example, sending recovery
notifications.

This signal is emitted when the threshold value of a Metric defined in alert settings is crossed.

pre_metric_write

Full Python path: openwisp_monitoring.monitoring.signals.pre_metric_write

Arguments:

• metric: Metric object whose data shall be stored in timeseries database

• values: metric data that shall be stored in the timeseries database

• time: time with which metrics will be saved

• current: whether the data has just been collected or was collected previously and sent now due to network
connectivity issues

This signal is emitted for every metric before the write operation is sent to the timeseries database.

post_metric_write

Full Python path: openwisp_monitoring.monitoring.signals.post_metric_write

Arguments:

• metric: Metric object whose data is being stored in timeseries database

• values: metric data that is being stored in the timeseries database

• time: time with which metrics will be saved

• current: whether the data has just been collected or was collected previously and sent now due to network
connectivity issues

This signal is emitted for every metric after the write operation is successfully executed in the background.

Exceptions

TimeseriesWriteException

Full Python path: openwisp_monitoring.db.exceptions.TimeseriesWriteException

If there is any failure due while writing data in timeseries database, this exception will be raised with a helpful error
message explaining the cause of the failure. This exception will normally be caught and the failed write task will be
retried in the background so that there is no loss of data if failures occur due to overload of Timeseries server. You
can read more about this retry mechanism at OPENWISP_MONITORING_WRITE_RETRY_OPTIONS.

Modules

233

InvalidMetricConfigException

Full Python path: openwisp_monitoring.monitoring.exceptions.InvalidMetricConfigException

This exception will be raised if the metric configuration is broken.

InvalidChartConfigException

Full Python path: openwisp_monitoring.monitoring.exceptions.InvalidChartConfigException

This exception will be raised if the chart configuration is broken.

Extending OpenWISP Monitoring

Note

This page is for developers who want to customize or extend OpenWISP Monitoring, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Monitoring User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason openwisp-monitoring
provides a set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of openwisp-monitoring, you need to perform the steps described in the
rest of this section.

When in doubt, the code in the test project and the sample apps namely sample_check, sample_monitoring,
sample_device_monitoring will guide you in the correct direction: just replicate and adapt that code to get a basic
derivative of openwisp-monitoring working.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your Custom Module 235

2. Install openwisp-monitoring 235

3. Add EXTENDED_APPS 235

4. Add openwisp_utils.staticfiles.DependencyFinder 235

5. Add openwisp_utils.loaders.DependencyLoader 236

6. Inherit the AppConfig Class 236

7. Create your Custom Models 236

8. Add Swapper Configurations 237

9. Create Database Migrations 237

10. Create your Custom Admin 237

1. Monkey Patching 237

2. Inheriting Admin Classes 238

Modules

234

https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_monitoring/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_device_monitoring/

11. Create Root URL Configuration 239

12. Create celery.py 239

13. Import Celery Tasks 239

14. Create the Custom Command run_checks 239

15. Import the Automated Tests 240

Other Base Classes that can be Inherited and Extended 240

DeviceMetricView 240

1. Initialize your Custom Module

The first thing you need to do in order to extend any openwisp-monitoring app is create a new django app which will
contain your custom version of that openwisp-monitoring app.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call these django apps as mycheck, mydevicemonitoring, mymonitoring but you can name it how you want:

django-admin startapp mycheck
django-admin startapp mydevicemonitoring
django-admin startapp mymonitoring

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add mycheck to INSTALLED_APPS in your settings.py, ensuring also that
openwisp_monitoring.check has been removed:

INSTALLED_APPS = [
 # ... other apps ...
 # 'openwisp_monitoring.check', <-- comment out or delete this line
 # 'openwisp_monitoring.device', <-- comment out or delete this line
 # 'openwisp_monitoring.monitoring' <-- comment out or delete this line
 "mycheck",
 "mydevicemonitoring",
 "mymonitoring",
 "nested_admin",
]

For more information about how to work with django projects and django apps, please refer to the "Tutorial: Writing
your first Django app" in the django documentation.

2. Install openwisp-monitoring

Install (and add to the requirement of your project) openwisp-monitoring:

pip install --U https://github.com/openwisp/openwisp-monitoring/tarball/master

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ["device_monitoring", "monitoring", "check"]

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",

Modules

235

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
 "openwisp_utils.loaders.DependencyLoader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• sample_check/__init__.py.

• sample_check/apps.py.

• sample_monitoring/__init__.py.

• sample_monitoring/apps.py.

• sample_device_monitoring/__init__.py.

• sample_device_monitoring/apps.py.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

7. Create your Custom Models

To extend check app, refer to sample_check models.py file.

To extend monitoring app, refer to sample_monitoring models.py file.

To extend device_monitoring app, refer to sample_device_monitoring models.py file.

Note

• For doubts regarding how to use, extend or develop models please refer to the "Models" section in the
django documentation.

• For doubts regarding proxy models please refer to proxy models.

Modules

236

https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/__init__.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/apps.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_monitoring/__init__.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_monitoring/apps.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_device_monitoring/__init__.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_device_monitoring/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/models.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_monitoring/models.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_device_monitoring/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/#proxy-models

8. Add Swapper Configurations

Add the following to your settings.py:

Setting models for swapper module
For extending check app
CHECK_CHECK_MODEL = "YOUR_MODULE_NAME.Check"
For extending monitoring app
MONITORING_CHART_MODEL = "YOUR_MODULE_NAME.Chart"
MONITORING_METRIC_MODEL = "YOUR_MODULE_NAME.Metric"
MONITORING_ALERTSETTINGS_MODEL = "YOUR_MODULE_NAME.AlertSettings"
For extending device_monitoring app
DEVICE_MONITORING_DEVICEDATA_MODEL = "YOUR_MODULE_NAME.DeviceData"
DEVICE_MONITORING_DEVICEMONITORING_MODEL = (
 "YOUR_MODULE_NAME.DeviceMonitoring"
)
DEVICE_MONITORING_WIFICLIENT_MODEL = "YOUR_MODULE_NAME.WifiClient"
DEVICE_MONITORING_WIFISESSION_MODEL = "YOUR_MODULE_NAME.WifiSession"

Substitute <YOUR_MODULE_NAME> with your actual django app name (also known as app_label).

9. Create Database Migrations

Create and apply database migrations:

./manage.py makemigrations

./manage.py migrate

For more information, refer to the "Migrations" section in the django documentation.

10. Create your Custom Admin

To extend check app, refer to sample_check admin.py file.

To extend monitoring app, refer to sample_monitoring admin.py file.

To extend device_monitoring app, refer to sample_device_monitoring admin.py file.

To introduce changes to the admin, you can do it in the two ways described below.

Note

For doubts regarding how the django admin works, or how it can be customized, please refer to "The django
admin site" section in the django documentation.

1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example, for check app you can do it as:

from openwisp_monitoring.check.admin import CheckAdmin

CheckAdmin.list_display.insert(1, "my_custom_field")
CheckAdmin.ordering = ["-my_custom_field"]

Similarly for device_monitoring app, you can do it as:

from openwisp_monitoring.device.admin import DeviceAdmin, WifiSessionAdmin

Modules

237

https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/admin.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_monitoring/admin.py
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_device_monitoring/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

DeviceAdmin.list_display.insert(1, "my_custom_field")
DeviceAdmin.ordering = ["-my_custom_field"]
WifiSessionAdmin.fields += ["my_custom_field"]

Similarly for monitoring app, you can do it as:

from openwisp_monitoring.monitoring.admin import (
 MetricAdmin,
 AlertSettingsAdmin,
)

MetricAdmin.list_display.insert(1, "my_custom_field")
MetricAdmin.ordering = ["-my_custom_field"]
AlertSettingsAdmin.list_display.insert(1, "my_custom_field")
AlertSettingsAdmin.ordering = ["-my_custom_field"]

2. Inheriting Admin Classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

For check app,

from django.contrib import admin

from openwisp_monitoring.check.admin import CheckAdmin as BaseCheckAdmin
from swapper import load_model

Check = load_model("check", "Check")

admin.site.unregister(Check)

@admin.register(Check)
class CheckAdmin(BaseCheckAdmin):
 # add your changes here
 pass

For device_monitoring app,

from django.contrib import admin

from openwisp_monitoring.device_monitoring.admin import (
 DeviceAdmin as BaseDeviceAdmin,
)
from openwisp_monitoring.device_monitoring.admin import (
 WifiSessionAdmin as BaseWifiSessionAdmin,
)
from swapper import load_model

Device = load_model("config", "Device")
WifiSession = load_model("device_monitoring", "WifiSession")

admin.site.unregister(Device)
admin.site.unregister(WifiSession)

@admin.register(Device)
class DeviceAdmin(BaseDeviceAdmin):
 # add your changes here
 pass

Modules

238

@admin.register(WifiSession)
class WifiSessionAdmin(BaseWifiSessionAdmin):
 # add your changes here
 pass

For monitoring app,

from django.contrib import admin

from openwisp_monitoring.monitoring.admin import (
 AlertSettingsAdmin as BaseAlertSettingsAdmin,
 MetricAdmin as BaseMetricAdmin,
)
from swapper import load_model

Metric = load_model("Metric")
AlertSettings = load_model("AlertSettings")

admin.site.unregister(Metric)
admin.site.unregister(AlertSettings)

@admin.register(Metric)
class MetricAdmin(BaseMetricAdmin):
 # add your changes here
 pass

@admin.register(AlertSettings)
class AlertSettingsAdmin(BaseAlertSettingsAdmin):
 # add your changes here
 pass

11. Create Root URL Configuration

Please refer to the urls.py file in the test project.

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

12. Create celery.py

Please refer to the celery.py file in the test project.

For more information about the usage of celery in django, please refer to the "First steps with Django" section in the
celery documentation.

13. Import Celery Tasks

Add the following in your settings.py to import celery tasks from device_monitoring app.

CELERY_IMPORTS = ("openwisp_monitoring.device.tasks",)

14. Create the Custom Command run_checks

Please refer to the run_checks.py file in the test project.

For more information about the usage of custom management commands in django, please refer to the "Writing
custom django-admin commands" section in the django documentation.

Modules

239

https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/urls.py
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/celery.py
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://github.com/openwisp/openwisp-monitoring/tree/master/tests/openwisp2/sample_check/management/commands/run_checks.py
https://docs.djangoproject.com/en/4.2/howto/custom-management-commands/
https://docs.djangoproject.com/en/4.2/howto/custom-management-commands/

15. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of
openwisp-monitoring.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

For, extending check app see the tests of sample_check app to find out how to do this.

For, extending device_monitoring app see the tests of sample_device_monitoring app to find out how to do this.

For, extending monitoring app see the tests of sample_monitoring app to find out how to do this.

Other Base Classes that can be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

DeviceMetricView

This view is responsible for displaying Charts and Status primarily.

The full python path is: openwisp_monitoring.device.api.views.DeviceMetricView.

If you want to extend this view, you will have to perform the additional steps below.

Step 1. Import and extend view:

mydevice/api/views.py
from openwisp_monitoring.device.api.views import (
 DeviceMetricView as BaseDeviceMetricView,
)

class DeviceMetricView(BaseDeviceMetricView):
 # add your customizations here ...
 pass

Step 2: remove the following line from your root urls.py file:

re_path(
 "api/v1/monitoring/device/(?P<pk>[^/]+)/$",
 views.device_metric,
 name="api_device_metric",
),

Step 3: add an URL route pointing to your custom view in urls.py file:

urls.py
from mydevice.api.views import DeviceMetricView

urlpatterns = [
 # ... other URLs
 re_path(
 r"^(?P<path>.*)$",
 DeviceMetricView.as_view(),
 name="api_device_metric",
),
]

Other useful resources:

• REST API Reference

• Settings

Modules

240

https://github.com/openwisp/openwisp-monitoring/blob/master/tests/openwisp2/sample_check/tests.py
https://github.com/openwisp/openwisp-monitoring/blob/master/tests/openwisp2/sample_device_monitoring/tests.py
https://github.com/openwisp/openwisp-monitoring/blob/master/tests/openwisp2/sample_monitoring/tests.py

Network Topology

Seealso

Source code: github.com/openwisp/openwisp-network-topology.

OpenWISP Network Topology is a network topology collector and visualizer web application and API, it allows to
collect network topology data from different networking software (dynamic mesh routing protocols, OpenVPN), store
it, visualize it, edit its details, it also provides hooks (a.k.a Django signals) to execute code when the status of a link
changes.

When used in conjunction with OpenWISP Controller and OpenWISP Monitoring, it makes the monitoring system
faster in detecting change to the network.

For a comprehensive overview of features, please refer to the Network Topology: Features page.

The following diagram illustrates the role of the Network Topology module within the OpenWISP architecture.

OpenWISP Architecture: highlighted network topology module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Network Topology: Features

OpenWISP Network Topology module offers robust features for managing, visualizing, and monitoring network
topologies. Key features include:

• network topology collector supporting different formats:

• NetJSON NetworkGraph

• OLSR (jsoninfo/txtinfo)

• batman-adv (jsondoc/txtinfo)

• BMX6 (q6m)

Modules

241

https://github.com/openwisp/openwisp-network-topology
https://docs.djangoproject.com/en/4.2/topics/signals/
../_images/architecture-v2-openwisp-network-topology.png

• CNML 1.0

• OpenVPN

• Wireguard

• ZeroTier

• additional formats can be added by writing custom netdiff parsers

• network topology visualizer based on netjsongraph.js

• Rest API that exposes data in NetJSON NetworkGraph format

• admin interface that allows to easily manage, audit, visualize and debug topologies and their relative data
(nodes, links)

• RECEIVE network topology data from multiple nodes

• topology history: allows saving daily snapshots of each topology that can be viewed in the frontend

• faster monitoring: integrates with OpenWISP Controller and OpenWISP Monitoring for faster detection of
critical events in the network

Quick Start Guide

This module works by periodically collecting the network topology graph data of the supported networking software
or formats. The data has to be either fetched by the application or received in POST API requests, therefore after
deploying the application, additional steps are required to make the data collection and visualization work, read on to
find out how.
Creating a Topology 242

Sending Data for Topology with RECEIVE Strategy 243

Sending Data for ZeroTier Topology with RECEIVE Strategy 243

Creating a Topology

1. Create a topology object by going to Network Topology > Topologies > Add topology.

2. Give an appropriate label to the topology.

3. Select the topology format from the dropdown menu. The topology format determines which parser should be
used to process topology data.

4. Select the Strategy for updating this topology.

• If you are using FETCH strategy, then enter the URL for fetching topology data in the Url field.

• If you are using RECEIVE strategy, you will get the URL for sending topology data. The RECEIVE strategy
provides an additional field expiration time. This can be used to add delay in marking missing links as
down.

Modules

242

https://github.com/openwisp/netdiff#parsers
https://github.com/openwisp/netjsongraph.js
http://netjson.org
https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/quickstart-topology.gif

Sending Data for Topology with RECEIVE Strategy

1. Copy the URL generated by OpenWISP for sending the topology data.

E.g., in our case the URL is http://127.0.0.1:8000/api/v1/network-topology/topology/d17e53
9a-1793-4be2-80a4-c305eca64fd8/receive/?key=cMGsvio8q0L0BGLd5twiFHQOqIEKI423.

Note

The topology receive URL is shown only after the topology object is created.

2. Create a script (e.g.: /opt/send-topology.sh) which sends the topology data using POST, in the example
script below we are sending the status log data of OpenVPN but the same code can be applied to other formats
by replacing cat /var/log/openvpn/tun0.stats with the actual command which returns the network
topology output:

#!/bin/bash
replace COMMAND with the command used to fetch the topology data
COMMAND="cat /var/log/openvpn/tun0.stats"
UUID="<TOPOLOGY-UUID-HERE>"
KEY="<TOPOLOGY-KEY-HERE>"
OPENWISP_URL="https://<OPENWISP_DOMAIN_HERE>"
$COMMAND |
 # Upload the topology data to OpenWISP
 curl -X POST \
 --data-binary @- \
 --header "Content-Type: text/plain" \
 $OPENWISP_URL/api/v1/network-topology/topology/$UUID/receive/?key=$KEY

3. Add the /opt/send-topology.sh script created in the previous step to the crontab, here's an example
which sends the topology data every 5 minutes:

flag script as executable
chmod +x /opt/send-topology.sh
open crontab
crontab -e

Add the following line and save

echo */5 * * * * /opt/send-topology.sh

4. Once the steps above are completed, you should see nodes and links being created automatically, you can see
the network topology graph from the admin page of the topology change page (you have to click on the View
topology graph button in the upper right part of the page) or, alternatively, a non-admin visualizer page is also
available at the URL /topology/topology/<TOPOLOGY-UUID>/.

Sending Data for ZeroTier Topology with RECEIVE Strategy

Follow the procedure described below to setup ZeroTier topology with RECEIVE strategy.

Modules

243

https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/quickstart-receive.gif

Note

In this example, the Shared systemwide (no organization) option is used for the ZeroTier topology
organization. You are free to opt for any organization, as long as both the topology and the device share the
same organization, assuming the OpenWISP controller integration feature is enabled.

1. Create Topology for ZeroTier

1. Visit admin/topology/topology/add to add a new topology.

2. We will set the Label of this topology to ZeroTier and select the topology Format from the dropdown as
ZeroTier.

3. Select the strategy as RECEIVE from the dropdown.

4. Let use default Expiration time 0 and make sure Published option is checked.

5. After clicking on the Save and continue editing button, a topology receive URL is generated. Make sure you
copy that URL for later use in the topology script.

Modules

244

https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/zerotier-tutorial/topology-1.png
https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/zerotier-tutorial/topology-2.png

2. Create a Script for Sending ZeroTier Topology Data

1. Now, create a script (e.g: /opt/send-zt-topology.sh) that sends the ZeroTier topology data using a
POST request. In the example script below, we are sending the ZeroTier self-hosted controller peers data:

#!/bin/bash
command to fetch zerotier controller peers data in json format
COMMAND="zerotier-cli peers -j"
UUID="<TOPOLOGY-UUID-HERE>"
KEY="<TOPOLOGY-KEY-HERE>"
OPENWISP_URL="https://<OPENWISP_DOMAIN_HERE>"
$COMMAND |
 # Upload the topology data to OpenWISP
 curl -X POST \
 --data-binary @- \
 --header "Content-Type: text/plain" \
 $OPENWISP_URL/api/v1/network-topology/topology/$UUID/receive/?key=$KEY

2. Add the /opt/send-zt-topology.sh script created in the previous step to the root crontab, here's an
example which sends the topology data every 5 minutes:

flag script as executable
chmod +x /opt/send-zt-topology.sh

open rootcrontab
sudo crontab -e

Add the following line and save

echo */5 * * * * /opt/send-zt-topology.sh

Note

When using the ZeroTier topology, ensure that you use sudo crontab -e to edit the root crontab. This step
is essential because the zerotier-cli peers -j command requires root privileges for kernel interaction,
without which the command will not function correctly.

3. Once the steps above are completed, you should see nodes and links being created automatically, you can see
the network topology graph from the admin page of the topology change page (you have to click on the View
topology graph button in the upper right part of the page) or, alternatively, a non-admin visualizer page is also
available at the URL /topology/topology/<TOPOLOGY-UUID>/.

Modules

245

https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/zerotier-tutorial/topology-graph.png

Topology Collection Strategies

There are mainly two ways of collecting topology information:

• FETCH strategy

• RECEIVE strategy

Each Topology instance has a strategy field which can be set to the desired setting.

FETCH Strategy

Topology data will be fetched from a URL.

When some links are not detected anymore they will be flagged as "down" straightaway.

RECEIVE Strategy

Topology data is sent directly from one or more nodes of the network.

The collector waits to receive data in the payload of a POST HTTP request; when such a request is received, a key
parameter it's first checked against the Topology key.

If the request is authorized the collector proceeds to update the topology.

If the data is sent from one node only, it's highly advised to set the expiration_time of the Topology instance to
0 (seconds), this way the system works just like in the FETCH strategy, with the only difference that the data is sent
by one node instead of fetched by the collector.

If the data is sent from multiple nodes, you SHOULD set the expiration_time of the Topology instance to a
value slightly higher than the interval used by nodes to send the topology, this way links will be flagged as "down"
only if they haven't been detected for a while. This mechanism allows to visualize the topology even if the network
has been split in several parts, the disadvantage is that it will take a bit more time to detect links that go offline.

Integrations with other OpenWISP modules

If you use OpenWISP Controller or OpenWISP Monitoring and you use OpenVPN, Wireguard or ZeroTier for the
management VPN, you can use the integration available in
openwisp_network_topology.integrations.device.

This additional and optional module provides the following features:

• whenever the status of a link changes:

• the management IP address of the related device is updated straightaway

• if OpenWISP Monitoring is enabled, the device checks are triggered (e.g.: ping)

• if OpenWISP Monitoring is installed and enabled, the system can automatically create topology for the WiFi
Mesh (802.11s) interfaces using the monitoring data provided by the agent. You can enable this by setting
OPENWISP_NETWORK_TOPOLOGY_WIFI_MESH_INTEGRATION to True.

This integration makes the whole system a lot faster in detecting important events in the network.

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

In order to use this module simply add openwisp_network_topology.integrations.device to
INSTALLED_APPS in the Django project settings, e.g.:

Modules

246

INSTALLED_APPS.append("openwisp_network_topology.integrations.device")

If you have enabled WiFI Mesh integration, you will also need to update the CELERY_BEAT_SCHEDULE as follow:

CELERY_BEAT_SCHEDULE.update(
 {
 "create_mesh_topology": {
 # This task generates the mesh topology from monitoring data
 "task": "openwisp_network_topology.integrations.device.tasks.create_mesh_topology",
 # Execute this task every 5 minutes
 "schedule": timedelta(minutes=5),
 "args": (
 # List of organization UUIDs. The mesh topology will be
 # created only for devices belonging these organizations.
 [
 "4e002f97-eb01-4371-a4a8-857faa22fe5c",
 "be88d4c4-599a-4ca2-a1c0-3839b4fdc315",
],
 # The task won't use monitoring data reported
 # before this time (in seconds)
 6 * 60, # 6 minutes
),
 },
 }
)

If you are enabling this integration on a preexisting system, use the create_device_nodes management command to
create the relationship between devices and nodes.

Rest API

Live Documentation 247

Browsable Web Interface 248

List of Endpoints 248

Live Documentation

A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Modules

247

https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/api-doc.png

Browsable Web Interface

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
point, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

List Topologies

GET /api/v1/network-topology/topology/

Available filters:

• strategy: Filter topologies based on their strategy (fetch or receive). E.g.
?strategy=<topology_strategy>.

• parser: Filter topologies based on their parser. E.g. ?parser=<topology_parsers>.

• organization: Filter topologies based on their organization. E.g.
?organization=<topology_organization_id>.

• organization_slug: Filter topologies based on their organization slug. E.g.
?organization_slug=<topology_organization_slug>.

You can use multiple filters in one request, e.g.:

/api/v1/network-topology/topology/?organization=371791ec-e3fe-4c9a-8972-3e8b882416f6&strategy=fetch

Note

By default, /api/v1/network-topology/topology/ does not include unpublished topologies. If you want to
include unpublished topologies in the response, use ?include_unpublished=true filter as following:

GET /api/v1/network-topology/topology/?include_unpublished=true

Modules

248

https://raw.githubusercontent.com/openwisp/openwisp-network-topology/docs/docs/api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Create Topology

POST /api/v1/network-topology/topology/

Detail of a Topology

GET /api/v1/network-topology/topology/{id}/

Note

By default, /api/v1/network-topology/topology/{id}/ will return HTTP 404 Not Found for
unpublished topologies. If you want to retrieve an unpublished topology, use ?include_unpublished=true
filter as following:

GET /api/v1/network-topology/topology/{id}/?include_unpublished=true

Change Topology Detail

PUT /api/v1/network-topology/topology/{id}/

Patch Topology Detail

PATCH /api/v1/network-topology/topology/{id}/

Delete Topology

DELETE /api/v1/network-topology/topology/{id}/

View Topology History

This endpoint is used to go back in time to view previous topology snapshots. For it to work, snapshots need to be
saved periodically as described in save_snapshot section above.

For example, we could use the endpoint to view the snapshot of a topology saved on 2020-08-08 as follows.

GET /api/v1/network-topology/topology/{id}/history/?date=2020-08-08

Send Topology Data

POST /api/v1/network-topology/topology/{id}/receive/

List Links

GET /api/v1/network-topology/link/

Available filters:

• topology: Filter links belonging to a topology. E.g. ?topology=<topology_id>.

• organization: Filter links belonging to an organization. E.g. ?organization=<organization_id>.

Modules

249

• organization_slug: Filter links based on their organization slug. E.g.
?organization_slug=<organization_slug>.

• status: Filter links based on their status (up or down). E.g. ?status=<link_status>.

You can use multiple filters in one request, e.g.:

/api/v1/network-topology/link/?status=down&topology=7fce01bd-29c0-48b1-8fce-0508f2d75d36

Create Link

POST /api/v1/network-topology/link/

Get Link Detail

GET /api/v1/network-topology/link/{id}/

Change Link Detail

PUT /api/v1/network-topology/link/{id}/

Patch Link Detail

PATCH /api/v1/network-topology/link/{id}/

Delete Link

DELETE /api/v1/network-topology/link/{id}/

List Nodes

GET /api/v1/network-topology/node/

Available filters:

• topology: Filter nodes belonging to a topology. E.g. ?topology=<topology_id>.

• organization: Filter nodes belonging to an organization. E.g. ?organization=<organization_id>.

• organization_slug: Filter nodes based on their organization slug. E.g.
?organization_slug=<organization_slug>.

You can use multiple filters in one request, e.g.:

/api/v1/network-topology/node/?organization=371791ec-e3fe-4c9a-8972-3e8b882416f6&topology=7fce01bd-29c0-48b1-8fce-0508f2d75d36

Create Node

POST /api/v1/network-topology/node/

Get Node Detail

GET /api/v1/network-topology/node/{id}/

Modules

250

Change Node Detail

PUT /api/v1/network-topology/node/{id}/

Patch Node Detail

PATCH /api/v1/network-topology/node/{id}/

Delete Node

DELETE /api/v1/network-topology/node/{id}/

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

OPENWISP_NETWORK_TOPOLOGY_PARSERS

type: list

default: []

Additional custom netdiff parsers.

OPENWISP_NETWORK_TOPOLOGY_SIGNALS

type: str

default: None

String representing Python module to import on initialization.

Useful for loading Django signals or to define custom behavior.

OPENWISP_NETWORK_TOPOLOGY_TIMEOUT

type: int

default: 8

Timeout when fetching topology URLs.

OPENWISP_NETWORK_TOPOLOGY_LINK_EXPIRATION

type: int

Modules

251

https://github.com/openwisp/netdiff#parsers

default: 60

If a link is down for more days than this number, it will be deleted by the update_topology management
command.

Setting this to False will disable this feature.

OPENWISP_NETWORK_TOPOLOGY_NODE_EXPIRATION

type: int

default: False

If a node has not been modified since the days specified and if it has no links, it will be deleted by the
update_topology management command. This depends on
OPENWISP_NETWORK_TOPOLOGY_LINK_EXPIRATION being enabled. Replace False with an integer to enable the
feature.

OPENWISP_NETWORK_TOPOLOGY_VISUALIZER_CSS

type: str

default: netjsongraph/css/style.css

Path of the visualizer css file. Allows customization of css according to user's preferences.

OPENWISP_NETWORK_TOPOLOGY_API_URLCONF

type: string

default: None

Use the urlconf option to change receive API URL to point to another module, example, myapp.urls.

OPENWISP_NETWORK_TOPOLOGY_API_BASEURL

type: string

default: None

If you have a separate instance of the OpenWISP Network Topology API on a different domain, you can use this
option to change the base of the URL, this will enable you to point all the API URLs to your API server's domain,
example value: https://api.myservice.com.

OPENWISP_NETWORK_TOPOLOGY_API_AUTH_REQUIRED

type: boolean

default: True

When enabled, the API endpoints will only allow authenticated users who have the necessary permissions to access
the objects which belong to the organizations the user manages.

OPENWISP_NETWORK_TOPOLOGY_WIFI_MESH_INTEGRATION

Modules

252

type: boolean

default: False

When enabled, network topology objects will be automatically created and updated based on the WiFi mesh
interfaces peer information supplied by the monitoring agent.

Note

The network topology objects are created using the device monitoring data collected by OpenWISP Monitoring.
Thus, it requires integration with OpenWISP Controller and OpenWISP Monitoring to be enabled in the Django
project.

Management Commands

update_topology 253

Logging 253

save_snapshot 253

upgrade_from_django_netjsongraph 253

create_device_nodes 254

update_topology

After topology URLs (URLs exposing the files that the topology of the network) have been added in the admin, the
update_topology management command can be used to collect data and start playing with the network graph:

./manage.py update_topology

The management command accepts a --label argument that will be used to search in topology labels, e.g.:

./manage.py update_topology --label mytopology

Logging

The update_topology management command will automatically try to log errors.

For a good default LOGGING configuration refer to the test settings.

save_snapshot

The save_snapshot management command can be used to save the topology graph data which could be used to
view the network topology graph sometime in future:

./manage.py save_snapshot

The management command accepts a --label argument that will be used to search in topology labels, e.g.:

./manage.py save_snapshot --label mytopology

upgrade_from_django_netjsongraph

If you are upgrading from django-netjsongraph to openwisp-network-topology, there is an easy migration script that
will import your topologies, users & groups to openwisp-network-topology instance:

./manage.py upgrade_from_django_netjsongraph

Modules

253

https://github.com/openwisp/openwisp-network-topology/blob/master/tests/settings.py#L89

The management command accepts an argument --backup, that you can pass to give the location of the backup
files, by default it looks in the tests/ directory, e.g.:

./manage.py upgrade_from_django_netjsongraph --backup /home/user/django_netjsongraph/

The management command accepts another argument --organization, if you want to import data to a specific
organization, you can give its UUID for the same, by default the data is added to the first found organization, e.g.:

./manage.py upgrade_from_django_netjsongraph --organization 900856da-c89a-412d-8fee-45a9c763ca0b

Note

you can follow the tutorial to migrate database from django-netjsongraph.

create_device_nodes

This management command can be used to create the initial DeviceNode relationships when the integration with
OpenWISP Controller is enabled in a preexisting system which already has some devices and topology objects in its
database.

./manage.py create_device_nodes

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Network Topology, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Network Topology User Docs

Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP Network Topology, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Network Topology User Docs

Installing for Development 255

Alternative Sources 255

Pypi 255

Modules

254

https://github.com/openwisp/django-netjsongraph/blob/master/README.rst

Github 256

Installing for Development

Install the system dependencies:

sudo apt install -y sqlite3 libsqlite3-dev
Install system dependencies for spatialite which is required
to run tests for openwisp-network-topology integrations with
openwisp-network-topology and openwisp-monitoring.
sudo apt install libspatialite-dev libsqlite3-mod-spatialite

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-network-topology

Navigate into the cloned repository:

cd openwisp-network-topology/

Start InfluxDB and Redis using Docker (required by the test project to run tests for WiFi Mesh Integration):

docker-compose up -d influxdb redis

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .
pip install -r requirements-test.txt

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

Running tests without setting the "WIFI_MESH" environment
variable will not run tests for WiFi Mesh integration.
This is done to avoid slowing down the test suite by adding
dependencies which are only used by the integration.
./runtests.py
You can run the tests only for WiFi mesh integration using
the following command
WIFI_MESH=1 ./runtests.py

Run QA tests:

./run-qa-checks

Alternative Sources

Pypi

To install the latest Pypi:

Modules

255

https://pypi.org/project/virtualenv/

pip install openwisp-network-topology

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-network-topology/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-network-topology#egg=openwisp_network-topology

Overriding Visualizer Templates

Note

This page is for developers who want to customize or extend OpenWISP Network Topology, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Network Topology User Docs

Follow these steps to override and customize the visualizer's default templates:

• create a directory in your django project and put its full path in TEMPLATES['DIRS'], which can be found in
the django settings.py file

• create a sub directory named netjsongraph and add all the templates which shall override the default
netjsongraph/* templates

• create a template file with the same name of the template file you want to override

More information about the syntax used in django templates can be found in the django templates documentation.

Example: Overriding the <script> Tag

Here's a step by step guide on how to change the javascript options passed to netjsongraph.js, remember to replace
<project_path> with the absolute file system path of your project.

Step 1: create a directory in <project_path>/templates/netjsongraph

Step 2: open your settings.py and edit the TEMPLATES['DIRS'] setting so that it looks like the following
example:

settings.py
TEMPLATES = [
 {
 "DIRS": [os.path.join(BASE_DIR, "templates")],
 # ... all other lines have been omitted for brevity ...
 }
]

Step 3: create a new file named netjsongraph-script.html in the new
<project_path>/templates/netjsongraph/ directory, e.g.:

<!-- <project_path>/templates/netjsongraph/netjsongraph-script.html -->
<script>

Modules

256

https://docs.djangoproject.com/en/4.2/ref/templates/
https://github.com/openwisp/netjsongraph.js

 // custom JS code here
</script>

Extending OpenWISP Network Topology

Note

This page is for developers who want to customize or extend OpenWISP Network Topology, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Network Topology User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason openwisp-network-topology
provides a set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of openwisp-network-topology, you need to perform the steps described in
this section.

When in doubt, the code in the test project and the sample app will serve you as source of truth: just replicate and
adapt that code to get a basic derivative of openwisp-network-topology working.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your Custom Module 258

2. Install openwisp-network-topology 258

3. Add EXTENDED_APPS 258

4. Add openwisp_utils.staticfiles.DependencyFinder 259

5. Add openwisp_utils.loaders.DependencyLoader 259

6. Inherit the AppConfig Class 259

7. Create your Custom Models 259

8. Add Swapper Configurations 260

9. Create Database Migrations 260

10. Create the Admin 260

1. Monkey Patching 260

2. Inheriting Admin Classes 260

11. Create Root URL Configuration 261

12. Setup API URLs 262

13. Extending Management Commands 262

14. Import the Automated Tests 262

Other Base Classes that can be Inherited and Extended 262

1. Extending API Views 262

2. Extending the Visualizer Views 262

Modules

257

https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/

1. Initialize your Custom Module

The first thing you need to do is to create a new django app which will contain your custom version of
openwisp-network-topology.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call this django app sample_network_topology, but you can name it how you want:

django-admin startapp sample_network_topology

If you use the integration with openwisp-controller, you may want to extend also the integration app if you need:

django-admin startapp sample_integration_device

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add sample_network_topology to INSTALLED_APPS in your settings.py, ensuring also
that openwisp_network_topology has been removed:

INSTALLED_APPS = [
 # ... other apps ...
 "openwisp_utils.admin_theme",
 # all-auth
 "django.contrib.sites",
 "openwisp_users.accounts",
 "allauth",
 "allauth.account",
 "allauth.socialaccount",
 # (optional) openwisp_controller - required only if you are using the integration app
 "openwisp_controller.pki",
 "openwisp_controller.config",
 "reversion",
 "sortedm2m",
 # network topology
 # 'sample_network_topology' <-- uncomment and replace with your app-name here
 # (optional) required only if you need to extend the integration app
 # 'sample_integration_device' <-- uncomment and replace with your integration-app-name here
 "openwisp_users",
 # admin
 "django.contrib.admin",
 # rest framework
 "rest_framework",
]

For more information about how to work with django projects and django apps, please refer to the django
documentation.

2. Install openwisp-network-topology

Install (and add to the requirement of your project) openwisp-network-topology:

pip install openwisp-network-topology

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ("openwisp_network_topology",)

Modules

258

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
 "openwisp_utils.loaders.DependencyLoader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• sample_network_topology/__init__.py.

• sample_network_topology/apps.py.

For the integration with openwisp-controller, see:

• sample_integration_device/__init__.py.

• sample_integration_device/apps.py.

You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

7. Create your Custom Models

Please refer to sample_app models file use in the test project.

You have to replicate and adapt that code in your project.

Note

If you have questions about using, extending, or developing models, refer to the "Models" section of the Django
documentation.

Modules

259

https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/__init__.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/apps.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_integration_device/__init__.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_integration_device/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/

8. Add Swapper Configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
TOPOLOGY_LINK_MODEL = "sample_network_topology.Link"
TOPOLOGY_NODE_MODEL = "sample_network_topology.Node"
TOPOLOGY_SNAPSHOT_MODEL = "sample_network_topology.Snapshot"
TOPOLOGY_TOPOLOGY_MODEL = "sample_network_topology.Topology"
if you use the integration with OpenWISP Controller and/or OpenWISP Monitoring
TOPOLOGY_DEVICE_DEVICENODE_MODEL = "sample_integration_device.DeviceNode"
TOPOLOGY_DEVICE_WIFIMESH_MODEL = "sample_integration_device.WifiMesh"

Substitute sample_network_topology with the name you chose in step 1.

9. Create Database Migrations

Create and apply database migrations:

./manage.py makemigrations

./manage.py migrate

For more information, refer to the "Migrations" section in the django documentation.

10. Create the Admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

Note

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_network_topology.admin import (
 TopologyAdmin,
 LinkAdmin,
 NodeAdmin,
)

TopologyAdmin.list_display.insert(1, 'my_custom_field') <-- your custom change example
LinkAdmin.list_display.insert(1, 'my_custom_field') <-- your custom change example
NodeAdmin.list_display.insert(1, 'my_custom_field') <-- your custom change example

2. Inheriting Admin Classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

Modules

260

https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

from django.contrib import admin
from swapper import load_model

from openwisp_network_topology.admin import (
 TopologyAdmin as BaseTopologyAdmin,
 LinkAdmin as BaseLinkAdmin,
 NodeAdmin as BaseNodeAdmin,
)

Node = load_model("topology", "Node")
Link = load_model("topology", "Link")
Topology = load_model("topology", "Topology")

admin.site.unregister(Topology)
admin.site.unregister(Link)
admin.site.unregister(Node)

@admin.register(Topology, TopologyAdmin)
class TopologyAdmin(BaseTopologyAdmin):
 # add your changes here
 pass

@admin.register(Link, LinkAdmin)
class LinkAdmin(BaseLinkAdmin):
 # add your changes here
 pass

@admin.register(Node, NodeAdmin)
class NodeAdmin(BaseNodeAdmin):
 # add your changes here
 pass

11. Create Root URL Configuration

The following can be used to register all the URLs in your

urls.py.

Please read and replicate according to your project needs:

If you've extended visualizer views (discussed below).
Import visualizer views & function to add it.
from openwisp_network_topology.utils import get_visualizer_urls
from .sample_network_topology.visualizer import views

urlpatterns = [
 # If you've extended visualizer views (discussed below).
 # Add visualizer views in urls.py
 # path('topology/', include(get_visualizer_urls(views))),
 path("", include("openwisp_network_topology.urls")),
 path("admin/", admin.site.urls),
]

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

Modules

261

https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/

12. Setup API URLs

You need to create a file api/urls.py (the name & path of the file must match) inside your app, which contains the
following:

from openwisp_network_topology.api import views

When you want to modify views, please change views location
from . import views
from openwisp_network_topology.utils import get_api_urls

urlpatterns = get_api_urls(views)

13. Extending Management Commands

To extend the management commands, create sample_network_topology/management/commands directory and
two files in it:

• save_snapshot.py

• update_topology.py

14. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of
openwisp-network-topology.

Refer to the tests.py file of the sample app.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

For testing you also need to extend the fixtures, you can copy the file
openwisp_network_topology/fixtures/test_users.json in your sample app's fixtures/ directory.

Now, you can then run tests with:

the --parallel flag is optional
./manage.py test --parallel sample_network_topology

Substitute sample_network_topology with the name you chose in step 1.

For more information about automated tests in django, please refer to "Testing in Django".

Other Base Classes that can be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

1. Extending API Views

Extending the views is only required when you want to make changes in the behavior of the API. Please refer to
sample_network_topology/api/views.py and replicate it in your application.

If you extend these views, remember to use these views in the api/urls.py.

2. Extending the Visualizer Views

Similar to API views, visualizer views are only required to be extended when you want to make changes in the
Visualizer. Please refer to sample_network_topology/visualizer/views.py and replicate it in your application.

If you extend these views, remember to use these views in the urls.py.

Modules

262

https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/management/commands/save_snapshot.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/management/commands/update_topology.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/tests.py
https://docs.djangoproject.com/en/4.2/topics/testing/
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/api/views.py
https://github.com/openwisp/openwisp-network-topology/tree/master/tests/openwisp2/sample_network_topology/visualizer/views.py

Other useful resources:

• Rest API

• Settings

Firmware Upgrader

Seealso

Source code: github.com/openwisp/openwisp-firmware-upgrader.

A firmware upgrade solution designed specifically for OpenWrt devices, with the potential to support other embedded
operating systems in the future. It offers a robust and automated upgrade process, featuring functionalities such as
automatic device detection, retry mechanisms for network failures, mass upgrades, and a REST API for integration.

For a comprehensive overview of features, please refer to the Firmware Upgrader: Features page.

The following diagram illustrates the role of the Firmware Upgrader module within the OpenWISP architecture.

Modules

263

https://github.com/openwisp/openwisp-firmware-upgrader
../_images/architecture-v2-openwisp-firmware-upgrader.png

OpenWISP Architecture: highlighted firmware upgrader module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Firmware Upgrader: Features

• Stores information of each upgrade operation which can be seen from the device page

• Automatic retries for recoverable failures (e.g.: firmware image upload issues because of intermittent internet
connection)

• Performs a final check to find out if the upgrade completed successfully or not

• Prevents accidental multiple upgrades using the same firmware image

• Single device upgrade

• Mass upgrades

• Possibility to divide firmware images in categories

• REST API

• Possibility of writing custom upgraders for other firmware OSes or for custom OpenWrt based firmwares

• Configurable timeouts

Quick Start Guide

Requirements 264

1. Create a Category 264

2. Create the Build Object 265

3. Upload Images to the Build 265

4. Perform a Firmware Upgrade to a Specific Device 266

5. Performing Mass Upgrades 266

Requirements

• Devices running at least OpenWrt 12.09 Attitude Adjustment, older versions of OpenWrt have not worked at all
in our tests

• Devices must have enough free RAM to be able to upload the new image to /tmp

1. Create a Category

Create a category for your firmware images by going to Firmware management > Firmware categories > Add
firmware category, if you use only one firmware type in your network, you could simply name the category "default"
or "standard".

Modules

264

If you use multiple firmware images with different features, create one category for each firmware type, e.g.:

• WiFi

• SDN router

• LoRa Gateway

This is necessary in order to perform mass upgrades only on specific firmware categories when, for example, a new
LoRa Gateway firmware becomes available.

2. Create the Build Object

Create a build object by going to Firmware management > Firmware builds > Add firmware build, the build object is
related to a firmware category and is the collection of the different firmware images which have been compiled for the
different hardware models supported by the system.

The version field indicates the firmware version, the change log field is optional but we recommend filling it to help
operators know the differences between each version.

An important but optional field of the build model is OS identifier, this field should match the value of the Operating
System field which gets automatically filled during device registration, e.g.: OpenWrt
19.07-SNAPSHOT r11061-6ffd4d8a4d. It is used by the firmware-upgrader module to automatically create
DeviceFirmware objects for existing devices or when new devices register. A DeviceFirmware object represent
the relationship between a device and a firmware image, it basically tells us which firmware image is installed on the
device.

To find out the exact value to use, you should either do a test flash on a device and register it to the system or you
should inspect the firmware image by decompressing it and find the generated value in the firmware image.

If you're not sure about what OS identifier to use, just leave it empty, you can fill it later on when you find out.

Now save the build object to create it.

3. Upload Images to the Build

Now is time to add images to the build, we suggest adding one image at time. Alternatively the REST API can be
used to automate this step.

Modules

265

https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/quickstart-category.gif
https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/quickstart-build.gif
https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/quickstart-firmwareimage.gif

If you use a hardware model which is not listed in the image types, if the hardware model is officially supported by
OpenWrt, you can send us a pull-request to add it, otherwise you can use the setting
OPENWISP_CUSTOM_OPENWRT_IMAGES to add it.

4. Perform a Firmware Upgrade to a Specific Device

Once a new build is ready, has been created in the system and its image have been uploaded, it will be the time to
finally upgrade our devices.

To perform the upgrade of a single device, navigate to the device details, then go to the "Firmware" tab.

If you correctly filled OS identifier in step 2, you should have a situation similar to the one above: in this example,
the device is using version 1.0 and we want to upgrade it to version 2.0, once the new firmware image is selected
we just have to hit save, then a new tab will appear in the device page which allows us to see what's going on during
the upgrade.

Right now, the update of the upgrade information is not asynchronous yet, so you will have to reload the page
periodically to find new information. This will be addressed in a future release.

5. Performing Mass Upgrades

Before proceeding, please ensure the following preconditions are met:

• the system is configured correctly

• the new firmware images are working as expected

• you already tried the upgrade of single devices several times.

At this stage you can try a mass upgrade by doing the following:

• go to the build list page

• select the build which contains the latest firmware images you want the devices to be upgraded with

• click on "Mass-upgrade devices related to the selected build".

At this point you should see a summary page which will inform you of which devices are going to be upgraded, you
can either confirm the operation or cancel.

Once the operation is confirmed you will be redirected to a page in which you can monitor the progress of the
upgrade operations.

Right now, the update of the upgrade information is not asynchronous yet, so you will have to reload the page
periodically to find new information. This will be addressed in a future release.

Modules

266

https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/quickstart-devicefirmware.gif
https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/quickstart-batch-upgrade.gif

Automatic Device Firmware Detection

OpenWISP Firmware Upgrader maintains a data structure for mapping the firmware image files to board names
called OPENWRT_FIRMWARE_IMAGE_MAP.

Here is an example firmware image item from OPENWRT_FIRMWARE_IMAGE_MAP

{
 # Firmware image file name.
 "ar71xx-generic-cf-e320n-v2-squashfs-sysupgrade.bin": {
 # Human readable name of the model which is displayed on
 # the UI
 "label": "COMFAST CF-E320N v2 (OpenWrt 19.07 and earlier)",
 # Tupe of board names with which the different versions
 # of the hardware are identified on OpenWrt
 "boards": ("COMFAST CF-E320N v2",),
 }
}

When a device registers on OpenWISP, the openwisp-config agent reads the device board name from
/tmp/sysinfo/model and sends it to OpenWISP. This value is then saved in the Device.model field. OpenWISP
Firmware Upgrader uses this field to automatically detect the correct firmware image for the device.

Use the OPENWISP_CUSTOM_OPENWRT_IMAGES setting to add additional firmware image in your project.

Writing Custom Firmware Upgrader Classes

You can write custom upgraders for other firmware OSes or for custom OpenWrt based firmwares.

Here is an example custom OpenWrt firmware upgrader class:

from openwisp_firmware_upgrader.upgraders.openwrt import OpenWrt

class CustomOpenWrtBasedFirmware(OpenWrt):
 # this firmware uses a custom upgrade command
 UPGRADE_COMMAND = "upgrade_firmware.sh --keep-config"
 # it takes somewhat more time to boot so it needs more time
 RECONNECT_DELAY = 150
 RECONNECT_RETRY_DELAY = 5
 RECONNECT_MAX_RETRIES = 20

 def get_remote_path(self, image):
 return "/tmp/firmware.img"

 def get_upgrade_command(self, path):
 return self.UPGRADE_COMMAND

You will need to place your custom upgrader class on the python path of your application and then add this path to
the OPENWISP_FIRMWARE_UPGRADERS_MAP setting.

REST API Reference

Live Documentation 268

Browsable Web Interface 268

Authentication 268

Pagination 269

Filtering by Organization Slug 269

List of Endpoints 269

Modules

267

Live Documentation

A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Browsable Web Interface

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

Authentication

See openwisp-users: authenticating with the user token.

When browsing the API via the Live Documentation or the Browsable Web Interface, you can also use the session
authentication by logging in the django admin.

Modules

268

https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/api-docs.png
https://raw.githubusercontent.com/openwisp/openwisp-firmware-upgrader/docs/docs/images/api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Pagination

All list endpoints support the page_size parameter that allows paginating the results in conjunction with the page
parameter.

GET /api/v1/firmware-upgrader/build/?page_size=10
GET /api/v1/firmware-upgrader/build/?page_size=10&page=2

Filtering by Organization Slug

Most endpoints allow to filter by organization slug, e.g.:

GET /api/v1/firmware-upgrader/build/?organization=org-slug

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
point, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

List Mass Upgrade Operations

GET /api/v1/firmware-upgrader/batch-upgrade-operation/

Available filters

The list of batch upgrade operations provides the following filters:

• build (Firmware build ID)

• status (One of: idle, in-progress, success, failed)

Here's a few examples:

GET /api/v1/firmware-upgrader/batch-upgrade-operation/?build={build_id}
GET /api/v1/firmware-upgrader/batch-upgrade-operation/?status={status}

Get Mass Upgrade Operation Detail

GET /api/v1/firmware-upgrader/batch-upgrade-operation/{id}/

List Firmware Builds

GET /api/v1/firmware-upgrader/build/

Available filters

The list of firmware builds provides the following filters:

• category (Firmware category ID)

• version (Firmware build version)

• os (Firmware build os identifier)

Here's a few examples:

GET /api/v1/firmware-upgrader/build/?category={category_id}
GET /api/v1/firmware-upgrader/build/?version={version}
GET /api/v1/firmware-upgrader/build/?os={os}

Modules

269

Create Firmware Build

POST /api/v1/firmware-upgrader/build/

Get Firmware Build Details

GET /api/v1/firmware-upgrader/build/{id}/

Change Details of Firmware Build

PUT /api/v1/firmware-upgrader/build/{id}/

Patch Details of Firmware Build

PATCH /api/v1/firmware-upgrader/build/{id}/

Delete Firmware Build

DELETE /api/v1/firmware-upgrader/build/{id}/

Get List of Images of a Firmware Build

GET /api/v1/firmware-upgrader/build/{id}/image/

Available filters

The list of images of a firmware build can be filtered by using type (any one of the available firmware image types).

GET /api/v1/firmware-upgrader/build/{id}/image/?type={type}

Upload New Firmware Image to the Build

POST /api/v1/firmware-upgrader/build/{id}/image/

Get Firmware Image Details

GET /api/v1/firmware-upgrader/build/{build_id}/image/{id}/

Delete Firmware Image

DELETE /api/v1/firmware-upgrader/build/{build_id}/image/{id}/

Download Firmware Image

GET /api/v1/firmware-upgrader/build/{build_id}/image/{id}/download/

Perform Batch Upgrade

Upgrades all the devices related to the specified build ID.

Modules

270

POST /api/v1/firmware-upgrader/build/{id}/upgrade/

Dry-run Batch Upgrade

Returns a list representing the DeviceFirmware and Device instances that would be upgraded if POST is used.

Device objects are indicated only when no DeviceFirmware object exists for a device which would be upgraded.

GET /api/v1/firmware-upgrader/build/{id}/upgrade/

List Firmware Categories

GET /api/v1/firmware-upgrader/category/

Create New Firmware Category

POST /api/v1/firmware-upgrader/category/

Get Firmware Category Details

GET /api/v1/firmware-upgrader/category/{id}/

Change the Details of a Firmware Category

PUT /api/v1/firmware-upgrader/category/{id}/

Patch the Details of a Firmware Category

PATCH /api/v1/firmware-upgrader/category/{id}/

Delete a Firmware Category

DELETE /api/v1/firmware-upgrader/category/{id}/

List Upgrade Operations

GET /api/v1/firmware-upgrader/upgrade-operation/

Available filters

The list of upgrade operations provides the following filters:

• device__organization (Organization ID of the device)

• device__organization_slug (Organization slug of the device)

• device (Device ID)

• image (Firmware image ID)

• status (One of: in-progress, success, failed, aborted)

Here's a few examples:

GET /api/v1/firmware-upgrader/upgrade-operation/?device__organization={organization_id}
GET /api/v1/firmware-upgrader/upgrade-operation/?device__organization__slug={organization_slug}

Modules

271

GET /api/v1/firmware-upgrader/upgrade-operation/?device={device_id}
GET /api/v1/firmware-upgrader/upgrade-operation/?image={image_id}
GET /api/v1/firmware-upgrader/upgrade-operation/?status={status}

Get Upgrade Operation Details

GET /api/v1/firmware-upgrader/upgrade-operation/{id}

List Device Upgrade Operations

GET /api/v1/firmware-upgrader/device/{device_id}/upgrade-operation/

Available filters

The list of device upgrade operations can be filtered by status (one of: in-progress, success, failed, aborted).

GET /api/v1/firmware-upgrader/device/{device_id}/upgrade-operation/?status={status}

Create Device Firmware

Sending a PUT request to the endpoint below will create a new device firmware if it does not already exist.

PUT /api/v1/firmware-upgrader/device/{device_id}/firmware/

Get Device Firmware Details

GET /api/v1/firmware-upgrader/device/{device_id}/firmware/

Change Details of Device Firmware

PUT /api/v1/firmware-upgrader/device/{device_id}/firmware/

Patch Details of Device Firmware

PATCH /api/v1/firmware-upgrader/device/{device_id}/firmware/

Delete Device Firmware

DELETE /api/v1/firmware-upgrader/device/{device_pk}/firmware/

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

Modules

272

OPENWISP_FIRMWARE_UPGRADER_RETRY_OPTIONS

type: dict

default: see below

default value of OPENWISP_FIRMWARE_UPGRADER_RETRY_OPTIONS:

dict(
 max_retries=4,
 retry_backoff=60,
 retry_backoff_max=600,
 retry_jitter=True,
)

Retry settings for recoverable failures during firmware upgrades.

By default if an upgrade operation fails before the firmware is flashed (e.g.: because of a network issue during the
upload of the image), the upgrade operation will be retried 4 more times with an exponential random backoff and a
maximum delay of 10 minutes.

For more information regarding these settings, consult the celery documentation regarding automatic retries for
known errors.

OPENWISP_FIRMWARE_UPGRADER_TASK_TIMEOUT

type: int

default: 600

Timeout for the background tasks which perform firmware upgrades.

If for some unexpected reason an upgrade remains stuck for more than 10 minutes, the upgrade operation will be
flagged as failed and the task will be killed.

This should not happen, but a global task time out is a best practice when using background tasks because it
prevents the situation in which an unexpected bug causes a specific task to hang, which will quickly fill all the
available slots in a background queue and prevent other tasks from being executed, which will end up affecting
negatively the rest of the application.

OPENWISP_CUSTOM_OPENWRT_IMAGES

type: tuple

default: None

This setting can be used to extend the list of firmware image types included in OpenWISP Firmware Upgrader. This
setting is suited to add support for custom OpenWrt images.

OPENWISP_CUSTOM_OPENWRT_IMAGES = (
 (
 # Firmware image file name.
 "customimage-squashfs-sysupgrade.bin",
 {
 # Human readable name of the model which is displayed on
 # the UI
 "label": "Custom WAP-1200",
 # Tuple of board names with which the different versions of
 # the hardware are identified on OpenWrt
 "boards": ("CWAP1200",),
 },

Modules

273

https://docs.celeryproject.org/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions
https://docs.celeryproject.org/en/stable/userguide/tasks.html#automatic-retry-for-known-exceptions

),
)

Kindly read Automatic Device Firmware Detection section of this documentation to know how OpenWISP Firmware
Upgrader uses this setting in upgrades.

OPENWISP_FIRMWARE_UPGRADER_MAX_FILE_SIZE

type: int

default: 30 * 1024 * 1024 (30 MB)

This setting can be used to set the maximum size limit for firmware images, e.g.:

OPENWISP_FIRMWARE_UPGRADER_MAX_FILE_SIZE = 40 * 1024 * 1024 # 40MB

Notes:

• Value must be specified in bytes. None means unlimited.

OPENWISP_FIRMWARE_UPGRADER_API

type: bool

default: True

Indicates whether the API for Firmware Upgrader is enabled or not.

OPENWISP_FIRMWARE_UPGRADER_OPENWRT_SETTINGS

type: dict

default: {}

Allows changing the default OpenWrt upgrader settings, e.g.:

OPENWISP_FIRMWARE_UPGRADER_OPENWRT_SETTINGS = {
 "reconnect_delay": 120,
 "reconnect_retry_delay": 20,
 "reconnect_max_retries": 15,
 "upgrade_timeout": 90,
}

• reconnect_delay: amount of seconds to wait before trying to connect again to the device after the upgrade
command has been launched; the re-connection step is necessary to verify the upgrade has completed
successfully; defaults to 120 seconds

• reconnect_retry_delay: amount of seconds to wait after a re-connection attempt has failed; defaults to 20
seconds

• reconnect_max_retries: maximum re-connection attempts defaults to 15 attempts

• upgrade_timeout: amount of seconds before the shell session is closed after the upgrade command is
launched on the device, useful in case the upgrade command hangs (it happens on older OpenWrt versions);
defaults to 90 seconds

OPENWISP_FIRMWARE_API_BASEURL

type: dict

Modules

274

default: / (points to same server)

If you have a separate instance of OpenWISP Firmware Upgrader API on a different domain, you can use this option
to change the base of the image download URL, this will enable you to point to your API server's domain, e.g.:
https://api.myservice.com.

OPENWISP_FIRMWARE_UPGRADERS_MAP

type: dict

defaul
t: {

 "openwisp_controller.connection.connectors.openwrt.ssh.OpenWrt": "openwisp_firmware_upgrader.upgraders.openwrt.OpenWrt",
}

A dictionary that maps update strategies to upgraders.

If you want to use a custom update strategy you will need to use this setting to provide an entry with the class path of
your update strategy as the key.

If you need to use a custom upgrader class you will need to use this setting to provide an entry with the class path of
your upgrader as the value.

OPENWISP_FIRMWARE_PRIVATE_STORAGE_INSTANCE

type: str

default: openwisp_firmware_upgrader.private_storage.storage.file_system_private_s
torage

Dotted path to an instance of any one of the storage classes in private_storage. This instance is used to store
firmware image files.

By default, an instance of private_storage.storage.files.PrivateFileSystemStorage is used.

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Firmware Upgrader, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• Firmware Upgrader User Docs

Developer Installation Instructions

Modules

275

https://github.com/edoburu/django-private-storage#django-private-storage

Note

This page is for developers who want to customize or extend OpenWISP Firmware Upgrader, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• Firmware Upgrader User Docs

Requirements 276

Install Dependencies 276

Installing for Development 276

Requirements

• Python >= 3.8

• OpenWISP Controller (and its dependencies) >= 1.0.0

Install Dependencies

Install spatialite and sqlite:

sudo apt-get install sqlite3 libsqlite3-dev openssl libssl-dev
sudo apt-get install gdal-bin libproj-dev libgeos-dev libspatialite-dev

Installing for Development

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-firmware-upgrader

Navigate into the cloned repository:

cd openwisp-firmware-upgrader/

Launch Redis:

docker-compose up -d redis

Install test requirements:

pip install -r requirements-test.txt

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .
pip install -r requirements-test.txt
sudo npm install -g jshint stylelint

Install WebDriver for Chromium for your browser version from https://chromedriver.chromium.org/home and Extract
chromedriver to one of directories from your $PATH (example: ~/.local/bin/).

Modules

276

https://pypi.org/project/virtualenv/
https://chromedriver.chromium.org/home

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch development server:

./manage.py runserver 0.0.0.0:8000

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run celery and celery-beat with the following commands (separate terminal windows are needed):

(cd tests)
celery -A openwisp2 worker -l info
celery -A openwisp2 beat -l info

Run tests with:

run qa checks
./run-qa-checks

standard tests
./runtests.py

tests for the sample app
SAMPLE_APP=1 ./runtests.py --keepdb --failfast

When running the last line of the previous example, the environment variable SAMPLE_APP activates the app in
/tests/openwisp2/sample_firmware_upgrader/ which is a simple django app that extends
openwisp-firmware-upgrader with the sole purpose of testing its extensibility, for more information regarding
this concept, read Extending OpenWISP Firmware Upgrader.

Important

If you want to add openwisp-firmware-upgrader to an existing Django project, then you can take reference
from the test project in openwisp-firmware-upgrader repository

Extending OpenWISP Firmware Upgrader

Note

This page is for developers who want to customize or extend OpenWISP Firmware Upgrader, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• Firmware Upgrader User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason OpenWISP Firmware
Upgrader provides a set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of OpenWISP Firmware Upgrader, you need to perform the steps
described in this section.

Modules

277

https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2

When in doubt, the code in the test project and the sample app will serve you as source of truth: just replicate and
adapt that code to get a basic derivative of OpenWISP Firmware Upgrader working.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your Custom Module 278

2. Install openwisp-firmware-upgrader 279

3. Add EXTENDED_APPS 279

4. Add openwisp_utils.staticfiles.DependencyFinder 279

5. Add openwisp_utils.loaders.DependencyLoader 279

6. Inherit the AppConfig Class 279

7. Create your Custom Models 280

8. Add Swapper Configurations 280

9. Create Database Migrations 280

10. Create the Admin 280

1. Monkey Patching 280

2. Inheriting Admin Classes 281

11. Create Root URL Configuration 281

12. Create celery.py 281

13. Import the Automated Tests 282

Other Base Classes That Can be Inherited and Extended 282

FirmwareImageDownloadView 282

API Views 283

1. Initialize your Custom Module

The first thing you need to do is to create a new django app which will contain your custom version of OpenWISP
Firmware Upgrader.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call this django app myupgrader, but you can name it how you want:

django-admin startapp myupgrader

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add myupgrader to INSTALLED_APPS in your settings.py, ensuring also that
openwisp_firmware_upgrader has been removed:

INSTALLED_APPS = [
 # ... other apps ...
 # 'openwisp_firmware_upgrader' <-- comment out or delete this line
 "myupgrader"
]

For more information about how to work with django projects and django apps, please refer to the django
documentation.

Modules

278

https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

2. Install openwisp-firmware-upgrader

Install (and add to the requirement of your project) openwisp-firmware-upgrader:

pip install openwisp-firmware-upgrader

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ["openwisp_firmware_upgrader"]

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
 "openwisp_utils.loaders.DependencyLoader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• sample_firmware_upgrader/__init__.py.

• sample_firmware_upgrader/apps.py.

You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

Modules

279

https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/__init__.py
https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/

7. Create your Custom Models

For the purpose of showing an example, we added a simple "details" field to the models of the sample app in the test
project.

You can add fields in a similar way in your models.py file.

Note

If you have questions about using, extending, or developing models, refer to the "Models" section of the Django
documentation.

8. Add Swapper Configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
FIRMWARE_UPGRADER_CATEGORY_MODEL = "myupgrader.Category"
FIRMWARE_UPGRADER_BUILD_MODEL = "myupgrader.Build"
FIRMWARE_UPGRADER_FIRMWAREIMAGE_MODEL = "myupgrader.FirmwareImage"
FIRMWARE_UPGRADER_DEVICEFIRMWARE_MODEL = "myupgrader.DeviceFirmware"
FIRMWARE_UPGRADER_BATCHUPGRADEOPERATION_MODEL = (
 "myupgrader.BatchUpgradeOperation"
)
FIRMWARE_UPGRADER_UPGRADEOPERATION_MODEL = "myupgrader.UpgradeOperation"

Substitute myupgrader with the name you chose in step 1.

9. Create Database Migrations

Create and apply database migrations:

./manage.py makemigrations

./manage.py migrate

For more information, refer to the "Migrations" section in the django documentation.

10. Create the Admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_firmware_upgrader.admin import (
 BatchUpgradeOperationAdmin,
 BuildAdmin,
 CategoryAdmin,
)

Modules

280

https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/models.py
https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/sample_firmware_upgrader/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

BuildAdmin.list_display.insert(1, "my_custom_field")
BuildAdmin.ordering = ["-my_custom_field"]

2. Inheriting Admin Classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

from django.contrib import admin
from openwisp_firmware_upgrader.admin import (
 BatchUpgradeOperationAdmin as BaseBatchUpgradeOperationAdmin,
 BuildAdmin as BaseBuildAdmin,
 CategoryAdmin as BaseCategoryAdmin,
)
from openwisp_firmware_upgrader.swapper import load_model

BatchUpgradeOperation = load_model("BatchUpgradeOperation")
Build = load_model("Build")
Category = load_model("Category")
DeviceFirmware = load_model("DeviceFirmware")
FirmwareImage = load_model("FirmwareImage")
UpgradeOperation = load_model("UpgradeOperation")

admin.site.unregister(BatchUpgradeOperation)
admin.site.unregister(Build)
admin.site.unregister(Category)

class BatchUpgradeOperationAdmin(BaseBatchUpgradeOperationAdmin):
 # add your changes here
 pass

class BuildAdmin(BaseBuildAdmin):
 # add your changes here
 pass

class CategoryAdmin(BaseCategoryAdmin):
 # add your changes here
 pass

11. Create Root URL Configuration

Please refer to the urls.py file in the test project.

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

12. Create celery.py

Please refer to the celery.py file in the test project.

For more information about the usage of celery in django, please refer to the "First steps with Django" section in the
celery documentation.

Modules

281

https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/urls.py
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-firmware-upgrader/tree/master/tests/openwisp2/celery.py
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html

13. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of OpenWISP
Firmware Upgrader.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests of the sample app to find out how to do this.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel myupgrader

Substitute myupgrader with the name you chose in step 1.

For more information about automated tests in django, please refer to "Testing in Django".

Other Base Classes That Can be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

FirmwareImageDownloadView

This view controls how the firmware images are stored and who has permission to download them.

The full python path is: openwisp_firmware_upgrader.private_storage.FirmwareImageDownloadView.

If you want to extend this view, you will have to perform the additional steps below.

Step 1. import and extend view:

myupgrader/views.py
from openwisp_firmware_upgrader.private_storage import (
 FirmwareImageDownloadView as BaseFirmwareImageDownloadView,
)

class FirmwareImageDownloadView(BaseFirmwareImageDownloadView):
 # add your customizations here ...
 pass

Step 2: remove the following line from your root urls.py file:

path(
 "firmware/",
 include("openwisp_firmware_upgrader.private_storage.urls"),
),

Step 3: add an URL route pointing to your custom view in urls.py file:

urls.py
from myupgrader.views import FirmwareImageDownloadView

urlpatterns = [
 # ... other URLs
 path(
 "<your-custom-path>",
 FirmwareImageDownloadView.as_view(),
 name="serve_private_file",
),
]

Modules

282

https://github.com/openwisp/openwisp-firmware-upgrader/blob/master/tests/openwisp2/sample_firmware_upgrader/tests.py
https://docs.djangoproject.com/en/4.2/topics/testing/

For more information regarding django views, please refer to the "Class based views" section in the django
documentation.

API Views

If you need to customize the behavior of the API views, the procedure to follow is similar to the one described in
FirmwareImageDownloadView, with the difference that you may also want to create your own serializers if needed.

The API code is stored in openwisp_firmware_upgrader.api and is built using django-rest-framework

For more information regarding Django REST Framework API views, please refer to the "Generic views" section in
the Django REST Framework documentation.

Other useful resources:

• REST API Reference

• Settings

RADIUS

Seealso

Source code: github.com/openwisp/openwisp-radius.

OpenWISP RADIUS is available since OpenWISP 22.05 and provides many features aimed at public WiFi services.

For a full introduction please refer to RADIUS: Features.

The following diagram illustrates the role of the RADIUS module within the OpenWISP architecture.

OpenWISP Architecture: highlighted radius module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

RADIUS: Features

The RADIUS module provides the following features:

• Registration of new users

• SMS verification

• Importing users

• Generating users

• Social Login

• Single Sign-On (SAML)

• Enforcing Session Limits

• Change of Authorization (CoA)

• REST API Reference

Modules

283

https://docs.djangoproject.com/en/4.2/topics/class-based-views/
https://docs.djangoproject.com/en/4.2/topics/class-based-views/
https://www.django-rest-framework.org/api-guide/serializers/
https://github.com/openwisp/openwisp-firmware-upgrader/blob/master/openwisp_firmware_upgrader/api/
http://openwisp.io/docs/developer/hacking-openwisp-python-django.html#why-django-rest-framework
https://www.django-rest-framework.org/api-guide/generic-views/
https://www.django-rest-framework.org/api-guide/generic-views/
https://github.com/openwisp/openwisp-radius
../_images/architecture-v2-openwisp-radius.png

Registration of new users

openwisp-radius uses django-rest-auth which provides registration of new users via REST API so you can implement
registration and password reset directly from your captive page.

The registration API endpoint is described in API: User Registration.

If you need users to self-register to a public wifi service, we suggest to take a look at OpenWISP WiFi Login Pages,
which is built to work with openwisp-radius.

Generating users

Many a times, a network admin might need to generate temporary users (e.g.: events).

This feature can be used for generating users by specifying a prefix and the number of users to be generated.

There are many features included in it such as:

• Generating users in batches: all of the users of a particular prefix would be stored in batches and can be
retrieved/deleted easily using the batch functions.

• Download user credentials in PDF format: get the usernames and passwords generated outputted into a
PDF.

• Set an expiration date: an expiration date can be set for a batch after which the users would not able to
authenticate to the RADIUS Server.

This operation can be performed via the admin interface, with a management command or via the REST API.

Note

Users imported or generated through this form will be flagged as verified if the organization requires identity
verification, otherwise the generated users would not be able to log in. If this organization requires identity
verification, make sure the identity of the users is verified before giving out the credentials.

Using the admin interface

To generate users from the admin interface, go to Home > Batch user creation operations > Add (URL:
/admin/openwisp_radius/radiusbatch/add), set Strategy to Generate from prefix, fill in the
remaining fields that are shown after the selection of the strategy and save.

Once the batch object has been created, a PDF containing the user credentials can be downloaded by using the
"Download user credentials" button in the upper right corner of the page:

The contents of the PDF is in format of a table of users & their passwords:

Modules

284

https://github.com/jazzband/dj-rest-auth/

Usage Demonstration:

Management command: prefix_add_users

This command generates users whose usernames start with a particular prefix. Usage is as shown below.

./manage.py prefix_add_users --name <name_of_batch> \
 --organization=<organization-slug> \
 --prefix <prefix> \
 --n <number_of_users> \
 --expiration <expiration_date> \
 --password-length <password_length> \
 --output <path_to_pdf_file>

Note

The expiration, password-length and output are optional parameters. The options expiration and password-length
default to never and 8 respectively. If output parameter is not provided, PDF file is not created on the server and
can be accessed from the admin interface.

REST API: Batch user creation

See API documentation: Batch user creation.

Modules

285

Importing users

This feature can be used for importing users from a csv file. There are many features included in it such as:

• Importing users in batches: all of the users of a particular csv file would be stored in batches and can be
retrieved/ deleted easily using the batch functions.

• Set an expiration date: Expiration date can be set for a batch after which the users would not able to
authenticate to the RADIUS Server.

• Auto-generate usernames and passwords: The usernames and passwords are automatically generated if they
aren't provided in the csv file. Usernames are generated from the email address whereas passwords are
generated randomly and their lengths can be customized.

• Passwords are accepted in both clear-text and hash formats from the CSV.

• Send mails to users whose passwords have been generated automatically.

This operation can be performed via the admin interface, with a management command or via the REST API.

CSV Format

The CSV shall be of the format:

username,password,email,firstname,lastname

Imported users with hashed passwords

The hashes are directly stored in the database if they are of the django hash format.

For example, a password myPassword123, hashed using salted SHA1 algorithm, will look like:

pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=

So a full CSV line containing that password would be:

username,pbkdf2_sha256$100000$cKdP39chT3pW$2EtVk4Hhm1V65GNfYAA5AHj0uyD60f2CmqumqiB/gRk=,email@email.com,firstname,lastname

Importing users with clear-text passwords

Clear-text passwords must be flagged with the prefix cleartext$.

For example, if we want to use the password qwerty, we must use: cleartext$qwerty.

Auto-generation of usernames and passwords

Email is the only mandatory field of the CSV file.

Other fields like username and password will be auto-generated if omitted.

Emails will be sent to users whose usernames or passwords have been auto-generated and contents of these emails
can be customized too.

Here are some defined settings for doing that:

• OPENWISP_RADIUS_BATCH_MAIL_SUBJECT

• OPENWISP_RADIUS_BATCH_MAIL_MESSAGE

• OPENWISP_RADIUS_BATCH_MAIL_SENDER

Using the admin interface

Modules

286

https://docs.djangoproject.com/en/4.2/topics/auth/passwords/

Note

The CSV uploaded must follow the CSV format described above.

To generate users from the admin interface, go to Home > Batch user creation operations > Add (URL:
/admin/openwisp_radius/radiusbatch/add), set Strategy to Import from CSV, choose the CSV file to
upload and save.

Management command: batch_add_users

This command imports users from a csv file. Usage is as shown below.

./manage.py batch_add_users --name <name_of_batch> \
 --organization=<organization-slug> \
 --file <filepath> \
 --expiration <expiration_date> \
 --password-length <password_length>

Note

The expiration and password-length are optional parameters which default to never and 8 respectively.

REST API: Batch user creation

See API documentation: Batch user creation.

Social Login

Modules

287

Important

The social login feature is disabled by default.

In order to enable this feature you have to follow the setup instructions below and then activate it via global
setting or from the admin interface.

Social login is supported by generating an additional temporary token right after users perform the social sign-in, the
user is then redirected to the captive page with two querystring parameters: username and token.

The captive page must recognize these two parameters and automatically perform the submit action of the login
form: username should obviously used for the username field, while token should be used for the password field.

The internal REST API of OpenWISP RADIUS will recognize the token and authorize the user.

This kind of implementation allows to implement the social login with any captive portal which already supports the
RADIUS protocol because it's totally transparent for it, that is, the captive portal doesn't even know the user is
signing-in with a social network.

Note

If you're building a public wifi service, we suggest to take a look at OpenWISP WiFi Login Pages, which is built to
work with openwisp-radius.

Setup

Install django-allauth in the python environment used by OpenWISP:

by default, in instances deployed
via ansible-openwisp2, the python env
is in /opt/openwisp2/env/
source /opt/openwisp2/env/bin/activate

pip install django-allauth[socialaccount]

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

Ensure your settings.py looks like the following (we will show how to configure of the Facebook social provider):

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for social login
 "rest_framework.authtoken",
 "django.contrib.sites",
 "allauth",
 "allauth.account",
 "allauth.socialaccount",
 # showing facebook as an example
 # to configure social login with other social networks
 # refer to the django-allauth documentation
 "allauth.socialaccount.providers.facebook",

Modules

288

]

SITE_ID = 1

showing facebook as an example
to configure social login with other social networks
refer to the django-allauth documentation
SOCIALACCOUNT_PROVIDERS = {
 "facebook": {
 "METHOD": "oauth2",
 "SCOPE": ["email", "public_profile"],
 "AUTH_PARAMS": {"auth_type": "reauthenticate"},
 "INIT_PARAMS": {"cookie": True},
 "FIELDS": [
 "id",
 "email",
 "name",
 "first_name",
 "last_name",
 "verified",
],
 "VERIFIED_EMAIL": True,
 }
}

Ensure your main urls.py contains the allauth.urls:

urlpatterns = [
 # .. other urls ...
 path("accounts/", include("allauth.urls")),
]

Configure the social account application

Refer to the django-allauth documentation to find out how to complete the configuration of a sample Facebook login
app.

Captive page button example

Following the previous example configuration with Facebook, in your captive page you will need an HTML button
similar to the ones in the following examples.

This example needs the slug of the organization to assign the new user to the right organization:

<a href="https://openwisp2.mywifiproject.com/accounts/facebook/login/?next=%2Fradius%2Fsocial-login%2Fdefault%2F%3Fcp%3Dhttps%3A%2F%2Fcaptivepage.mywifiproject.com%2F%26last%3D"
 class="button">Log in with Facebook

Substitute openwisp2.mywifiproject.com, captivepage.mywifiproject.com and default with the
hostname of your openwisp-radius instance, your captive page and the organization slug respectively.

Alternatively, you can take a look at OpenWISP WiFi Login Pages, which provides buttons for Facebook, Google and
Twitter by default.

Settings

See social login related settings.

Modules

289

https://docs.allauth.org/en/latest/socialaccount/providers/facebook.html
https://docs.allauth.org/en/latest/socialaccount/providers/facebook.html

Single Sign-On (SAML)

Important

The SAML registration method is disabled by default.

In order to enable this feature you have to follow the SAML setup instructions below and then activate it via global
setting or from the admin interface.

SAML is supported by generating an additional temporary token right after users authenticates via SSO, the user is
then redirected to the captive page with 3 querystring parameters:

• username

• token (REST auth token)

• login_method=saml

The captive page must recognize these two parameters, validate the token and automatically perform the submit
action of the captive portal login form: username should obviously used for the username field, while token should
be used for the password field.

The third parameter, login_method=saml, is needed because it allows the captive page to remember that the user
logged in via SAML. This information will be used later on when performing the SAML logout.

The internal REST API of openwisp-radius will recognize the token and authorize the user.

This kind of implementation allows to support SAML with any captive portal which already supports the RADIUS
protocol because it's totally transparent for it, that is, the captive portal doesn't even know the user is signing-in with a
SSO.

Note

If you're building a public wifi service, we suggest to take a look at OpenWISP WiFi Login Pages, which is built to
work with openwisp-radius.

Setup

Install required system dependencies:

sudo apt install xmlsec1

Install the SAML dependencies in the python environment used by OpenWISP:

by default, in instances deployed
via ansible-openwisp2, the python env
is in /opt/openwisp2/env/
source /opt/openwisp2/env/bin/activate

pip install openwisp-radius[saml]

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

Modules

290

http://saml.xml.org/about-saml

Ensure your settings.py looks like the following:

INSTALLED_APPS = [
 # ... other apps ..
 # apps needed for SAML login
 "rest_framework.authtoken",
 "django.contrib.sites",
 "allauth",
 "allauth.account",
 "djangosaml2",
]

SITE_ID = 1

Update AUTHENTICATION_BACKENDS
AUTHENTICATION_BACKENDS = (
 "openwisp_users.backends.UsersAuthenticationBackend",
 "openwisp_radius.saml.backends.OpenwispRadiusSaml2Backend", # <- add for SAML login
)

Update MIDDLEWARE
MIDDLEWARE = [
 # ... other middlewares ...
 "djangosaml2.middleware.SamlSessionMiddleware",
]

Ensure your main urls.py contains the openwisp_users.accounts.urls:

urlpatterns = [
 # .. other urls ...
 path("accounts/", include("openwisp_users.accounts.urls")),
]

Configure the djangosaml2 settings

Refer to the djangosaml2 documentation to find out how to configure required settings for SAML.

Captive page button example

After successfully configuring SAML settings for your Identity Provider, you will need an HTML button similar to the
one in the following example.

This example needs the slug of the organization to assign the new user to the right organization:

<a href="https://openwisp2.mywifiproject.com/radius/saml2/login/?RelayState=https://captivepage.mywifiproject.com%3Forg%3Ddefault"
 class="button">
 Log in with SSO

Substitute openwisp2.mywifiproject.com, https://captivepage.mywifiproject.com and default
with the hostname of your openwisp-radius instance, your captive page and the organization slug respectively.

Alternatively, you can take a look at OpenWISP WiFi Login Pages, which provides buttons for Single Sign-On
(SAML) by default.

Logout

When logging out a user which logged in via SAML, the captive page should also call the SAML logout URL:
/radius/saml2/logout/.

The OpenWISP WiFi Login Pages app supports this with minimal configuration, refer to the OpenWISP WiFi Login
Pages section.

Modules

291

https://djangosaml2.readthedocs.io/contents/setup.html#configuration

Settings

See SAML related settings.

FAQs

Preventing change in username of a registered user

The djangosaml2 library requires configuring SAML_DJANGO_USER_MAIN_ATTRIBUTE setting which serves as
the primary lookup value for User objects. Whenever a user logs in or registers through the SAML method, a
database query is made to check whether such a user already exists. This lookup is done using the value of
SAML_DJANGO_USER_MAIN_ATTRIBUTE setting. If a match is found, the details of the user are updated with the
information received from SAML Identity Provider.

If a user (who has registered on OpenWISP with a different method from SAML) logs into OpenWISP with SAML,
then the default behavior of OpenWISP RADIUS prevents updating username of this user. Because, this operation
could render the user's old credentials useless. If you want to update the username in such scenarios with details
received from Identity Provider, set OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME to
True.

Enforcing Session Limits

The default freeradius schema does not include a table where groups are stored, but openwisp-radius adds a model
called RadiusGroup and alters the default freeradius schema to add some optional foreign-keys from other tables
like:

• radgroupcheck

• radgroupreply

• radusergroup

These foreign keys make it easier to automate many synchronization and integrity checks between the
RadiusGroup table and its related tables but they are not strictly mandatory from the database point of view: their
value can be NULL and their presence and validation is handled at application level, this makes it easy to use
existing freeradius databases.

For each group, checks and replies can be specified directly in the edit page of a Radius Group (admin > groups >
add group or change group).

Default Groups

Some groups are created automatically by openwisp-radius during the initial migrations:

• users: this is the default group which limits users sessions to 3 hours and 300 MB (daily)

• power-users: this group does not have any check, therefore users who are members of this group won't be
limited in any way

You can customize the checks and the replies of these groups, as well as create new groups according to your
needs and preferences.

Note on the default group: keep in mind that the group flagged as default will by automatically assigned to new
users, it cannot be deleted nor it can be flagged as non-default: to set another group as default simply check that
group as the default one, save and openwisp-radius will remove the default flag from the old default group.

How Limits are Enforced: Counters

In Freeradius, this kind of feature is implemented with the rml_sqlcounter.

The problem with this FreeRADIUS module is that it doesn't know about OpenWISP, so it does not support
multi-tenancy. This means that if multiple organizations are using the OpenWISP instance, it's possible that a user

Modules

292

https://wiki.freeradius.org/modules/Rlm_sqlcounter

may be an end user of multiple organizations and hence have one radius group assigned for each, but the sqlcounter
module will not understand the right group to choose when enforcing limits, with the result that the enforcing of limits
will not work as expected, unless one FreeRADIUS site with different sqlcounter configurations is created for each
organization using the system, which is doable but cumbersome to maintain.

For the reasons explained above, an alternative counter feature has been implemented in the authorize API endpoint
of OpenWISP RADIUS.

The default counters available are described below.

DailyCounter

This counter is used to limit the amount of time users can use the network every day. It works by checking whether
the total session time of a user during a specific day is below the value indicated in the Max-Daily-Session group
check attribute, sending the remaining session time with a Session-Timeout reply message or rejecting the
authorization if the limit has been passed.

DailyTrafficCounter

This counter is used to limit the amount of traffic users can consume every day. It works by checking whether the
total amount of download plus upload octets (bytes consumed) is below the value indicated in the
Max-Daily-Session-Traffic group check attribute, sending the remaining octets with a reply message or
rejecting the authorization if the limit has been passed.

The attributes used for the check and or the reply message are configurable because it can differ from NAS to NAS,
see OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME
OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME for more information.

MonthlyTrafficCounter

This counter is used to limit the amount of traffic users can consume every solar month. It works by checking whether
the total amount of download plus upload octets (bytes consumed) is below the value indicated in the
Max-Monthly-Session-Traffic group check attribute, sending the remaining octets with a reply message or
rejecting the authorization if the limit has been passed.

The reply message is configurable because it can differ from NAS to NAS,
OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME for more information.

MonthlySubscriptionTrafficCounter

Important

This counter is not enabled by default. It can be enabled via the Counter related settings.

Same as MonthlyTrafficCounter, but with the difference that the reset period depends on the day in which the
user subscribed to the service: if the user signed up (or their account was created by an admin) on a date like
November 15 2022, the reset period will start on the 15th day of every month.

Database Support

The counters described above are available for PostgreSQL, MySQL, SQLite and are enabled by default.

There's a different class of each counter for each database, because the query is executed with raw SQL defined on
each class, instead of the classic django-ORM approach which is database agnostic.

It was implemented this way to ensure maximum flexibility and adherence to the FreeRADIUS sqlcounter
implementation.

Modules

293

Django Settings

The settings available to control the behavior of counters are described in Counter related settings.

Writing Custom Counter Classes

It is possible to write custom counter classes to satisfy any need.

The easiest way is to subclass openwisp_radius.counters.base.BaseCounter, then implement at least the
following attributes:

• counter_name: name of the counter, used internally for debugging;

• check_name: attribute name used in the database lookup to the group check table;

• reply_name: attribute name sent in the reply message;

• reset: reset period, either daily, weekly, monthly, monthly_subscription or never;

• sql: the raw SQL query to execute;

• get_sql_params: a method which returns a list of the arguments passed to the interpolation of the raw SQL
query.

Please look at the source code of OpenWISP RADIUS to find out more.

• openwisp_radius.counters.base

• openwisp_radius.counters.postgresql

Once the new class is ready, you will need to add it to OPENWISP_RADIUS_COUNTERS.

It is also possible to implement a check class in a completely custom fashion (that is, not inheriting from
BaseCounter), the only requirements are:

• the class must have a constructor (__init__ method) identical to the one used in the BaseCounter class;

• the class must have a check method which doesn't need any required argument and returns the remaining
counter value or raises MaxQuotaReached if the limit has been reached and the authorization should be
rejected; This method may return None if no additional RADIUS attribute needs to be added to the response.

Change of Authorization (CoA)

Important

The Change of Authorization (CoA) is disabled by default.

In order to enable this feature you have it enable it via global setting or from the admin interface.

The openwisp-radius module supports the Change of Authorization (CoA) specification of the RADIUS protocol
described in RFC 5176.

Whenever the RADIUS Group of a user is changed, openwisp-radius updates the NAS with the user's latest RADIUS
Attributes. This is achieved by sending CoA RADIUS packet to NAS for all open RADIUS sessions of the user. This
allows enforcing RADIUS limits without requiring the user to re-authenticate with the NAS.

The CoA RADIUS packet contains the RADIUS Attributes defined in the new RADIUS Group of the user. If the new
RADIUS Group does not specify any attributes, the CoA RADIUS packet will unset the attributes set by the previous
RADIUS Group.

Consider the following example with two RADIUS Groups:

RADIUS Group Name RADIUS Group Checks

Modules

294

https://github.com/openwisp/openwisp-radius/blob/master/openwisp_radius/counters/base.py
https://github.com/openwisp/openwisp-radius/tree/master/openwisp_radius/counters/postgresql
https://datatracker.ietf.org/doc/rfc5176/

users
Attribute Value

Max-Daily-Session-Traffic :=3000000000

Max-Daily-Session :=10800

power-users Note: This group intentionally does not define any limits.

A user, Jane is assigned users RADIUS Group and is currently using the network, i.e. has an open RADIUS
session. The administrator of the system decided to upgrade the RADIUS Group of Jane to power-users, allowing
Jane to use the network without any limits. Without CoA, Jane will have to logout of the captive portal (NAS) and
log-in again to browse the network without any limits. But when CoA is enabled in openwisp-radius, openwisp-radius
will update the NAS with the limits defined in Jane's new RADIUS Group. In this case, openwisp-radius will tell the
NAS to unset the limits that were configured by the previous RADIUS Group.

If the system administrators later decided to downgrade the RADIUS Group of Jane to users, hence enforcing limits
to the usage of the network, openwisp-radius will update the NAS with the limits defined for the users group for all
active RADIUS sessions if CoA is enabled in openwisp-radius.

Management commands

These management commands are necessary for enabling certain features and for database cleanup.

Example usage:

cd tests/
./manage.py <command> <args>

In this page we list the management commands currently available in openwisp-radius.

delete_old_radacct

This command deletes RADIUS accounting sessions older than <days>.

./manage.py delete_old_radacct <days>

For example:

./manage.py delete_old_radacct 365

delete_old_postauth

This command deletes RADIUS post-auth logs older than <days>.

./manage.py delete_old_postauth <days>

For example:

./manage.py delete_old_postauth 365

cleanup_stale_radacct

This command closes stale RADIUS sessions that have remained open for the number of specified <days>.

./manage.py cleanup_stale_radacct <days>

For example:

./manage.py cleanup_stale_radacct 15

Modules

295

deactivate_expired_users

Note

Find out more about this feature in its dedicated page

This command deactivates expired user accounts which were created with batch operation temporarily (e.g.: for en
event) and have an expiration date set.

./manage.py deactivate_expired_users

delete_old_radiusbatch_users

This command deletes users created using batch operation that have expired (and should have been deactivated by
deactivate_expired_users) for more than the specified <duration_in_months>.

./manage.py delete_old_radiusbatch_users --older-than-months <duration_in_months>

Note that the default duration is set to 18 months.

delete_unverified_users

This command deletes unverified users that have been registered for more than specified duration and have no
associated radius session. This feature is needed to delete users who have registered but never completed the
verification process. Staff users will not be deleted by this management command.

./manage.py delete_unverified_users --older-than-days <duration_in_days>

Note that the default duration is set to 1 day.

It is also possible to exclude users that have registered using specified methods. You can specify multiple methods
separated by comma(,). Following is an example:

./manage.py delete_unverified_users --older-than-days 1 --exclude-methods mobile_phone,email

upgrade_from_django_freeradius

If you are upgrading from django-freeradius to openwisp-radius, there is an easy migration script that will import your
freeradius database, sites, social website account users, users & groups to openwisp-radius instance:

./manage.py upgrade_from_django_freeradius

The management command accepts an argument --backup, that you can pass to give the location of the backup
files, by default it looks in the tests/ directory, e.g.:

./manage.py upgrade_from_django_freeradius --backup /home/user/django_freeradius/

The management command accepts another argument --organization, if you want to import data to a specific
organization, you can give its UUID for the same, by default the data is added to the first found organization, e.g.:

./manage.py upgrade_from_django_freeradius --organization 900856da-c89a-412d-8fee-45a9c763ca0b

Note

You can follow the tutorial to migrate database from django-freeradius.

Modules

296

https://github.com/openwisp/django-freeradius
https://github.com/openwisp/django-freeradius/blob/master/README.rst

Warning

It is not possible to export user credential data for RadiusBatch created using prefix, please manually preserve
the PDF files if you want to access the data in the future.

convert_called_station_id

If an installation uses a centralized captive portal, the value of "Called Station ID" of RADIUS Sessions will always
show the MAC address of the captive portal instead of the access points.

This command will update the "Called Station ID" to reflect the MAC address of the access points using information
from OpenVPN. It requires installing openvpn_status, which can be installed using the following command

pip install openwisp-radius[openvpn_status]

In order to work, this command requires to be configured via the OPENWISP_RADIUS_CALLED_STATION_IDS
setting.

Use the following command if you want to perform this operation for all RADIUS sessions that meet criteria of
OPENWISP_RADIUS_CALLED_STATION_IDS setting.

./manage.py convert_called_station_id

You can also convert the "Called Station ID" of a particular RADIUS session by replacing session's unique_id in
the following command:

./manage.py convert_called_station_id --unique_id=<session_unique_id>

Note

If you encounter ParseError for datetime data, you can set the datetime format of the parser using
OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT setting.

Note

convert_called_station_id command will only operate on open RADIUS sessions, i.e. the "stop_time"
field is None.

But if you are converting a single RADIUS session, it will operate on it even if the session is closed.

REST API Reference

Live documentation 298

Browsable web interface 298

FreeRADIUS API Endpoints 299

FreeRADIUS API Authentication 299

API Throttling 301

List of Endpoints 301

User API Endpoints 304

List of Endpoints 304

Modules

297

Important

The REST API of openwisp-radius is enabled by default and may be turned off by setting
OPENWISP_RADIUS_API to False.

Live documentation

A general live API documentation (following the OpenAPI specification) at /api/v1/docs/.

Browsable web interface

Modules

298

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

FreeRADIUS API Endpoints

The following section is dedicated to API endpoints that are designed to be consumed by FreeRADIUS (Authorize,
Post Auth, Accounting).

Important

These endpoints can be consumed only by hosts which have been added to the freeradius allowed hosts list.

FreeRADIUS API Authentication

There are 3 different methods with which the FreeRADIUS API endpoints can authenticate incoming requests and
understand to which organization these requests belong.

Radius User Token

This method relies on the presence of a special token which was obtained by the user when authenticating via the
Obtain Auth Token View, this means the user would have to log in through something like a web form first.

The flow works as follows:

1. the user enters credentials in a login form belonging to a specific organization and submits, the credentials are
then sent to the Obtain Auth Token View;

2. if credentials are correct, a radius user token associated to the user and organization is created and returned
in the response;

3. the login page or app must then initiate the HTTP request to the web server of the captive portal, (the URL of
the form action of the default captive login page) using the radius user token as password, example:

curl -X POST http://captive.projcect.com:8005/index.php?zone=myorg \
 -d "auth_user=<username>&auth_pass=<radius_token>"

This method is recommended if you are using multiple organizations in the same OpenWISP instance.

Note

By default, <radius_token> is valid for authentication for one request only and a new <radius_token>
needs to be obtained for each request. However, if
OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN is set to False, the <radius_token> is valid
for authentication as long as freeradius accounting Stop request is not sent or the token is not deleted.

Warning

If you are using Radius User token method, keep in mind that one user account can only authenticate with one
organization at a time, i.e a single user account cannot consume services from multiple organizations
simultaneously.

Modules

299

https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Bearer token

This other method allows to use the system without the need for a user to obtain a token first, the drawback is that
one FreeRADIUS site has to be configured for each organization, the authorization credentials for the specific
organization is sent in each request, see Configure the site for more information on the FreeRADIUS site
configuration.

The (Organization UUID and Organization RADIUS token) are sent in the authorization header of the HTTP request
in the form of a Bearer token, e.g.:

curl -X POST http://localhost:8000/api/v1/freeradius/authorize/ \
 -H "Authorization: Bearer <org-uuid> <token>" \
 -d "username=<username>&password=<password>"

This method is recommended if you are using only one organization and you have no need nor intention of adding
more organizations in the future.

Querystring

This method is identical to the previous one, but the credentials are sent in querystring parameters, e.g.:

curl -X POST http://localhost:8000/api/v1/freeradius/authorize/?uuid=<org-uuid>&token=<token> \
 -d "username=<username>&password=<password>"

This method is not recommended for production usage, it should be used for testing and debugging only (because
webservers can include the querystring parameters in their logs).

Organization UUID & RADIUS API Token

You can get (and set) the value of the OpenWISP RADIUS API token in the organization configuration page on the
OpenWISP dashboard (select your organization in /admin/openwisp_users/organization/):

Note

It is highly recommended that you use a hard to guess value, longer than 15 characters containing both letters
and numbers. E.g.: 165f9a790787fc38e5cc12c1640db2300648d9a2.

You will also need the UUID of your organization from the organization change page (select your organization in
/admin/openwisp_users/organization/):

Modules

300

Requests authorizing with bearer-token or querystring method must contain organization UUID & token. If the tokens
are missing or invalid, the request will receive a 403 HTTP error.

For information on how to configure FreeRADIUS to send the bearer tokens, see Configure the site.

API Throttling

To override the default API throttling settings, add the following to your settings.py file:

REST_FRAMEWORK = {
 "DEFAULT_THROTTLE_CLASSES": [
 "rest_framework.throttling.ScopedRateThrottle",
],
 "DEFAULT_THROTTLE_RATES": {
 # None by default
 "authorize": None,
 "postauth": None,
 "accounting": None,
 "obtain_auth_token": None,
 "validate_auth_token": None,
 "create_phone_token": None,
 "phone_token_status": None,
 "validate_phone_token": None,
 # Relaxed throttling Policy
 "others": "400/hour",
 },
}

The rate descriptions used in DEFAULT_THROTTLE_RATES may include second, minute, hour or day as the
throttle period, setting it to None will result in no throttling.

List of Endpoints

Authorize

Use by FreeRADIUS to perform the authorization phase.

It's triggered when a user submits the form to login into the captive portal. The captive portal has to be configured to
send the password to freeradius in clear text (will be encrypted with the freeradius shared secret, can be tunneled via
TLS for increased security if needed).

FreeRADIUS in turn will send the username and password via HTTPs to this endpoint.

Responds to only POST.

/api/v1/freeradius/authorize/

Example:

POST /api/v1/freeradius/authorize/ HTTP/1.1 username=testuser&password=testpassword

Modules

301

Param Description

username Username for the given user

password Password for the given user

If the authorization is successful, the API will return all group replies related to the group with highest priority
assigned to the user.

If the authorization is unsuccessful, the response body can either be empty or it can contain an explicit rejection,
depending on how the OPENWISP_RADIUS_API_AUTHORIZE_REJECT setting is configured.

Post Auth

API endpoint designed to be used by FreeRADIUS postauth.

Responds only to POST.

/api/v1/freeradius/postauth/

Param Description

username Username

password Password (*)

reply Radius reply received by freeradius

called_station_id Called Station ID

calling_station_id Calling Station ID

(*): the password is stored only on unsuccessful authorizations.

Returns an empty response body in order to instruct FreeRADIUS to avoid processing the response body.

Accounting

/api/v1/freeradius/accounting/

GET

Returns a list of accounting objects

GET /api/v1/freeradius/accounting/

[
 {
 "called_station_id": "00-27-22-F3-FA-F1:hostname",
 "nas_port_type": "Async",
 "groupname": null,
 "id": 1,
 "realm": "",
 "terminate_cause": "User_Request",
 "nas_ip_address": "172.16.64.91",
 "authentication": "RADIUS",
 "stop_time": null,
 "nas_port_id": "1",
 "service_type": "Login-User",
 "username": "admin",
 "update_time": null,
 "connection_info_stop": null,
 "start_time": "2018-03-10T14:44:17.234035+01:00",
 "output_octets": 1513075509,

Modules

302

 "calling_station_id": "5c:7d:c1:72:a7:3b",
 "input_octets": 9900909,
 "interval": null,
 "session_time": 261,
 "session_id": "35000006",
 "connection_info_start": null,
 "framed_protocol": "test",
 "framed_ip_address": "127.0.0.1",
 "unique_id": "75058e50"
 }
]

POST

Add or update accounting information (start, interim-update, stop); does not return any JSON response so that
freeradius will avoid processing the response without generating warnings

Param Description

session_id Session ID

unique_id Accounting unique ID

username Username

groupname Group name

realm Realm

nas_ip_address NAS IP address

nas_port_id NAS port ID

nas_port_type NAS port type

start_time Start time

update_time Update time

stop_time Stop time

interval Interval

session_time Session Time

authentication Authentication

connection_info_start Connection Info Start

connection_info_stop Connection Info Stop

input_octets Input Octets

output_octets Output Octets

called_station_id Called station ID

calling_station_id Calling station ID

terminate_cause Termination Cause

service_type Service Type

framed_protocol Framed protocol

framed_ip_address framed IP address

Pagination

Pagination is provided using a Link header pagination. Check here for more information about traversing with
pagination.

Modules

303

https://developer.github.com/v3/guides/traversing-with-pagination/
https://developer.github.com/v3/guides/traversing-with-pagination/

{

 link: <http://testserver/api/v1/freeradius/accounting/?page=2&page_size=1>; rel=\"next\",
 <http://testserver/api/v1/freeradius/accounting/?page=3&page_size=1>; rel=\"last\"

}

Note

Default page size is 10, which can be overridden using the page_size parameter.

Filters

The JSON objects returned using the GET endpoint can be filtered/queried using specific parameters.

Filter Parameters Description

username Username

called_station_id Called Station ID

calling_station_id Calling Station ID

start_time Start time (greater or equal to)

stop_time Stop time (less or equal to)

is_open If stop_time is null

User API Endpoints

These API endpoints are designed to be used by users (e.g.: creating an account, changing their password,
obtaining access tokens, validating their phone number, etc.).

Note

The API endpoints described below do not require the Organization API Token described in the beginning of this
document.

Some endpoints require the sending of the user API access token sent in the form of a "Bearer Token", example:

curl -H "Authorization: Bearer <user-token>" \
 'http://localhost:8000/api/v1/radius/organization/default/account/session/'

List of Endpoints

User Registration

Modules

304

Important

This endpoint is enabled by default but can be disabled either via a global setting or from the admin interface.

/api/v1/radius/organization/<organization-slug>/account/

Responds only to POST.

Parameters:

Param Description

username string

phone_number string (*)

email string

password1 string

password2 string

first_name string (**)

last_name string (**)

birth_date string (**)

location string (**)

method string (***)

(*) phone_number is required only when the organization has enabled SMS verification in its "Organization RADIUS
Settings".

(**) first_name, last_name, birth_date and location are optional fields which are disabled by default to
make the registration simple, but can be enabled through configuration.

(**) method must be one of the available registration/verification methods; if identity verification is disabled for a
particular org, an empty string will be acceptable.

Registering to Multiple Organizations

An HTTP 409 response will be returned if an existing user tries to register on a URL of a different organization
(because the account already exists). The response will contain a list of organizations with which the user has
already registered to the system which may be shown to the user in the UI. E.g.:

{
 "details": "A user like the one being registered already exists.",
 "organizations":[
 {"slug":"default","name":"default"}
]
}

The existing user can register with a new organization using the login endpoint. The user will also get membership of
the new organization only if the organization has user registration enabled.

Reset password

This is the classic "password forgotten recovery feature" which sends a reset password token to the email of the
user.

/api/v1/radius/organization/<organization-slug>/account/password/reset/

Responds only to POST.

Modules

305

Parameters:

Param Description

input string that can be an email, phone_number or username.

Confirm reset password

Allows users to confirm their reset password after having it requested via the Reset password endpoint.

/api/v1/radius/organization/<organization-slug>/account/password/reset/confirm/

Responds only to POST.

Parameters:

Param Description

new_password1 string

new_password2 string

uid string

token string

Change password

Requires the user auth token (Bearer Token).

Allows users to change their password after using the Reset password endpoint.

/api/v1/radius/organization/<organization-slug>/account/password/change/

Responds only to POST.

Parameters:

Param Description

current_password string

new_password string

confirm_password string

Login (Obtain User Auth Token)

/api/v1/radius/organization/<organization-slug>/account/token/

Responds only to POST.

Returns:

• radius_user_token: the user radius token, which can be used to authenticate the user in the captive portal
by sending it in place of the user password (it will be passed to freeradius which in turn will send it to the
authorize API endpoint which will recognize the token as the user password)

• key: the user API access token, which will be needed to authenticate the user to eventual subsequent API
requests (e.g.: change password)

• is_active if it's false it means the user has been banned

• is_verified when identity verification is enabled, it indicates whether the user has completed an indirect
identity verification process like confirming their mobile phone number

• method registration/verification method used by the user to register, e.g.: mobile_phone, social_login,
etc.

Modules

306

• username

• email

• phone_number

• first_name

• last_name

• birth_date

• location

If the user account is inactive or unverified the endpoint will send the data anyway but using the HTTP status code
401, this way consumers can recognize these users and trigger the appropriate response needed (e.g.: reject them
or initiate account verification).

If an existing user account tries to authenticate to an organization of which they're not member of, then they would be
automatically added as members (if registration is enabled for that org). Please refer to "Registering to Multiple
Organizations".

This endpoint updates the user language preference field according to the Accept-Language HTTP header.

Parameters:

Param Description

username string

password string

Validate user auth token

Used to check whether the auth token of a user is valid or not.

Return also the radius user token and username in the response.

/api/v1/radius/organization/<organization-slug>/account/token/validate/

Responds only to POST.

Parameters:

Param Description

token the rest auth token to validate

The user information is returned in the response (similarly to Obtain User Auth Token), along with the following
additional parameter:

• response_code: string indicating whether the result is successful or not, to be used for translation.

This endpoint updates the user language preference field according to the Accept-Language HTTP header.

User Radius Sessions

Requires the user auth token (Bearer Token).

Returns the radius sessions of the logged-in user and the organization specified in the URL.

/api/v1/radius/organization/<organization-slug>/account/session/

Responds only to GET.

User Radius Usage

Requires the user auth token (Bearer Token).

Returns the radius usage of the logged-in user and the organization specified in the URL.

Modules

307

It executes the relevant RADIUS counters and returns information that shows how much time and/or traffic the user
has consumed.

/api/v1/radius/organization/<organization-slug>/account/usage/

Responds only to GET.

Create SMS token

Note

This API endpoint will work only if the organization has enabled SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, sends a code via SMS to the phone number of the user.

/api/v1/radius/organization/<organization-slug>/account/phone/token/

Responds only to POST.

No parameters required.

Get active SMS token status

Note

This API endpoint will work only if the organization has enabled SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, allows checking whether an active SMS token was already requested for the mobile
phone number of the logged in account.

/api/v1/radius/organization/<organization-slug>/account/phone/token/active/

Responds only to GET.

No parameters required.

Verify/Validate SMS token

Note

This API endpoint will work only if the organization has enabled SMS verification.

Requires the user auth token (Bearer Token).

Used for SMS verification, allows users to validate the code they receive via SMS.

/api/v1/radius/organization/<organization-slug>/account/phone/verify/

Responds only to POST.

Modules

308

Parameters:

Param Description

code string

Change phone number

Note

This API endpoint will work only if the organization has enabled SMS verification.

Requires the user auth token (Bearer Token).

Allows users to change their phone number, will flag the user as inactive and send them a verification code via SMS.
The phone number of the user is updated only after this verification code has been validated.

/api/v1/radius/organization/<organization-slug>/account/phone/change/

Responds only to POST.

Parameters:

Param Description

phone_number string

Batch user creation

This API endpoint allows to use the features described in Importing users and Generating users.

/api/v1/radius/batch/

Note

This API endpoint allows to use the features described in Importing users and Generating users.

Responds only to POST, used to save a RadiusBatch instance.

It is possible to generate the users of the RadiusBatch with two different strategies: csv or prefix.

The csv method needs the following parameters:

Param Description

name Name of the operation

strategy csv

csvfile file with the users

expiration_date date of expiration of the users

organization_slug slug of organization of the users

These others are for the prefix method:

Param Description

name name of the operation

Modules

309

strategy prefix

prefix prefix for the generation of users

number_of_users number of users

expiration_date date of expiration of the users

organization_slug slug of organization of the users

When using this strategy, in the response you can find the field user_credentials containing the list of users
created (example: [['username', 'password'], ['sample_user', 'BBuOb5sN']]) and the field
pdf_link which can be used to download a PDF file containing the user credentials.

Batch CSV Download

/api/v1/radius/organization/<organization-slug>/batch/<id>/csv/<filename>

Responds only to GET.

Parameters:

Param Description

slug string

id string

filename string

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

Admin related settings 310

Model related settings 311

API and user token related settings 315

Email related settings 321

Counter related settings 322

Social Login related settings 323

SAML related settings 323

SMS token related settings 324

Admin related settings

These settings control details of the administration interface of openwisp-radius.

Note

The values of overridden settings fields do not change even when the global defaults are changed.

Modules

310

OPENWISP_RADIUS_EDITABLE_ACCOUNTING

Default: False

Whether radacct entries are editable from the django admin or not.

OPENWISP_RADIUS_EDITABLE_POSTAUTH

Default: False

Whether postauth logs are editable from the django admin or not.

OPENWISP_RADIUS_GROUPCHECK_ADMIN

Default: False

Direct editing of group checks items is disabled by default because these can be edited through inline items in the
Radius Group admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid overwhelming users with too many options.

If for some reason you need to enable direct editing of group checks you can do so by setting this to True.

OPENWISP_RADIUS_GROUPREPLY_ADMIN

Default: False

Direct editing of group reply items is disabled by default because these can be edited through inline items in the
Radius Group admin (Freeradius > Groups).

This is done with the aim of simplifying the admin interface and avoid overwhelming users with too many options.

If for some reason you need to enable direct editing of group replies you can do so by setting this to True.

OPENWISP_RADIUS_USERGROUP_ADMIN

Default: False

Direct editing of user group items (radusergroup) is disabled by default because these can be edited through
inline items in the User admin (Users and Organizations > Users).

This is done with the aim of simplifying the admin interface and avoid overwhelming users with too many options.

If for some reason you need to enable direct editing of user group items you can do so by setting this to True.

OPENWISP_RADIUS_USER_ADMIN_RADIUSTOKEN_INLINE

Default: False

The functionality of editing a user's RadiusToken directly through an inline from the user admin page is disabled by
default.

This is done with the aim of simplifying the admin interface and avoid overwhelming users with too many options.

If for some reason you need to enable editing user's RadiusToken from the user admin page, you can do so by
setting this to True.

Model related settings

These settings control details of the openwisp-radius model classes.

Modules

311

OPENWISP_RADIUS_DEFAULT_SECRET_FORMAT

Default: NT-Password

The default encryption format for storing radius check values.

OPENWISP_RADIUS_DISABLED_SECRET_FORMATS

Default: []

A list of disabled encryption formats, by default all formats are enabled in order to keep backward compatibility with
legacy systems.

OPENWISP_RADIUS_BATCH_DEFAULT_PASSWORD_LENGTH

Default: 8

The default password length of the auto generated passwords while batch addition of users from the csv.

OPENWISP_RADIUS_BATCH_DELETE_EXPIRED

Default: 18

It is the number of months after which the expired users are deleted.

OPENWISP_RADIUS_BATCH_PDF_TEMPLATE

It is the template used to generate the PDF when users are being generated using the batch add users feature using
the prefix.

The value should be the absolute path to the template of the PDF.

OPENWISP_RADIUS_EXTRA_NAS_TYPES

Default: tuple()

This setting can be used to add custom NAS types that can be used from the admin interface when managing NAS
instances.

For example, you want a custom NAS type called cisco, you would add the following to your project settings.py:

OPENWISP_RADIUS_EXTRA_NAS_TYPES = (("cisco", "Cisco Router"),)

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS

Default: []

List of host IP addresses or subnets allowed to consume the freeradius API endpoints (Authorize, Accounting and
Postauth), i.e the value of this option should be the IP address of your freeradius instance. Example: If your
freeradius instance is running on the same host machine as OpenWISP, the value should be 127.0.0.1. Similarly,
if your freeradius instance is on a different host in the private network, the value should be the private IP of freeradius
host like 192.0.2.50. If your freeradius is on a public network, please use the public IP of your freeradius instance.

You can use subnets when freeradius is hosted on a variable IP, e.g.:

• 198.168.0.0/24 to allow the entire LAN.

• 0.0.0.0/0 to allow any address (useful for development / testing).

This value can be overridden per organization in the organization change page. You can skip setting this option if
you intend to set it from organization change page for each organization.

Modules

312

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS = [
 "127.0.0.1",
 "192.0.2.10",
 "192.168.0.0/24",
]

If this option and organization change page option are both empty, then all freeradius API requests for the
organization will return 403.

OPENWISP_RADIUS_COA_ENABLED

Default: False`

If set to True, openwisp-radius will update the NAS with the user's current RADIUS attributes whenever the
RadiusGroup of user is changed. This allow enforcing of rate limits on active RADIUS sessions without requiring
users to re-authenticate. For more details, read the dedicated section for configuring openwisp-radius and NAS for
using CoA.

This can be overridden for each organization separately via the organization radius settings section of the admin
interface.

RADCLIENT_ATTRIBUTE_DICTIONARIES

type: list

default: []

List of absolute file paths of additional RADIUS dictionaries used for RADIUS attribute mapping.

Note

A default dictionary is shipped with openwisp-radius. Any dictionary added using this setting will be used
alongside the default dictionary.

OPENWISP_RADIUS_MAX_CSV_FILE_SIZE

type: int

default: 5 * 1024 * 1024 (5 MB)

This setting can be used to set the maximum size limit for firmware images, e.g.:

Modules

313

https://github.com/openwisp/openwisp-radius/blob/master/openwisp_radius/radclient/dictionary

OPENWISP_RADIUS_MAX_CSV_FILE_SIZE = 10 * 1024 * 1024 # 10MB

Note

The numeric value represents the size of files in bytes. Setting this to None will mean there's no max size.

OPENWISP_RADIUS_PRIVATE_STORAGE_INSTANCE

type: str

default: openwisp_radius.private_storage.storage.private_file_system_storage

Dotted path to an instance of any one of the storage classes in private_storage. This instance is used for storing csv
files of batch imports of users.

By default, an instance of private_storage.storage.files.PrivateFileSystemStorage is used.

OPENWISP_RADIUS_CALLED_STATION_IDS

Default: {}

This setting allows to specify the parameters to connect to the different OpenVPN management interfaces available
for an organization. This setting is used by the convert_called_station_id command.

It should contain configuration in following format:

OPENWISP_RADIUS_CALLED_STATION_IDS = {
 # UUID of the organization for which settings are being specified
 # In this example 'default'
 "<organization_uuid>": {
 "openvpn_config": [
 {
 # Host address of OpenVPN management
 "host": "<host>",
 # Port of OpenVPN management interface. Defaults to 7505 (integer)
 "port": 7506,
 # Password of OpenVPN management interface (optional)
 "password": "<management_interface_password>",
 }
],
 # List of CALLED STATION IDs that has to be converted,
 # These look like: 00:27:22:F3:FA:F1:gw1.openwisp.org
 "unconverted_ids": ["<called_station_id>"],
 }
}

OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE

Default: False

If set to True, "Called Station ID" of a RADIUS session will be converted (as per configuration defined in
OPENWISP_RADIUS_CALLED_STATION_IDS) just after the RADIUS session is created.

OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT

Default: u'%a %b %d %H:%M:%S %Y'

Modules

314

https://github.com/edoburu/django-private-storage#django-private-storage

Specifies the datetime format of OpenVPN management status parser used by the convert_called_station_id
command.

OPENWISP_RADIUS_UNVERIFY_INACTIVE_USERS

Default: 0 (disabled)

Number of days from user's last_login after which the user will be flagged as unverified.

When set to 0, the feature would be disabled and the user will not be flagged as unverified.

OPENWISP_RADIUS_DELETE_INACTIVE_USERS

Default: 0 (disabled)

Number of days from user's last_login after which the user will be deleted.

When set to 0, the feature would be disabled and the user will not be deleted.

API and user token related settings

These settings control details related to the API and the radius user token.

OPENWISP_RADIUS_API_URLCONF

Default: None

Changes the urlconf option of django URLs to point the RADIUS API URLs to another installed module, example,
myapp.urls (useful when you have a separate API instance.)

OPENWISP_RADIUS_API_BASEURL

Default: / (points to same server)

If you have a separate instance of openwisp-radius API on a different domain, you can use this option to change the
base of the image download URL, this will enable you to point to your API server's domain, example value:
https://myradius.myapp.com.

OPENWISP_RADIUS_API

Default: True

Indicates whether the REST API of openwisp-radius is enabled or not.

OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN

Default: True

Radius user tokens are used for authorizing users.

When this setting is True radius user tokens are deleted right after a successful authorization is performed. This
reduces the possibility of attackers reusing the access tokens and posing as other users if they manage to intercept it
somehow.

OPENWISP_RADIUS_API_AUTHORIZE_REJECT

Default: False

Indicates whether the Authorize API view will return {"control:Auth-Type": "Reject"} or not.

Modules

315

Rejecting an authorization request explicitly will prevent freeradius from attempting to perform authorization with
other mechanisms (e.g.: radius checks, LDAP, etc.).

When set to False, if an authorization request fails, the API will respond with None, which will allow freeradius to
keep attempting to authorize the request with other freeradius modules.

Set this to True if you are performing authorization exclusively through the REST API.

OPENWISP_RADIUS_API_ACCOUNTING_AUTO_GROUP

Default: True

When this setting is enabled, every accounting instance saved from the API will have its groupname attribute
automatically filled in. The value filled in will be the groupname of the RadiusUserGroup of the highest priority
among the RadiusUserGroups related to the user with the username as in the accounting instance. In the event
there is no user in the database corresponding to the username in the accounting instance, the failure will be logged
with warning level but the accounting will be saved as usual.

OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES

Default: []

This setting is used to specify a list of international mobile prefixes which should be allowed to register into the
system via the user registration API.

That is, only users with phone numbers using the specified international prefixes will be allowed to register.

Leaving this unset or setting it to an empty list ([]) will effectively allow any international mobile prefix to register
(which is the default setting).

For example:

OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES = ["+44", "+237"]

Using the setting above will only allow phone numbers from the UK (+44) or Cameroon (+237).

Note

This setting is applicable only for organizations which have enabled the SMS verification option.

OPENWISP_RADIUS_ALLOW_FIXED_LINE_OR_MOBILE

Default: False

OpenWISP RADIUS only allow using mobile phone numbers for user registration. This can cause issues in regions
where fixed line and mobile phone numbers uses the same pattern (e.g. USA). Setting the value to True would
make phone number type checking less strict.

OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS

Default:

{
 "first_name": "disabled",
 "last_name": "disabled",
 "birth_date": "disabled",
 "location": "disabled",
}

Modules

316

This global setting is used to specify if the optional user fields (first_name, last_name, location and
birth_date) shall be disabled (hence ignored), allowed or required in the User Registration API.

The allowed values are:

• disabled: (default) the field is disabled.

• allowed: the field is allowed but not mandatory.

• mandatory: the field is mandatory.

For example:

OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS = {
 "first_name": "disabled",
 "last_name": "disabled",
 "birth_date": "mandatory",
 "location": "allowed",
}

Means:

• first_name and last_name fields are not required and their values if provided are ignored.

• location field is not required but its value will be saved to the database if provided.

• birth_date field is required and a ValidationError exception is raised if its value is not provided.

The setting for each field can also be overridden at organization level if needed, by going to
Home › Users and Organizations › Organizations > Edit organization and then scrolling down to
ORGANIZATION RADIUS SETTINGS.

By default the fields at organization level hold a NULL value, which means that the global setting specified in
settings.py will be used.

OPENWISP_RADIUS_PASSWORD_RESET_URLS

Note

This setting can be overridden for each organization in the organization admin page, the setting implementation
is left for backward compatibility but may be deprecated in the future.

Default:

{
 "__all__": "https://{site}/{organization}/password/reset/confirm/{uid}/{token}"
}

A dictionary representing the frontend URLs through which end users can complete the password reset operation.

The frontend could be OpenWISP WiFi Login Pages or another in-house captive page solution.

Keys of the dictionary must be either UUID of organizations or __all__, which is the fallback URL that will be used
in case there's no customized URL for a specific organization.

The password reset URL must contain the "{token}" and "{uid}" placeholders.

Modules

317

The meaning of the variables in the string is the following:

• {site}: site domain as defined in the django site framework (defaults to example.com and an be changed
through the django admin)

• {organization}: organization slug

• {uid}: uid of the password reset request

• {token}: token of the password reset request

If you're using OpenWISP WiFi Login Pages, the configuration is fairly simple, in case the NodeJS app is installed in
the same domain of openwisp-radius, you only have to ensure the domain field in the main Site object is correct, if
instead the NodeJS app is deployed on a different domain, say login.wifiservice.com, the configuration
should be simply changed to:

{
 "__all__": "https://login.wifiservice.com/{organization}/password/reset/confirm/{uid}/{token}"
}

OPENWISP_RADIUS_REGISTRATION_API_ENABLED

Default: True

Indicates whether the API registration view is enabled or not. When this setting is disabled (i.e. False), the
registration API view is disabled.

This setting can be overridden in individual organizations via the admin interface, by going to Organizations
then edit a specific organization and scroll down to "Organization RADIUS settings", as shown in the screenshot
below.

Note

We recommend using the override via the admin interface only when there are special organizations which need
a different configuration, otherwise, if all the organization use the same configuration, we recommend changing
the global setting.

OPENWISP_RADIUS_SMS_VERIFICATION_ENABLED

Default: False

Note

If you're looking for instructions on how to configure SMS sending, see SMS Token Related Settings.

Modules

318

https://docs.djangoproject.com/en/dev/ref/contrib/sites/

If Identity verification is required, this setting indicates whether users who sign up should be required to verify their
mobile phone number via SMS.

This can be overridden for each organization separately via the organization radius settings section of the admin
interface.

OPENWISP_RADIUS_MAC_ADDR_ROAMING_ENABLED

Default: False

Indicates whether MAC address roaming is supported. When this setting is enabled (i.e. True), MAC address
roaming is enabled for all organizations.

This setting can be overridden in individual organizations via the admin interface, by going to Organizations
then edit a specific organization and scroll down to "Organization RADIUS settings", as shown in the screenshot
below.

Modules

319

Note

We recommend using the override via the admin interface only when there are special organizations which need
a different configuration, otherwise, if all the organization use the same configuration, we recommend changing
the global setting.

OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION

Default: False

Indicates whether organizations require a user to be verified in order to login. This can be overridden globally or for
each organization separately via the admin interface.

If this is enabled, each registered user should be verified using a verification method. The following choices are
available by default:

• '' (empty string): unspecified

• manual: manually created

• email: Email (No Identity Verification)

• mobile_phone: Mobile phone number verification via SMS

• social_login: social login feature

Note

Of the methods listed above, mobile_phone is generally accepted as a legal and valid form of indirect identity
verification in those countries who require to provide a valid ID document before buying a SIM card.

Organizations which are required by law to identify their users before allowing them to access the network (e.g.:
ISPs) can restrict users to register only through this method and can configure the system to only allow
international mobile prefixes of countries which require a valid ID document to buy a SIM card.

Disclaimer: these are just suggestions on possible configurations of OpenWISP RADIUS and must not be
considered as legal advice.

Adding support for more registration/verification methods

For those who need to implement additional registration and identity verification methods, such as supporting a
National ID card, new methods can be added or an existing method can be removed using the
register_registration_method and unregister_registration_method functions respectively.

For example:

Modules

320

from openwisp_radius.registration import (
 register_registration_method,
 unregister_registration_method,
)

Enable registering via national digital ID
register_registration_method("national_id", "National Digital ID")

Remove mobile verification method
unregister_registration_method("mobile_phone")

Note

Both functions will fail if a specific registration method is already registered or unregistered, unless the keyword
argument fail_loud is passed as False (this useful when working with additional registration methods which
are supported by multiple custom modules).

Pass strong_identity as True to to indicate that users who register using that method have indirectly
verified their identity (e.g.: SMS verification, credit card, national ID card, etc).

Warning

If you need to implement a registration method that needs to grant limited internet access to unverified users so
they can complete their verification process online on other websites which cannot be predicted and hence
cannot be added to the walled garden, you can pass authorize_unverified=True to the
register_registration_method function.

This is needed to implement payment flows in which users insert a specific 3D secure code in the website of their
bank. Keep in mind that you should create a specific limited radius group for these unverified users.

Payment flows and credit/debit card verification are fully implemented in OpenWISP Subscriptions, a premium
module available only to customers of the commercial support offering of OpenWISP.

Email related settings

Emails can be sent to users whose usernames or passwords have been auto-generated. The content of these emails
can be customized with the settings explained below.

OPENWISP_RADIUS_BATCH_MAIL_SUBJECT

Default: Credentials

It is the subject of the mail to be sent to the users. E.g.: Login Credentials.

OPENWISP_RADIUS_BATCH_MAIL_MESSAGE

Default: username: {}, password: {}

The message should be a string in the format Your username is {} and password is {}.

The text could be anything but should have the format string operator {} for .format operations to work.

Modules

321

https://openwisp.org/support.html

OPENWISP_RADIUS_BATCH_MAIL_SENDER

Default: settings.DEFAULT_FROM_EMAIL

It is the sender email which is also to be configured in the SMTP settings. The default sender email is a common
setting from the Django core settings under DEFAULT_FROM_EMAIL. Currently, DEFAULT_FROM_EMAIL is set to to
webmaster@localhost.

Counter related settings

OPENWISP_RADIUS_COUNTERS

Default: depends on the database backend in use, see How Limits are Enforced: Counters to find out what are the
default counters enabled.

It's a list of strings, each representing the python path to a counter class.

It may be set to an empty list or tuple to disable the counter feature, e.g.:

OPENWISP_RADIUS_COUNTERS = []

If custom counters have been implemented, this setting should be changed to include the new classes, e.g.:

OPENWISP_RADIUS_COUNTERS = [
 # default counters for PostgreSQL, may be removed if not needed
 "openwisp_radius.counters.postgresql.daily_counter.DailyCounter",
 "openwisp_radius.counters.postgresql.radius_daily_traffic_counter.DailyTrafficCounter",
 # custom counters
 "myproject.counters.CustomCounter1",
 "myproject.counters.CustomCounter2",
]

OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME

Default: Max-Daily-Session-Traffic

Used by DailyTrafficCounter, it indicates the check attribute which is looked for in the database to find the maximum
amount of daily traffic which users having the default users radius group assigned can consume.

OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME

Default: CoovaChilli-Max-Total-Octets

Used by DailyTrafficCounter, it indicates the reply attribute which is returned to the NAS to indicate how much
remaining traffic users which users having the default users radius group assigned can consume.

It should be changed according to the NAS software in use, for example, if using PfSense, this setting should be set
to pfSense-Max-Total-Octets.

OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP

Default: {}

Used by User Radius Usage API, it stores mapping of RADIUS attributes to the unit of value enforced by the
attribute, e.g. bytes for traffic counters and seconds for session time counters.

In the following example, the setting is configured to return bytes type in the API response for
ChilliSpot-Max-Input-Octets attribute:

OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP = {
 "ChilliSpot-Max-Input-Octets": "bytes"
}

Modules

322

https://docs.djangoproject.com/en/dev/ref/settings/#default-from-email

Social Login related settings

The following settings are related to the social login feature.

OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED

Default: False

Indicates whether the registration using social applications is enabled or not. When this setting is enabled (i.e. True),
authentication using social applications is enabled for all organizations.

This setting can be overridden in individual organizations via the admin interface, by going to Organizations
then edit a specific organization and scroll down to "Organization RADIUS settings", as shown in the screenshot
below.

Note

We recommend using the override via the admin interface only when there are special organizations which need
a different configuration, otherwise, if all the organization use the same configuration, we recommend changing
the global setting.

SAML related settings

The following settings are related to the SAML feature.

OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED

Default: False

Indicates whether registration using SAML is enabled or not. When this setting is enabled (i.e. True), authentication
using SAML is enabled for all organizations.

This setting can be overridden in individual organizations via the admin interface, by going to Organizations
then edit a specific organization and scroll down to "Organization RADIUS settings", as shown in the screenshot
below.

Modules

323

Note

We recommend using the override via the admin interface only when there are special organizations which need
a different configuration, otherwise, if all the organization use the same configuration, we recommend changing
the global setting.

OPENWISP_RADIUS_SAML_REGISTRATION_METHOD_LABEL

Default: 'Single Sign-On (SAML)'

Sets the verbose name of SAML registration method.

OPENWISP_RADIUS_SAML_IS_VERIFIED

Default: False

Setting this to True will automatically flag user accounts created during SAML sign-in as verified users
(RegisteredUser.is_verified=True).

This is useful when SAML identity providers can be trusted to be legally valid identity verifiers.

OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME

Default: False

Allows updating username of a registered user with the value received from SAML Identity Provider. Read the FAQs
in SAML integration documentation for details.

SMS token related settings

These settings allow to control aspects and limitations of the SMS tokens which are sent to users for the purpose of
verifying their mobile phone number.

These settings are applicable only when SMS verification is enabled.

SENDSMS_BACKEND

This setting takes a python path which points to the django-sendsms backend which will be used by the system to
send SMS messages.

The list of supported SMS services can be seen in the source code of the django-sendsms backends. Adding
support for other SMS services can be done by sub-classing the BaseSmsBackend and implement the logic needed
to talk to the SMS service.

Modules

324

https://github.com/stefanfoulis/django-sendsms
https://github.com/stefanfoulis/django-sendsms/tree/main/sendsms/backends

The value of this setting can point to any class on the python path, so the backend doesn't have to be necessarily
shipped in django-sendsms but can be deployed in any other location.

OPENWISP_RADIUS_SMS_TOKEN_DEFAULT_VALIDITY

Default: 30

For how many minutes the SMS token is valid for.

OPENWISP_RADIUS_SMS_TOKEN_LENGTH

Default: 6

The length of the SMS token.

OPENWISP_RADIUS_SMS_TOKEN_HASH_ALGORITHM

Default: 'sha256'

The hashing algorithm used to generate the numeric code.

OPENWISP_RADIUS_SMS_COOLDOWN

Default: 30

Seconds users needs to wait before being able to request a new SMS token.

OPENWISP_RADIUS_SMS_TOKEN_MAX_ATTEMPTS

Default: 5

The max number of mistakes tolerated during verification, after this amount of mistaken attempts, it won't be possible
to verify the token anymore and it will be necessary to request a new one.

OPENWISP_RADIUS_SMS_TOKEN_MAX_USER_DAILY

Default: 5

The max number of SMS tokens a single user can request within a day.

OPENWISP_RADIUS_SMS_TOKEN_MAX_IP_DAILY

Default: 999

The max number of tokens which can be requested from the same IP address during the same day.

OPENWISP_RADIUS_SMS_MESSAGE_TEMPLATE

Default: {organization} verification code: {code}

The template used for sending verification code to users via SMS.

Note

The template should always contain {code} placeholder. Otherwise, the sent SMS will not contain the
verification code.

Modules

325

This value can be overridden per organization in the organization change page. You can skip setting this option if
you intend to set it from organization change page for each organization. Keep in mind that the default value is
translated in other languages. If the value is customized the translations will not work, so if you need this message to
be translated in different languages you should either not change the default value or prepare the additional
translations.

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP RADIUS, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP RADIUS User Docs

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP RADIUS, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP RADIUS User Docs

Dependencies 326

Installing for Development 326

Alternative Sources 327

Pypi 327

Github 327

Migrating an existing freeradius database 328

Troubleshooting Steps for Common Installation Issues 328

Dependencies

• Python >= 3.8

Installing for Development

Install the system dependencies:

sudo apt update
sudo apt install -y sqlite3 libsqlite3-dev libpq-dev

Modules

326

sudo apt install -y xmlsec1
sudo apt install -y chromium-browser

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-radius

Navigate into the cloned repository:

cd openwisp-radius/

Launch Redis:

docker-compose up -d redis

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .[saml,openvpn_status]
pip install -r requirements-test.txt
sudo npm install -g jshint stylelint

Install WebDriver for Chromium for your browser version from https://chromedriver.chromium.org/home and Extract
chromedriver to one of directories from your $PATH (example: ~/.local/bin/).

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch celery worker (for background jobs):

celery -A openwisp2 worker -l info

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py --parallel

Run quality assurance tests with:

./run-qa-checks

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-radius

Github

To install the latest development version tarball via HTTPs:

Modules

327

https://pypi.org/project/virtualenv/
https://chromedriver.chromium.org/home

pip install https://github.com/openwisp/openwisp-radius/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-radius#egg=openwisp_radius[saml,openvpn_status]

Migrating an existing freeradius database

If you already have a freeradius 3 database with the default schema, you should be able to use it with
openwisp-radius (and extended apps) easily:

1. first of all, back up your existing database;

2. configure django to connect to your existing database;

3. fake the first migration (which only replicates the default freeradius schema) and then launch the rest of
migrations normally, see the examples below to see how to do this.

./manage.py migrate --fake openwisp-radius 0001_initial_freeradius

./manage.py migrate

Troubleshooting Steps for Common Installation Issues

If you encounter any issue during installation, run:

pip install -e .[saml] -r requirements-test.txt

instead of pip install -r requirements-test.txt

Code Utilities

Note

This page is for developers who want to customize or extend OpenWISP RADIUS, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP RADIUS User Docs

Signals 328

radius_accounting_success 328

Captive portal mock views 329

Captive Portal Login Mock View 329

Captive Portal Logout Mock View 329

Signals

radius_accounting_success

Path: openwisp_radius.signals.radius_accounting_success

Arguments:

• sender : AccountingView

Modules

328

• accounting_data (dict): accounting information

• view: instance of AccountingView

This signal is emitted every time the accounting REST API endpoint completes successfully, just before the response
is returned.

The view argument can also be used to access the request object i.e. view.request.

Captive portal mock views

The development environment of openwisp-radius provides two URLs that mock the behavior of a captive portal,
these URLs can be used when testing frontend applications like OpenWISP WiFi Login Pages during development.

Note

These views are meant to be used just for development and testing.

Captive Portal Login Mock View

• URL: http://localhost:8000/captive-portal-mock/login/.

• POST fields: auth_pass or password.

This view handles the captive portal login process by first checking for either an auth_pass or password in the
POST request data. It then attempts to find a corresponding RadiusToken instance where the key matches the
provided value. If a matching token is found and there are no active sessions (i.e., no open RadiusAccounting
records), then it creates a new radius session for the user. If successful, the user is considered logged in.

Captive Portal Logout Mock View

• URL: http://localhost:8000/captive-portal-mock/logout/.

• POST fields: logout_id.

This view looks for an entry in the radacct table where session_id matches the value passed in the logout_id
POST field. If such an entry is found, the view makes a POST request to the accounting view to mark the session as
terminated, using User-Request as the termination cause.

Extending OpenWISP RADIUS

Note

This page is for developers who want to customize or extend OpenWISP RADIUS, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP RADIUS User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason openwisp-radius provides a
set of base classes which can be imported, extended and reused to create derivative apps.

Modules

329

In order to implement your custom version of openwisp-radius, you need to perform the steps described in this
section.

When in doubt, the code in the test project and the sample app will serve you as source of truth: just replicate and
adapt that code to get a basic derivative of openwisp-radius working.

If you want to add new users fields, please follow the tutorial to extend the openwisp-users. As an example, we have
extended openwisp-users to sample_users app and added a field social_security_number in the
sample_users/models.py.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your custom module

The first thing you need to do is to create a new django app which will contain your custom version of
openwisp-radius.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call this django app myradius, but you can name it how you want:

django-admin startapp myradius

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

2. Install openwisp-radius

Install (and add to the requirement of your project) openwisp-radius:

pip install openwisp-radius

3. Add your App to INSTALLED_APPS

Now you need to add myradius to INSTALLED_APPS in your settings.py, ensuring also that
openwisp_radius has been removed:

import os

INSTALLED_APPS = [
 # ... other apps ...
 # openwisp admin theme
 "openwisp_utils.admin_theme",
 # all-auth
 "django.contrib.sites",
 "allauth",
 "allauth.account",
 "allauth.socialaccount",
 # admin
 "django.contrib.admin",
 # rest framework
 "rest_framework",
 "django_filters",
 # registration
 "rest_framework.authtoken",
 "dj_rest_auth",
 "dj_rest_auth.registration",

Modules

330

https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/sample_radius/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_users/models.py
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH

 # social login
 "allauth.socialaccount.providers.facebook", # optional, can be removed if social login is not needed
 "allauth.socialaccount.providers.google", # optional, can be removed if social login is not needed
 # SAML login
 "djangosaml2", # optional, can be removed if SAML login is not needed
 # openwisp
 # 'myradius', <-- replace with your app-name here
 "openwisp_users",
 "private_storage",
 "drf_yasg",
]

SITE_ID = 1
MEDIA_ROOT = os.path.join(BASE_DIR, "media")
PRIVATE_STORAGE_ROOT = os.path.join(MEDIA_ROOT, "private")

AUTHENTICATION_BACKENDS = (
 "openwisp_users.backends.UsersAuthenticationBackend",
 "openwisp_radius.saml.backends.OpenwispRadiusSaml2Backend", # optional, can be removed if SAML login is not needed
)

4. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ("openwisp_radius",)

5. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

6. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py, but ensure it
comes before django.template.loaders.app_directories.Loader:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "openwisp_utils.loaders.DependencyLoader",
 "django.template.loaders.app_directories.Loader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },

Modules

331

 }
]

7. Inherit the AppConfig class

Refer to the sample_radius/apps.py file in the sample app of the test project.

You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

8. Create your custom models

For the purpose of showing an example, we added a simple details field to the models of the sample app in the
test project.

You can add fields in a similar way in your models.py file.

For doubts regarding how to use, extend or develop models please refer to the "Models" section in the django
documentation.

9. Add swapper configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
OPENWISP_RADIUS_RADIUSREPLY_MODEL = "myradius.RadiusReply"
OPENWISP_RADIUS_RADIUSGROUPREPLY_MODEL = "myradius.RadiusGroupReply"
OPENWISP_RADIUS_RADIUSCHECK_MODEL = "myradius.RadiusCheck"
OPENWISP_RADIUS_RADIUSGROUPCHECK_MODEL = "myradius.RadiusGroupCheck"
OPENWISP_RADIUS_RADIUSACCOUNTING_MODEL = "myradius.RadiusAccounting"
OPENWISP_RADIUS_NAS_MODEL = "myradius.Nas"
OPENWISP_RADIUS_RADIUSUSERGROUP_MODEL = "myradius.RadiusUserGroup"
OPENWISP_RADIUS_RADIUSPOSTAUTH_MODEL = "myradius.RadiusPostAuth"
OPENWISP_RADIUS_RADIUSBATCH_MODEL = "myradius.RadiusBatch"
OPENWISP_RADIUS_RADIUSGROUP_MODEL = "myradius.RadiusGroup"
OPENWISP_RADIUS_RADIUSTOKEN_MODEL = "myradius.RadiusToken"
OPENWISP_RADIUS_PHONETOKEN_MODEL = "myradius.PhoneToken"
OPENWISP_RADIUS_ORGANIZATIONRADIUSSETTINGS_MODEL = (
 "myradius.OrganizationRadiusSettings"
)
OPENWISP_RADIUS_REGISTEREDUSER_MODEL = "myradius.RegisteredUser"

You will need to change AUTH_USER_MODEL if you are extending openwisp_users
AUTH_USER_MODEL = "openwisp_users.User"

Substitute myradius with the name you chose in step 1.

10. Create database migrations

Copy the migration files from the sample_radius's migration folder.

Now, create database migrations as per your custom application's requirements:

./manage.py makemigrations

If you are starting with a fresh database, you can apply the migrations:

./manage.py migrate

However, if you want migrate an existing freeradius database please read the guide in the setup.

Modules

332

https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/models.py
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/migrations/

For more information, refer to the "Migrations" section in the django documentation.

11. Create the admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

1. Monkey patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_radius.admin import (
 RadiusCheckAdmin,
 RadiusReplyAdmin,
 RadiusAccountingAdmin,
 NasAdmin,
 RadiusGroupAdmin,
 RadiusUserGroupAdmin,
 RadiusGroupCheckAdmin,
 RadiusGroupReplyAdmin,
 RadiusPostAuthAdmin,
 RadiusBatchAdmin,
)

NasAdmin.fields += ['example_field'] <-- Monkey patching changes example

2. Inheriting admin classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

from django.contrib import admin
from openwisp_radius.admin import (
 RadiusCheckAdmin as BaseRadiusCheckAdmin,
 RadiusReplyAdmin as BaseRadiusReplyAdmin,
 RadiusAccountingAdmin as BaseRadiusAccountingAdmin,
 NasAdmin as BaseNasAdmin,
 RadiusGroupAdmin as BaseRadiusGroupAdmin,
 RadiusUserGroupAdmin as BaseRadiusUserGroupAdmin,
 RadiusGroupCheckAdmin as BaseRadiusGroupCheckAdmin,
 RadiusGroupReplyAdmin as BaseRadiusGroupReplyAdmin,
 RadiusPostAuthAdmin as BaseRadiusPostAuthAdmin,
 RadiusBatchAdmin as BaseRadiusBatchAdmin,
)
from swapper import load_model

Nas = load_model("openwisp_radius", "Nas")
RadiusAccounting = load_model("openwisp_radius", "RadiusAccounting")
RadiusBatch = load_model("openwisp_radius", "RadiusBatch")
RadiusCheck = load_model("openwisp_radius", "RadiusCheck")
RadiusGroup = load_model("openwisp_radius", "RadiusGroup")
RadiusPostAuth = load_model("openwisp_radius", "RadiusPostAuth")
RadiusReply = load_model("openwisp_radius", "RadiusReply")
PhoneToken = load_model("openwisp_radius", "PhoneToken")
RadiusGroupCheck = load_model("openwisp_radius", "RadiusGroupCheck")

Modules

333

https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/

RadiusGroupReply = load_model("openwisp_radius", "RadiusGroupReply")
RadiusUserGroup = load_model("openwisp_radius", "RadiusUserGroup")
OrganizationRadiusSettings = load_model(
 "openwisp_radius", "OrganizationRadiusSettings"
)
User = get_user_model()

admin.site.unregister(RadiusCheck)
admin.site.unregister(RadiusReply)
admin.site.unregister(RadiusAccounting)
admin.site.unregister(Nas)
admin.site.unregister(RadiusGroup)
admin.site.unregister(RadiusUserGroup)
admin.site.unregister(RadiusGroupCheck)
admin.site.unregister(RadiusGroupReply)
admin.site.unregister(RadiusPostAuth)
admin.site.unregister(RadiusBatch)

@admin.register(RadiusCheck)
class RadiusCheckAdmin(BaseRadiusCheckAdmin):
 pass
 # add your changes here

@admin.register(RadiusReply)
class RadiusReplyAdmin(BaseRadiusReplyAdmin):
 pass
 # add your changes here

@admin.register(RadiusAccounting)
class RadiusAccountingAdmin(BaseRadiusAccountingAdmin):
 pass
 # add your changes here

@admin.register(Nas)
class NasAdmin(BaseNasAdmin):
 pass
 # add your changes here

@admin.register(RadiusGroup)
class RadiusGroupAdmin(BaseRadiusGroupAdmin):
 pass
 # add your changes here

@admin.register(RadiusUserGroup)
class RadiusUserGroupAdmin(BaseRadiusUserGroupAdmin):
 pass
 # add your changes here

@admin.register(RadiusGroupCheck)
class RadiusGroupCheckAdmin(BaseRadiusGroupCheckAdmin):
 pass
 # add your changes here

Modules

334

@admin.register(RadiusGroupReply)
class RadiusGroupReplyAdmin(BaseRadiusGroupReplyAdmin):
 pass
 # add your changes here

@admin.register(RadiusPostAuth)
class RadiusPostAuthAdmin(BaseRadiusPostAuthAdmin):
 pass
 # add your changes here

@admin.register(RadiusBatch)
class RadiusBatchAdmin(BaseRadiusBatchAdmin):
 pass
 # add your changes here

12. Setup Freeradius API Allowed Hosts

Add allowed freeradius hosts in settings.py:

OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS = ["127.0.0.1"]

Read more about freeradius allowed hosts in settings page.

13. Setup Periodic tasks

Some periodic commands are required in production environments to enable certain features and facilitate database
cleanup:

1. You need to create a celery configuration file as it's created in example file.

2. In the settings.py, configure the CELERY_BEAT_SCHEDULE. Some celery tasks take an argument, for instance
365 is given here for delete_old_radacct in the example settings. These arguments are passed to their
respective management commands. More information about these parameters can be found at the management
commands page.

3. Add the following in your settings.py file:

CELERY_IMPORTS = ("openwisp_radius.tasks",)

For more information about the usage of celery in django, please refer to the "First steps with Django" section in the
celery documentation.

14. Create root URL configuration

The root url.py file should have the following paths (please read the comments):

from openwisp_radius.urls import get_urls

Only imported when views are extended.
from myradius.api.views import views as api_views
from myradius.social.views import views as social_views
from myradius.saml.views import views as saml_views

urlpatterns = [
 # ... other urls in your project ...
 path("admin/", admin.site.urls),
 # openwisp-radius urls
 path("accounts/", include("openwisp_users.accounts.urls")),

Modules

335

https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/celery.py
https://github.com/openwisp/openwisp-radius/tree/master/tests/openwisp2/settings.py#L141
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html

 path("api/v1/", include("openwisp_utils.api.urls")),
 # Use only when extending views (discussed below)
 # path('', include((get_urls(api_views, social_views, saml_views), 'radius'), namespace='radius')),
 # Remove when extending views
 path("", include("openwisp_radius.urls", namespace="radius")),
]

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

15. Import the automated tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of
openwisp-radius.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests of the sample app to find out how to do this.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel myradius

Substitute myradius with the name you chose in step 1.

Other base classes that can be inherited and extended

The following steps are not required and are intended for more advanced customization.

1. Extending the API Views

The API view classes can be extended into other django applications as well. Note that it is not required for
extending openwisp-radius to your app and this change is required only if you plan to make changes to the API
views.

Create a view file as done in API views.py.

Remember to use these views in root URL configurations in point 14. If you want only extend the API views and not
social views, you can use get_urls(api_views, None) to get social_views from openwisp_radius.

For more information about django views, please refer to the views section in the django documentation.

2. Extending the Social Views

The social view classes can be extended into other django applications as well. Note that it is not required for
extending openwisp-radius to your app and this change is required only if you plan to make changes to the social
views.

Create a view file as done in social views.py.

Remember to use these views in root URL configurations in point 14. If you want only extend the API views and not
social views, you can use get_urls(api_views, None) to get social_views from openwisp_radius.

3. Extending the SAML Views

The SAML view classes can be extended into other django applications as well. Note that it is not required for
extending openwisp-radius to your app and this change is required only if you plan to make changes to the SAML
views.

Modules

336

https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/tests.py
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/api/views.py
https://docs.djangoproject.com/en/4.2/topics/http/views/
https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/social/views.py

Create a view file as done in saml views.py.

Remember to use these views in root URL configurations in point 14. If you want only extend the API views and
social view but not SAML views, you can use get_urls(api_views, social_views, None) to get
saml_views from openwisp_radius.

For more information about django views, please refer to the views section in the django documentation.

Other useful resources:

• REST API Reference

• Settings

Deploy instructions

See Enabling the RADIUS module on the OpenWISP ansible role documentation.

Alternatively you can set it up manually by following these guides:

Freeradius Setup for Captive Portal authentication

This guide explains how to install and configure freeradius 3 in order to make it work with OpenWISP RADIUS for
Captive Portal authentication.

The guide is written for debian based systems, other linux distributions can work as well but the name of packages
and files may be different.

Widely used solutions used with OpenWISP RADIUS are PfSense and Coova-Chilli, but other solutions can be used
as well.

Note

Before users can authenticate through a captive portal, they will most likely need to sign up through a web page,
or alternatively, they will need to perform social login or some other kind of Single Sign On (SSO).

The OpenWISP WiFi Login Pages web app is an open source solution which integrates with OpenWISP RADIUS
to provide features like self user registration, social login, SSO/SAML login, SMS verification, simple username &
password login using the Radius User Token method.

For more information see: OpenWISP WiFi Login Pages

How to install freeradius 3

First of all, become root:

sudo -s

In order to install a recent version of FreeRADIUS, we recommend using the freeradius packages provided by
NetworkRADIUS.

After having updated the APT sources list to pull the NetworkRADIUS packages, let's proceed to update the list of
available packages:

apt update

These packages are always needed:

apt install freeradius freeradius-rest

If you use MySQL:

apt install freeradius-mysql

Modules

337

https://github.com/openwisp/openwisp-radius/blob/master/tests/openwisp2/sample_radius/saml/views.py
https://docs.djangoproject.com/en/4.2/topics/http/views/
https://freeradius.org
https://networkradius.com/packages/
https://networkradius.com/packages/

If you use PostgreSQL:

apt install freeradius-postgresql

Warning

You have to install and configure an SQL database like PostgreSQL, MySQL (SQLite can also work, but we won't
treat it here) and make sure both OpenWISP RADIUS and Freeradius point to it.

The steps outlined above may not be sufficient to get the DB of your choice to run, please consult the
documentation of your database of choice for more information on how to get it to run properly.

In the rest of this document we will mention PostgreSQL often because that is the database generally preferred
by the Django community.

Configuring Freeradius 3

For a complete reference on how to configure freeradius please read the Freeradius wiki, configuration files and their
configuration tutorial.

Note

The path to freeradius configuration could be different on your system. This article use the /etc/freeradius/
directory that ships with recent debian distributions and its derivatives

Refer to the mods-available documentation for the available configuration values.

Enable the configured modules

First of all enable the rest and optionally the sql module:

ln -s /etc/freeradius/mods-available/rest /etc/freeradius/mods-enabled/rest
optional
ln -s /etc/freeradius/mods-available/sql /etc/freeradius/mods-enabled/sql

Configure the REST module

Configure the rest module by editing the file /etc/freeradius/mods-enabled/rest, substituting <url> with
your django project's URL, (for example, if you are testing a development environment, the URL could be
http://127.0.0.1:8000, otherwise in production could be something like
https://openwisp2.mydomain.org)-

Warning

Remember you need to add your freeradius server IP address in openwisp freeradius allowed hosts settings. If
the freeradius server IP is not in allowed hosts, all requests to openwisp radius API will return 403.

Refer to the rest module documentation for the available configuration values.

/etc/freeradius/mods-enabled/rest

connect_uri = "<url>"

Modules

338

https://wiki.freeradius.org/config/Configuration-files
https://wiki.freeradius.org/guide/HOWTO
https://networkradius.com/doc/3.0.10/raddb/mods-available/home.html
file:///home/runner/work/openwisp-docs/user/settings.html#openwisp-radius-freeradius-allowed-hosts
https://networkradius.com/doc/3.0.10/raddb/mods-available/rest.html

authorize {
 uri = "${..connect_uri}/api/v1/freeradius/authorize/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}"}'
 tls = ${..tls}
}

this section can be left empty
authenticate {}

post-auth {
 uri = "${..connect_uri}/api/v1/freeradius/postauth/"
 method = 'post'
 body = 'json'
 data = '{"username": "%{User-Name}", "password": "%{User-Password}", "reply": "%{reply:Packet-Type}", "called_station_id": "%{Called-Station-ID}", "calling_station_id": "%{Calling-Station-ID}"}'
 tls = ${..tls}
}

accounting {
 uri = "${..connect_uri}/api/v1/freeradius/accounting/"
 method = 'post'
 body = 'json'
 data = '{"status_type": "%{Acct-Status-Type}", "session_id": "%{Acct-Session-Id}", "unique_id": "%{Acct-Unique-Session-Id}", "username": "%{User-Name}", "realm": "%{Realm}", "nas_ip_address": "%{NAS-IP-Address}", "nas_port_id": "%{NAS-Port}", "nas_port_type": "%{NAS-Port-Type}", "session_time": "%{Acct-Session-Time}", "authentication": "%{Acct-Authentic}", "input_octets": "%{Acct-Input-Octets}", "output_octets": "%{Acct-Output-Octets}", "called_station_id": "%{Called-Station-Id}", "calling_station_id": "%{Calling-Station-Id}", "terminate_cause": "%{Acct-Terminate-Cause}", "service_type": "%{Service-Type}", "framed_protocol": "%{Framed-Protocol}", "framed_ip_address": "%{Framed-IP-Address}"}'
 tls = ${..tls}
}

Configure the SQL module

Note

The sql module is not extremely needed but we treat it here since it can be useful to implement custom
behavior, moreover we treat it in this document also to show that OpenWISP RADIUS can integrate itself with
other widely used FreeRADIUS modules.

Once you have configured properly an SQL server, e.g. PostgreSQL:, and you can connect with a username and
password edit the file /etc/freeradius/mods-available/sql to configure Freeradius to use the relational
database.

Change the configuration for driver, dialect, server, port, login, password, radius_db as you need to fit
your SQL server configuration.

Refer to the sql module documentation for the available configuration values.

Example configuration using the PostgreSQL database:

/etc/freeradius/mods-available/sql

driver = "rlm_sql_postgresql"
dialect = "postgresql"

Connection info:
server = "localhost"
port = 5432
login = "<user>"
password = "<password>"
radius_db = "radius"

Modules

339

https://networkradius.com/doc/3.0.10/raddb/mods-available/sql.html

Configure the site

This section explains how to configure the FreeRADIUS site.

Please refer to FreeRADIUS API Authentication to understand the different possibilities with which FreeRADIUS can
authenticate requests going to OpenWISP RADIUS so that OpenWISP RADIUS knows to which organization each
request belongs.

If you are not using the method described in Radius User Token, you have to do the following:

• create one FreeRADIUS site for each organization

• uncomment the line which starts with # api_token_header

• substitute the occurrences of <org_uuid> and <org_radius_api_token> with the UUID & RADIUS API
token of each organization, refer to the section Organization UUID & RADIUS API Token for finding these
values.

If you are deploying a captive portal setup and can use the RADIUS User Token method, you can get away with
having only one freeradius site for all the organizations and can simply copy the configuration shown below.

/etc/freeradius/sites-enabled/default
Remove `#` symbol from the line to uncomment it

server default {
 # if you are not using Radius Token authentication method, please uncomment
 # and set the values for <org_uuid> & <org_radius_api_token>
 # api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }

 # this section can be left empty
 authenticate {}

 post-auth {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 Post-Auth-Type REJECT {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${....api_token_header}" }
 rest
 }
 }

 accounting {
 # if you are not using Radius Token authentication method, please uncomment the following
 # update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }
}

Please also ensure that acct_unique is present in the pre-accounting section:

preacct {
 # ...
 acct_unique
 # ...
}

Modules

340

Restart freeradius to make the configuration effective

Restart freeradius to load the new configuration:

service freeradius restart
alternatively if you are using systemd
systemctl restart freeradius

In case of errors you can run freeradius in debug mode by running freeradius -X in order to find out the reason of
the failure.

A common problem, especially during development and testing, is that the openwisp-radius application may
not be running, in that case you can find out how to run the django development server in the Developer Installation
Instructions section.

Also make sure that this server runs on the port specified in /etc/freeradius/mods-enabled/rest.

You may also want to take a look at the Freeradius documentation for further information that is freeradius specific.

Reconfigure the development environment using PostgreSQL

You'll have to reconfigure the development environment as well before being able to use openwisp-radius for
managing the freeradius databases.

If you have installed for development, create a file tests/local_settings.py and add the following code to
configure the database:

openwisp-radius/tests/local_settings.py
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.postgresql_psycopg2",
 "NAME": "<db_name>",
 "USER": "<db_user>",
 "PASSWORD": "<db_password>",
 "HOST": "127.0.0.1",
 "PORT": "5432",
 },
}

Make sure the database by the name <db_name> is created and also the role <db_user> with <db_password> as
password.

Using Radius Checks for Authorization Information

Traditionally, when using an SQL backend with Freeradius, user authorization information such as User-Name and
"known good" password can be stored using the radcheck table provided by Freeradius' default SQL schema.

OpenWISP RADIUS instead uses the FreeRADIUS rlm_rest module in order to take advantage of the built in user
management and authentication capabilities of Django (for more information about these topics see Configure the
REST module and User authentication in Django).

When migrating from existing FreeRADIUS deployments or in cases where it is preferred to use the FreeRADIUS
radcheck table for storing user credentials it is possible to utilize rlm_sql in parallel with (or instead of) rlm_rest for
authorization.

Note

Bypassing the REST API of openwisp-radius means that you will have to manually create the radius check
entries for each user you want to authenticate with FreeRADIUS.

Modules

341

https://wiki.freeradius.org/guide/radiusd-X
https://freeradius.org/documentation/
https://freeradius.org/radiusd/man/rlm_pap.html
https://networkradius.com/doc/current/raddb/mods-available/rest.html
https://docs.djangoproject.com/en/dev/topics/auth/
https://wiki.freeradius.org/modules/Rlm_sql
https://networkradius.com/doc/current/raddb/mods-available/rest.html

Configuration

To configure support for accessing user credentials with Radius Checks ensure the authorize section of your site
as follows contains the sql module:

/etc/freeradius/sites-available/default

authorize {
 # ...
 sql # <-- the sql module
 # ...
}

Debugging & Troubleshooting

In this section we will explain how to debug your freeradius instance.

Start freeradius in debug mode

When debugging we suggest you to open up a dedicated terminal window to run freeradius in debug mode:

we need to stop the main freeradius process first
service freeradius stop
alternatively if you are using systemd
systemctl stop freeradius
launch freeradius in debug mode
freeradius -X

Testing authentication and authorization

You can do this with radtest:

radtest <username> <password> <host> 10 <secret>
radtest admin admin localhost 10 testing123

A successful authentication will return similar output:

Sent Access-Request Id 215 from 0.0.0.0:34869 to 127.0.0.1:1812 length 75
 User-Name = "admin"
 User-Password = "admin"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "admin"
Received Access-Accept Id 215 from 127.0.0.1:1812 to 0.0.0.0:0 length 20

While an unsuccessful one will look like the following:

Sent Access-Request Id 85 from 0.0.0.0:51665 to 127.0.0.1:1812 length 73
 User-Name = "foo"
 User-Password = "bar"
 NAS-IP-Address = 127.0.0.1
 NAS-Port = 10
 Message-Authenticator = 0x00
 Cleartext-Password = "bar"
Received Access-Reject Id 85 from 127.0.0.1:1812 to 0.0.0.0:0 length 20
(0) -: Expected Access-Accept got Access-Reject

Alternatively, you can use radclient which allows more complex tests; in the following example we show how to
test an authentication request which includes Called-Station-ID and Calling-Station-ID:

Modules

342

user="foo"
pass="bar"
called="00-11-22-33-44-55:localhost"
calling="00:11:22:33:44:55"
request="User-Name=$user,User-Password=$pass,Called-Station-ID=$called,Calling-Station-ID=$calling"
echo $request | radclient localhost auth testing123

Testing accounting

You can do this with radclient, but first of all you will have to create a text file like the following one:

/tmp/accounting.txt

Acct-Session-Id = "35000006"
User-Name = "jim"
NAS-IP-Address = 172.16.64.91
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Interim-Update
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 172.16.64.25
Acct-Delay-Time = 0
Acct-Session-Time = 261
Acct-Input-Octets = 9900909
Acct-Output-Octets = 10101010101
Called-Station-Id = 00-27-22-F3-FA-F1:hostname
Calling-Station-Id = 5c:7d:c1:72:a7:3b

Then you can call radclient:

radclient -f /tmp/accounting.txt -x 127.0.0.1 acct testing123

You should get the following output:

Sent Accounting-Request Id 83 from 0.0.0.0:51698 to 127.0.0.1:1813 length 154
 Acct-Session-Id = "35000006"
 User-Name = "jim"
 NAS-IP-Address = 172.16.64.91
 NAS-Port = 1
 NAS-Port-Type = Async
 Acct-Status-Type = Interim-Update
 Acct-Authentic = RADIUS
 Service-Type = Login-User
 Login-Service = Telnet
 Login-IP-Host = 172.16.64.25
 Acct-Delay-Time = 0
 Acct-Session-Time = 261
 Acct-Input-Octets = 9900909
 Acct-Output-Octets = 1511075509
 Called-Station-Id = "00-27-22-F3-FA-F1:hostname"
 Calling-Station-Id = "5c:7d:c1:72:a7:3b"
Received Accounting-Response Id 83 from 127.0.0.1:1813 to 0.0.0.0:0 length 20

Customizing your configuration

You can further customize your freeradius configuration and exploit the many features of freeradius but you will need
to test how your configuration plays with openwisp-radius.

Modules

343

Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication

This guide explains how to install and configure freeradius 3 in order to make it work with OpenWISP RADIUS for
WPA Enterprise EAP-TTLS-PAP authentication.

The setup will allow users to authenticate via WiFi WPA Enterprise networks using their personal username and
password of their django user accounts. Users can either be created manually via the admin interface, generated,
imported from CSV, or can self register through a web page which makes use of the registration REST API (like
OpenWISP WiFi Login Pages).

Prerequisites

Execute the steps explained in the following sections of the freeradius guide for captive portal authentication:

• How to install freeradius 3

• Enable the configured modules

• Configure the REST module

Then proceed with the rest of the document.

Freeradius configuration

Configure the sites

Main sites

In this scenario it is necessary to set up one FreeRADIUS site for each organization you want to support, each
FreeRADIUS instance will therefore need two dedicated ports, one for authentication and one for accounting and a
related inner tunnel configuration.

Let's create the site for an hypothetical organization called org-A.

Don't forget to substitute the occurrences of <org_uuid> and <org_radius_api_token> with the UUID &
Radius API token of each organization, refer to the section Organization UUID & RADIUS API Token for finding
these values.

/etc/freeradius/sites-enabled/org_a

server org_a {
 listen {
 type = auth
 ipaddr = *
 # ensure each org has its own port
 port = 1812
 # adjust these as needed
 limit {
 max_connections = 16
 lifetime = 0
 idle_timeout = 30
 }
 }

 listen {
 ipaddr = *
 # ensure each org has its own port
 port = 1813
 type = acct
 limit {}
 }

Modules

344

https://freeradius.org

 # IPv6 configuration skipped for brevity
 # consult the freeradius default configuration if you need
 # to add the IPv6 configuration

 # Substitute the following variables with
 # the organization UUID and RADIUS API Token
 api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 eap-org_a {
 ok = return
 }

 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }

 authenticate {
 Auth-Type eap-org_a {
 eap-org_a
 }
 }

 post-auth {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 Post-Auth-Type REJECT {
 update control { &REST-HTTP-Header += "${....api_token_header}" }
 rest
 }
 }

 accounting {
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest
 }
}

Please also ensure that acct_unique is present in the pre-accounting section:

preacct {
 # ...
 acct_unique
 # ...
}

Inner tunnels

You will need to set up one inner tunnel for each organization too.

Following the example for a hypothetical organization named org-A:

/etc/freeradius/sites-enabled/inner-tunnel

server inner-tunnel_org_a {
 listen {
 ipaddr = 127.0.0.1
 # each org will need a dedicated port for their inner tunnel
 port = 18120
 type = auth

Modules

345

 }

 api_token_header = "Authorization: Bearer <org_uuid> <org_radius_api_token>"

 authorize {
 filter_username
 update control { &REST-HTTP-Header += "${...api_token_header}" }
 rest

 eap-org_a {
 ok = return
 }

 expiration
 logintime

 pap
 }

 authenticate {
 Auth-Type PAP {
 pap
 }

 Auth-Type CHAP {
 chap
 }

 Auth-Type MS-CHAP {
 mschap
 }
 eap-org_a
 }

 session {}

 post-auth {
 }

 pre-proxy {}
 post-proxy {
 eap-org_a
 }
}

Configure the EAP modules

Note

Keep in mind these are basic sample configurations, once you get it working feel free to tweak it to make it more
secure and fully featured.

You will need to set up one EAP module instance for each organization too.

Following the example for a hypothetical organization named org-A:

Modules

346

eap eap-org_a {
 default_eap_type = ttls
 timer_expire = 60
 ignore_unknown_eap_types = no
 cisco_accounting_username_bug = no
 max_sessions = ${max_requests}

 tls-config tls-common {
 # make sure to have a valid SSL certificate for production usage
 private_key_password = whatever
 private_key_file = /etc/ssl/private/ssl-cert-snakeoil.key
 certificate_file = /etc/ssl/certs/ssl-cert-snakeoil.pem
 ca_file = /etc/ssl/certs/ca-certificates.crt
 dh_file = ${certdir}/dh
 ca_path = ${cadir}
 cipher_list = "DEFAULT"
 cipher_server_preference = no
 ecdh_curve = "prime256v1"

 cache {
 enable = no
 }

 ocsp {
 enable = no
 override_cert_url = yes
 url = "http://127.0.0.1/ocsp/"
 }
 }

 ttls {
 tls = tls-common
 default_eap_type = pap
 copy_request_to_tunnel = yes
 use_tunneled_reply = yes
 virtual_server = "inner-tunnel_org_a"
 }
}

Repeating the steps for more organizations

Let's say you don't have only the hypothetical org-A in your system but more organizations, in that case you simply
have to repeat the steps explained in the previous sections, substituting the occurrences of org-A with the names of
the other organizations.

So if you have an organization named ACME Systems, copy the files and substitute the occurrences org_a with
acme_systems.

Final steps

Once the configurations are ready, you should restart freeradius and then test/troubleshoot/debug your setup.

Implementing other EAP scenarios

Implementing other setups like EAP-TLS requires additional development effort.

OpenWISP Controller already supports x509 certificates, so it would be a matter of integrating the django-x509
module into OpenWISP RADIUS and then implement mechanisms for the users to securely download their
certificates.

Modules

347

https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/django-x509

If you're interested in this feature, let us know via the support channels.

This module is also available in docker-openwisp although its usage is not recommended for production usage yet,
unless the reader is willing to invest effort in adapting the docker images and configurations to overcome any
roadblocks encountered.

WiFi Login Pages

Seealso

Source code: github.com/openwisp/openwisp-wifi-login-pages.

OpenWISP WiFi login pages provides unified and consistent user experience for public/private WiFi services. This
app replaces the classic captive/login page of a WiFi service by integrating the OpenWISP Radius API.

Refer to WiFi Login Pages: Features for a complete overview of features.

The following diagram illustrates the role of the WiFi Login Pages module within the OpenWISP architecture.

Modules

348

https://openwisp.org/support.html
https://github.com/openwisp/openwisp-wifi-login-pages
https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/login-desktop.png
../_images/architecture-v2-wifi-login-pages.png

OpenWISP Architecture: highlighted wifi login pages module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

WiFi Login Pages: Features

OpenWISP WiFi login pages offers the following features:

• Mobile first design (responsive UI)

• Sign up

• Optional support for mobile phone verification: verify phone number by inserting token sent via SMS, resend the
SMS token

• Login to the WiFi service (by getting a radius user token from OpenWISP Radius and sending a POST to the
captive portal login URL behind the scenes)

• Session status information

• Logout from the WiFi service (by sending a POST to the captive portal logout URL behind the scenes)

• Change password

• Reset password (password forgot)

• Support for Social Login and SAML

• Optional social login buttons (Facebook, Google, X/Twitter)

• Contact box showing the support email and/or phone number, as well as additional links specified via
configuration

• Navigation menu (header and footer) with the possibility of specifying if links should be shown to every user or
only authenticated or unauthenticated users

• Support for multiple organizations with the possibility of customizing the theme via CSS for each organization

• Support for multiple languages

• Possibility to change any text used in the pages

• Configurable Terms of Services and Privacy Policy for each organization

• Possibility of automatically logging in users who signed in previously (if the captive portal browser of their
operating system supports cookies)

• Support for credit/debit card verification and paid subscription plans

Screenshots

Modules

349

https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/login-desktop.png

Modules

350

https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/sign-up-desktop.png
https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/verify-mobile-phone-desktop.png
https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/login-mobile.png
https://raw.githubusercontent.com/openwisp/openwisp-wifi-login-pages/media/docs/signup-mobile.png

Setup

Important

It is recommended to use the ansible-openwisp-wifi-login-pages for deploying OpenWISP WiFi Login Pages for
production usage.

Add Organization configuration 351

Removing Sections of Configuration 352

Variants of the Same Configuration 352

Variant with Different Organization Slug / UUID / Secret 353

Support for Old Browsers 353

Configuring Sentry for Proxy Server 353

Supporting Realms (RADIUS Proxy) 354

Add Organization configuration

Before users can login and sign up, you need to create the configuration of the captive page for the related
OpenWISP organization. You can get the organization uuid, slug and radius_secret from the organization's
admin in OpenWISP. After this, execute the following command:

yarn add-org

This command will present a series of interactive questions which make it easier for users to configure the
application for their use case. It will prompt you to fill properties listed in the following table:

Property Description

name Required. Name of the organization.

slug Required. Slug of the organization.

uuid Required. UUID of the organization.

secret_key Required. Token from organization radius settings.

captive portal login URL Required. Captive portal login action URL

captive portal logout URL Required. Captive portal logout action URL

openwisp radius URL Required. URL to openwisp-radius.

Once all the questions are answered, the script will create a new directory, e.g.:

/organizations/{orgSlug}/
/organizations/{orgSlug}/client_assets/
/organizations/{orgSlug}/server_assets/
/organizations/{orgSlug}/{orgSlug}.yml

The client_assets directory shall contain static files like CSS, images, etc.. The server_assets directory is
used for loading the content of Terms of Service and Privacy Policy. You can copy the desired files to these
directories.

Note

The configuration of new organizations is generated from the template present in
/internals/generators/config.yml.hbs.

Modules

351

https://github.com/openwisp/ansible-openwisp-wifi-login-pages

The default configuration is stored at /internals/config/default.yml. If the configuration file of a specific
organization misses a piece of configuration, then the default configuration is used to generate a complete
configuration.

Use the following commands to start the project:

yarn setup
yarn start

If you need to change these values or any other settings later, you can edit the YAML file generated in the
/organizations directory and rebuild the project.

Removing Sections of Configuration

To remove a specific section of the configuration, the null keyword can be used, this way the specific section
flagged as null will be removed during the build process.

For example, to remove social login links:

login_form:
 social_login:
 links: null

Note

Do not delete or edit default configuration (/internals/config/default.yml) as it is required to build and
compile organization configurations.

Variants of the Same Configuration

In some cases it may be needed to have different variants of the same design but with different logos, or slightly
different colors, wording and so on, but all these variants would be tied to the same service.

In this case it's possible to create new YAML configuration files (e.g.: variant1.yml, variant2.yml) in the
directory /organizations/{orgSlug}/, and specify only the configuration keys which differ from the parent
configuration.

Example variant of the default organization:

name: "Variant1"
client:
 components:
 header:
 logo:
 url: "variant1-logo.svg"
 alternate_text: "variant1"

The configuration above has very little differences with the parent configuration: the name and logo are different, the
rest is inherited from the parent organization.

Following example, the contents above should be placed in /organizations/default/variant1.yml and
once the server is started again this new variant will be visible at
http://localhost:8080/default-variant1.

It's possible to create multiple variants of different organizations, by making sure default is replaced with the actual
organization slug that is being used.

Modules

352

And of course it's possible to customize more than just the name and logo, the example above has been kept short
for brevity.

Note

If a variant defines a configuration option which contains an array/list of objects (e.g.: menu links), the array/list
defined in the variant always overwrites fully what is defined in the parent configuration file.

Variant with Different Organization Slug / UUID / Secret

In some cases, different organizations may share an identical configuration, with very minor differences. Variants can
be used also in these cases to minimize maintenance efforts.

The important thing to keep in mind is that the organization slug, uuid, secret_key need to be reset in the
configuration file:

Example:

name: "<organization_name>"
slug: "<organization_slug>"
server:
 uuid: "<organization_uuid>"
 secret_key: "<organization_secret_key>"
client:
 css:
 - "index.css"
 - "<org-css-if-needed>"
 components:
 header:
 logo:
 url: "org-logo.svg"
 alternate_text: "..."

Support for Old Browsers

Polyfills are used to support old browsers on different platforms. It is recommended to add cdnjs.cloudflare.com to
the allowed hostnames (walled garden) of the captive portal, otherwise the application will not be able to load in old
browsers.

Configuring Sentry for Proxy Server

You can enable sentry logging for the proxy server by adding sentry-env.json in the root folder. The
sentry-env.json file should contain configuration as following:

{
 ...
 "sentryTransportLogger": {
 // These options are passed to sentry SDK. Read more about available
 // options at https://github.com/aandrewww/winston-transport-sentry-node#sentry-common-options
 "sentry": {
 "dsn": "https://examplePublicKey@o0.ingest.sentry.io/0"
 },
 // Following options are related to Winston's SentryTransport. You can read
 // more at https://github.com/aandrewww/winston-transport-sentry-node#transport-related-options
 "level": "warn",
 "levelsMap": {

Modules

353

 "silly": "debug",
 "verbose": "debug",
 "info": "info",
 "debug": "debug",
 "warn": "warning",
 "error": "error"
 }
 }
 ...
}

You can take reference from sentry-env.sample.json

Supporting Realms (RADIUS Proxy)

To enable support for realms, set radius_realms to true as in the example below:

name: "default name"
slug: "default"

settings:
 radius_realms: true

When support for radius_realms is true and the username inserted in the username field by the user includes an
@ sign, the login page will submit the credentials directly to the URL specified in captive_portal_login_form,
hence bypassing this app altogether.

Keep in mind that in this use case, since users are basically authenticating against databases stored in other sources
foreign to OpenWISP but trusted by the RADIUS configuration, the wifi-login-pages app stops making any sense,
because users are registered elsewhere, do not have a local account on OpenWISP, therefore won't be able to
authenticate nor change their personal details via the OpenWISP RADIUS API and this app.

Allowing Users to Manage Account from the Internet

The authentication flow might hang if a user tries to access their account from the public internet (without connecting
to the WiFi service). It occurs because the OpenWISP WiFi Login Page waits for a response from the captive portal,
which is usually inaccessible from the public internet. If your infrastructure has such a configuration then, follow the
below instructions to avoid hanging of authentication flow.

Create a small web application which can serve the endpoints entered in captive_portal_login_form.action
and captive_portal_logout_form.action of organization configuration.

The web application should serve the following HTML on those endpoints:

<!DOCTYPE html>
<html>
 <body>
 <script>
 window.parent.postMessage(
 {type: "internet-mode"},
 "https://wifi-login-pages.example.com/",
);
 </script>
 </body>
</html>

Modules

354

https://github.com/openwisp/openwisp-wifi-login-pages/blob/master/sentry-env.sample.json

Note

Replace https://wifi-login-pages.example.com/ with origin of your OpenWISP WiFi Login Pages
service.

Assign a dedicated DNS name to be used by both systems: the captive portal and the web application which
simulates it. Then configure your captive portal to resolve this DNS name to its IP, while the public DNS resolution
should point to the mock app just created. This way captive portal login and logout requests will not hang, allowing
users to view/modify their account data also from the public internet.

Translations

Translations are loaded at runtime from the JSON files that were compiled during the build process according to the
available languages defined and taking into account any customization of the translations.
Defining Available Languages 355

Add Translations 355

Update Translations 355

Customizing Translations for a Specific Language 356

Customizing Translations for a Specific Organization and Language 356

Defining Available Languages

If there is more than one language in i18n/ directory then update the organization configuration file by adding the
support for that language like this:

default_language: "en"
languages:
 - text: "English"
 slug: "en"
 - text: "Italian"
 slug: "it"

Add Translations

Translation file with content headers can be created by running:

yarn translations-add {language_code} i18n/{file_name}.po

Here file_name can be {orgSlug}_{language_code}.custom.po, {language_code}.custom.po\ or
{language_code}.po.

The files created with the command above are mostly empty because when adding custom translations it is not
needed to extract all the message identifiers from the code.

If instead you are adding support to a new language or updating the translations after having changed the code, you
will need to extract the message identifiers, see update-translations for more information.

Update Translations

To extract or update translations in the .po file, use the following command:

yarn translations-update <path-to-po-file>

This will extract all the translations tags from the code and update .po file passed as argument.

Modules

355

Customizing Translations for a Specific Language

Create a translation file with name {language_code}.custom.po by running:
yarn translations-add <language-code> i18n/{language_code}.custom.po

Now to override the translation placeholders (msgid) add the msgstr in the newly generated file for that specific
msgid:

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Plural-Forms: nplurals = 2; plural = (n != 1);\n"
"Language: en\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"

msgid "FORGOT_PASSWORD"
msgstr "Forgot password? Reset password"

During the build process customized language files will override all the msgid defined in the default language files.

Note

The custom files need not be duplicates of the default file i.e. translations can be defined for custom strings (i.e.
msgid and msgstr).

Customizing Translations for a Specific Organization and Language

Create a translation file with name {orgSlug}_{language_code}.custom.po by running: yarn
translations-add <language-code> i18n/{orgSlug}_{language_code}.custom.po

To override the translation placeholders (msgid) add the msgstr in the newly generated file for that specific msgid:

msgid ""
msgstr ""
"Content-Type: text/plain; charset=UTF-8\n"
"Plural-Forms: nplurals = 2; plural = (n != 1);\n"
"Language: en\n"
"MIME-Version: 1.0\n"
"Content-Transfer-Encoding: 8bit\n"

msgid "PHONE_LBL"
msgstr "mobile phone number (verification needed)"

During the build process custom organization language file will be used to create a JSON translation file used by that
specific organization.

Note

Do not remove the content headers from the .po files as it is needed during the build process.

Handling Captive Portal / RADIUS Errors

This app can handle errors that may encountered during the authentication process (e.g.: maximum available
daily/monthly time or bandwidth have been consumed).

Modules

356

To use this feature, you will have to update the error page of your captive portal to use postMessage for forwarding
any error message to OpenWISP WiFi Login Pages.

Here is an example of authentication error page for pfSense:

<!DOCTYPE html>
<html>
 <body>
 <script>
 window.parent.postMessage(
 {type: "authError", message: "$PORTAL_MESSAGE$"},
 "https://wifi-login-pages.example.com/",
);
 </script>
 </body>
</html>

Note

Replace https://wifi-login-pages.example.com/ with origin of your OpenWISP WiFi Login Pages
service.

With the right configuration, the error messages coming from freeradius or the captive portal will be visible to users
on OpenWISP WiFi Login Pages.

Loading Extra JavaScript Files

It is possible to load extra javascript files, which may be needed for different reasons like error monitoring (Sentry),
analytics (Matomo, Google analytics), etc.

It's possible to accomplish this in two ways which are explained below.

1. Loading Extra JavaScript Files for Whole Application (All Organizations)

Place the javascript files in organizations/js directory and it will be injected in HTML during the webpack build
process for all the organizations.

These scripts are loaded before all the other Javascript code is loaded. This is done on purpose to ensure that any
error monitoring code is loaded before everything else.

This feature should be used only for critical custom Javascript code.

2. Loading Extra JavaScript Files for a Specific Organization

Add the names of the extra javascript files in organization configuration. Example:

client:
 js:
 - "matomo-script.js"
 - "google-analytics.js"

Make sure that all these extra javascript files are be present in the
organizations/<org-slug>/client_assets directory.

These scripts are loaded only after the rest of the page has finished loading.

This feature can be used to load non-critical custom Javascript code.

Modules

357

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

Settings

The main settings available in the organization YAML file are explained below.
Captive Portal Settings 358

Menu Items 359

User Fields in Registration Form 360

Username Field in Login Form 361

Configuring Social Login 361

Custom CSS Files 361

Custom HTML 361

Sticky Message 362

Configuring SAML Login & Logout 363

TOS & Privacy Policy 363

Configuring Logging 363

Mocking Captive Portal Login and Logout 363

Sign Up with Payment Flow 364

Captive Portal Settings

captive_portal_login_form

This configuration section allows you to configure the hidden HTML form that submits the username, password, and
any other required parameters to the captive portal to authenticate the user, after the credentials have been first
verified via the OpenWISP REST API.

Let's take the following configuration sample for reference:

captive_portal_login_form:
 method: post
 action: https://captiveportal.wifiservice.com:8080/login/
 fields:
 username: username_field
 password: password_field
 additional_fields:
 - name: field1
 value: value1
 - name: field2
 value: value2

The example above will result in a HTML form like the following:

<form method="post" action="https://captiveportal.wifiservice.com:8080/login/">
 <input type="text" name="username_field" />
 <input type="password" name="password_field" />
 <input type="hidden" name="field1" value="value1" />
 <input type="hidden" name="field2" value="value2" />
</form>

You can adjust any parameter based on the expectations of the captive portal: most captive portal programs expect
POST requests, although some may also accept GET. The input names for username and password may vary and
will likely require customization.

For instance, PfSense expects auth_user and auth_pass, while Coova-Chilli expects username and password.

The additional_fields section allows you to specify any additional fields required by the captive portal. For
instance, with PfSense, you need to include an extra field called zone, because PfSense allows defining multiple
“Captive Portal Zones” with different configurations.

Modules

358

If you don't require any additional fields, simply set this section to an empty array [], e.g.:

additional_fields: []

captive_portal_logout_form

This configuration section allows you to configure captive portal logout mechanism that allows users to close their
browsing session.

Let's take the following configuration sample for reference:

captive_portal_logout_form:
 method: post
 action: https://captiveportal.wifiservice.com:8080/logout/
 fields:
 id: logout_id
 additional_fields:
 - name: field1
 value: value1
 - name: field2
 value: value2

The example above will result in a HTML form like the following:

<form method="post" action="https://captiveportal.wifiservice.com:8080/logout/">
 <input type="text" name="logout_id" value="{{ session_id }}" />
 <input type="hidden" name="field1" value="value1" />
 <input type="hidden" name="field2" value="value2" />
</form>

In the example above, {{ session_id }} represents the ID of the RADIUS session. This value is provided by
WiFi Login Pages and retrieved via the OpenWISP RADIUS REST API. Some captive portals, like PfSense, require
this information to complete the logout process successfully.

You can adjust any other parameter based on the expectations of the captive portal: most captive portal programs
expect POST requests, although some may also accept GET.

additional_fields: []

Menu Items

By default, menu items are visible to any user, but it's possible to configure some items to be visible only to
authenticated users, unauthenticated users, verified users, unverified users or users registered with specific
registration methods by specifying the authenticated, verified, methods_only and methods_excluded
properties.

• authenticated: true means visible only to authenticated users.

• authenticated: false means visible only to unauthenticated users.

• verified: true means visible to authenticated and verified users.

• verified: false means visible to only authenticated and unverified users.

• methods_only: ["mobile_phone"] means visible only to users registered with mobile phone verification.

• methods_excluded: ["saml", "social_login"] means not visible to users which sign in using SAML
and social login.

• unspecified: link will be visible to any user (default behavior)

Let us consider the following configuration for the header, footer and contact components:

components:
 header:
 links:
 - text:

Modules

359

 en: "about"
 url: "/about"
 - text:
 en: "sign up"
 url: "/default/registration"
 authenticated: false
 - text:
 en: "change password"
 url: "/change-password"
 authenticated: true
 # if organization supports any verification method
 verified: true
 methods_excluded:
 - saml
 - social_login
 # if organization supports mobile verification
 - text:
 en: "change phone number"
 url: "/mobile/change-phone-number"
 authenticated: true
 methods_only:
 - mobile_phone
 footer:
 links:
 - text:
 en: "about"
 url: "/about"
 - text:
 en: "status"
 url: "/status"
 authenticated: true
 contact_page:
 social_links:
 - text:
 en: "support"
 url: "/support"
 - text:
 en: "twitter"
 url: "https://twitter.com/openwisp"
 authenticated: true

With the configuration above:

• support (from Contact) and about (from Header and Footer) links will be visible to any user.

• sign up (from Header) link will be visible to only unauthenticated users.

• the link to twitter (from Contact) and change password (from Header) links will be visible to only
authenticated users

• change password will not be visible to users which sign in with social login or single sign-on (SAML)

• change mobile phone number will only be visible to users which have signed up with mobile phone verification

Notes:

• methods_only and methods_excluded only make sense for links which are visible to authenticated users

• using both methods_excluded and methods_only on the same link does not make sense

User Fields in Registration Form

The setting attribute of the fields first_name, last_name, location and birth_date can be used to
indicate whether the fields shall be disabled (the default setting), allowed but not required or required.

Modules

360

The setting option can take any of the following values:

• disabled: (the default value) fields with this setting won't be shown.

• allowed: fields with this setting are shown but not required.

• mandatory: fields with this setting are shown and required.

Keep in mind that this configuration must mirror the configuration of openwisp-radius
(OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS).

Username Field in Login Form

The username field in the login form is automatically set to either a phone number input or an email text input
depending on whether mobile_phone_verification is enabled or not.

However, it is possible to force the use of a standard text field if needed, for example, we may need to configure the
username field to accept any value so that the OpenWISP Users Authentication Backend can then figure out if the
value passed is a phone number, an email or a username:

login_form:
 input_fields:
 username:
 auto_switch_phone_input: false
 type: "text"
 pattern: null

Configuring Social Login

In order to enable users to log via third-party services like Google and Facebook, the Social Login feature of
OpenWISP Radius must be configured and enabled.

Custom CSS Files

It's possible to specify multiple CSS files if needed.

client:
 css:
 - "index.css"
 - "custom.css"

Adding multiple CSS files can be useful when working with variants.

Custom HTML

It is possible to inject custom HTML in different languages in several parts of the application if needed.

Second Logo

header:
 logo:
 url: "logo1.png"
 alternate_text: "logo1"
 second_logo:
 url: "logo2.png"
 alternate_text: "logo2"

Modules

361

Sticky Message

header:
 sticky_html:
 en: >
 <p class="announcement">
 This site will go in schedule maintenance
 tonight (10pm - 11pm)
 </p>

Login Page

login_form:
 intro_html:
 en: >
 <div class="pre">
 Shown before the main content in the login page.
 </div>
 pre_html:
 en: >
 <div class="intro">
 Shown at the beginning of the login content box.
 </div>
 help_html:
 en: >
 <div class="intro">
 Shown above the login form, after social login buttons.
 Can be used to write custom help labels.
 </div>
 after_html:
 en: >
 <div class="intro">
 Shown at the end of the login content box.
 </div>

Contact Box

contact_page:
 pre_html:
 en: >
 <div class="contact">
 Shown at the beginning of the contact box.
 </div>
 after_html:
 en: >
 <div class="contact">
 Shown at the end of the contact box.
 </div>

Modules

362

Footer

footer:
 after_html:
 en: >
 <div class="contact">
 Shown at the bottom of the footer.
 Can be used to display copyright information, links to cookie policy, etc.
 </div>

Configuring SAML Login & Logout

To enable SAML login, the SAML feature of OpenWISP RADIUS must be enabled.

The only additional configuration needed is saml_logout_url, which is needed to perform SAML logout.

status_page:
 # other conf
 saml_logout_url: "https://openwisp.myservice.org/radius/saml2/logout/"

TOS & Privacy Policy

The terms of services and privacy policy pages are generated from markdown files which are specified in the YAML
configuration.

The markdown files specified in the YAML configuration should be placed in:
/organizations/{orgSlug}/server_assets/.

Configuring Logging

There are certain environment variables used to configure server logging. The details of environment variables to
configure logging are mentioned below:

Environment Variable Detail

LOG_LEVEL (optional) This can be used to set the level of logging. The available values are
error, warn, info, http, verbose, debug and silly. By default log level is
set to warn for production.

ALL_LOG_FILE (optional) To configure the path of the log file for all logs. The default path is
logs/all.log

ERROR_LOG_FILE (optional) To configure the path of the log file for error logs. The default path is
logs/error.log

WARN_LOG_FILE (optional) To configure the path of the log file for warn logs. The default path is
logs/warn.log

INFO_LOG_FILE (optional) To configure the path of the log file for info logs. The default path is
logs/info.log

HTTP_LOG_FILE (optional) To configure the path of the log file for http logs. The default path is
logs/http.log

DEBUG_LOG_FILE (optional) To configure the path of the log file for http logs. The default path is
logs/debug.log

Mocking Captive Portal Login and Logout

During the development stage, the captive portal login and logout operations can be mocked by using the
OpenWISP RADIUS captive portal mock views.

Modules

363

These URLs from OpenWISP RADIUS will be used by default in the development environment. The captive portal
login and logout URLs and their parameters can be changed by editing the YAML configuration file of the respective
organization.

Sign Up with Payment Flow

This application supports sign up with payment flows, either a one time payment, a free debit/credit card transaction
for identity verification purposes or a subscription with periodic payments.

In order to work, this feature needs the premium OpenWISP Subscriptions module (get in touch with commercial
support for more information).

Once the module mentioned above is installed and configured, in order to enable this feature, just create a new
organization with the yarn run add-org command and answer yes to the following question:

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP WiFi Login Pages, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• OpenWISP WiFi Login Pages User Docs

• Deploy OpenWISP WiFi Login Pages for production

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP WiFi Login Pages, whether for bug
fixes, new features, or contributions.

For user guides and general information, please see:

• OpenWISP WiFi Login Pages User Docs

• Deploy OpenWISP WiFi Login Pages for production

Dependencies 364

Prerequisites 365

Installing for Development 365

Running Automated Browser Tests 365

Dependencies

• NodeJs >= 20.9.0

• NPM - Node package manager >= 10.1.0

• yarn - Yarn package manager >= 1.19.1

Modules

364

https://openwisp.org/support.html
https://openwisp.org/support.html
https://github.com/openwisp/ansible-openwisp-wifi-login-pages/
https://github.com/openwisp/ansible-openwisp-wifi-login-pages/
https://nodejs.org/en/
https://npmjs.org/
https://yarnpkg.com/

Prerequisites

OpenWISP RADIUS

OpenWISP WiFi Login Pages is a frontend for OpenWISP RADIUS. In order to use it, this app needs a running
instance of OpenWISP RADIUS and an organization correctly configured, you can obtain this by following these
steps:

• Follow the instructions to install OpenWISP RADIUS for development.

• After successfully starting the OpenWISP RADIUS server, open a browser and visit:
http://localhost:8000/admin/, then sign in with the credentials of the superuser we created during
the installation of openwisp-radius.

• Visit the change page of the organization you want to add to this module and note down the following
parameters: name, slug, uuid and token (from the Organization RADIUS Settings).

Installing for Development

Fork and clone the forked repository:

git clone https://github.com/<your_fork>/openwisp-wifi-login-pages.git

Navigate into the cloned repository:

cd openwisp-wifi-login-pages

Install the dependencies:

yarn

Launch development server:

yarn start

You can access the application at http://localhost:8080/default/login/

Run tests with:

yarn test # headless tests

Running Automated Browser Tests

Prerequisites for running browser tests:

1. Gecko driver needs to be installed.

2. Having running instances of openwisp-radius and openwisp-wifi-login-pages is required.

3. OPENWIPS_RADIUS_PATH environment variable is needed to setup/tear down the database needed to run the
browser tests. This can be set using the following command:

export OPENWISP_RADIUS_PATH=<PATH_TO_OPENWISP_RADIUS_DIRECTORY>

4. If a virtual environment is used to run openwisp-radius then this needs to be activated before running browser
tests.

5. Configuration file of mobile organization is needed before running yarn start. mobile organization can be
created by running:

node browser-test/create-mobile-configuration.js

6. In the test environment of openwisp-radius, the default organization must be present.

After doing all the prerequisites, you need to make sure OpenWISP RADIUS is running:

cd $OPENWISP_RADIUS_PATH
enable python virtual environment if needed
./manage.py runserver

Modules

365

http://localhost:8080/default/login/
https://github.com/mozilla/geckodriver/releases/

Then, in another terminal, from the root directory of this repository, you need to build this app and serve it:

yarn build-dev
yarn start

Then, in another terminal, from the root directory of this repository, you can finally run the browser based tests:

export OPENWISP_RADIUS_PATH=<PATH_TO_OPENWISP_RADIUS_DIRECTORY>
enable python virtual environment if needed
yarn browser-test

Usage

Yarn Commands 366

Using Custom Ports 366

Running webpack-bundle-analyzer 366

Yarn Commands

List of yarn commands:

$ yarn start # Run the app (runs both, client and server)
$ yarn setup # Discover Organization configs and generate config.json and asset directories
$ yarn add-org # Add new Organization configuration
$ yarn build # Build the app
$ yarn server # Run server
$ yarn client # Run client
$ yarn coveralls # Run coveralls
$ yarn coverage # Run tests and generate coverage files
$ yarn lint # Run ESLint
$ yarn lint:fix # Run ESLint with automatically fix problems option
$ yarn format # Run formatters to format the code
$ yarn test # Run tests
$ yarn browser-test # Run browser based selenium tests
$ yarn -- -u # Update Jest Snapshots

Using Custom Ports

To start the client and/or server on a port of your liking, you must set environment variables before starting.

To run the client on port 4000 and the server on port 5000, use the following command:

$ CLIENT=4000 SERVER=5000 yarn start

You can also run the client and server commands separately:

$ SERVER=5000 yarn server

$ CLIENT=4000 SERVER=5000 yarn client

Note that you need to tell the client the server's port (unless you're using the default server port, which is 3030) so
the client knows where he can find the server.

Running webpack-bundle-analyzer

This tool helps to keep the size of the JS files produced by the app in check.

Run it with:

yarn stats

Modules

366

Other useful resources:

• Settings

Note

For a demonstration of how this module is used, please refer to the following demo tutorial: WiFi Hotspot, Captive
Portal (Public WiFi), Social Login.

IPAM

Seealso

Source code: github.com/openwisp/openwisp-ipam.

OpenWISP IPAM provides IP Address Management (IPAM) features, refer to IPAM: Features for a complete
overview. As a core dependency of the OpenWISP Controller, it facilitates the automatic provisioning of IP addresses
for VPNs such as Wireguard and Zerotier, and allows to implement the Subnet Division Rules feature.

In addition to its integration with the OpenWISP ecosystem, OpenWISP IPAM can be used as a standalone Django
app: developers proficient in Python and Django can leverage this module independently to enhance their projects,
for more details on this subject please refer to the developer documentation.

The following diagram illustrates the role of the IPAM module within the OpenWISP architecture.

Modules

367

https://github.com/openwisp/openwisp-ipam
https://github.com/openwisp/openwisp-ipam/raw/docs/docs/subnet_demo.gif
../_images/architecture-v2-openwisp-ipam.png

OpenWISP Architecture: highlighted IPAM module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

IPAM: Features

OpenWISP IPAM provides the following capabilities:

• IPv4 and IPv6 IP address management

• IPv4 and IPv6 Subnet management

• CSV Import and Export of subnets and their IPs

• Automatic free space display for all subnets

• IP request module

• REST API for CRUD operations and main features

• Possibility to search for an IP or subnet

• Visual display for a specific subnet

Exporting and Importing Subnet

One can easily import and export Subnet data and it's Ip Addresses using openwisp-ipam. This works for both IPv4
and IPv6 types of networks.
Exporting 368

From Management Command 369

From Admin Interface 369

Importing 369

From Management Command 369

From Admin Interface 369

Exporting

Data can be exported via the admin interface or by using a management command. The exported data is in .csv file
format.

Modules

368

https://raw.githubusercontent.com/openwisp/openwisp-ipam/docs/docs/visual-display.png

From Management Command

./manage.py export_subnet <subnet value>

This would export the subnet if it exists on the database.

From Admin Interface

Data can be exported from the admin interface by just clicking on the export button on the subnet's admin change
view.

Importing

Data can be imported via the admin interface or by using a management command. The imported data file can be in
.csv and .xlsx format. While importing data for ip addresses, the system checks if the subnet specified in the import
file exists or not. If the subnet does not exists it will be created while importing data.

From Management Command

./manage.py import_subnet --file=<file path>

From Admin Interface

Data can be imported from the admin interface by just clicking on the import button on the subnet view.

Modules

369

CSV File Format

Follow the following structure while creating csv file to import data.

Subnet Name
Subnet Value
Organization Slug

ip_address,description
<ip-address>,<optional-description>
<ip-address>,<optional-description>
<ip-address>,<optional-description>

REST API

Live Documentation 370

Browsable Web Interface 371

Authentication 371

API Throttling 371

Pagination 371

List of Endpoints 371

Live Documentation

A general live API documentation (following the OpenAPI specification) is available at /api/v1/docs/.

Modules

370

https://raw.githubusercontent.com/openwisp/openwisp-ipam/docs/docs/api-docs.png

Browsable Web Interface

Additionally, opening any of the endpoints List of Endpoints directly in the browser will show the browsable API
interface of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

Authentication

See openwisp-users: Authenticating with the User Token.

When browsing the API via the Live Documentation or the Browsable Web Interface, you can also use the session
authentication by logging in the django admin.

API Throttling

To override the default API throttling settings, add the following to your settings.py file:

REST_FRAMEWORK = {
 "DEFAULT_THROTTLE_RATES": {
 "ipam": "100/hour",
 }
}

The rate descriptions used in DEFAULT_THROTTLE_RATES may include second, minute, hour or day as the
throttle period.

Pagination

All list endpoints support the page_size parameter that allows paginating the results in conjunction with the page
parameter.

GET /api/v1/<api endpoint url>/?page_size=10
GET /api/v1/<api endpoint url>/?page_size=10&page=2

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
endpoint, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

Modules

371

https://raw.githubusercontent.com/openwisp/openwisp-ipam/docs/docs/api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

Get Next Available IP

Fetch the next available IP address under a specific subnet.

GET

Returns the next available IP address under a subnet.

/api/v1/ipam/subnet/<subnet_id>/get-next-available-ip/

Request IP

A model method to create and fetch the next available IP address record under a subnet.

POST

Creates a record for next available IP address and returns JSON data of that record.

POST /api/v1/ipam/subnet/<subnet_id>/request-ip/

Param Description

description Optional description for the IP address

Response

{
 "ip_address": "ip_address",
 "subnet": "subnet_uuid",
 "description": "optional description"
}

Subnet IP Address List/Create

An api endpoint to retrieve or create IP addresses under a specific subnet.

GET

Returns the list of IP addresses under a particular subnet.

/api/v1/ipam/subnet/<subnet_id>/ip-address/

POST

Create a new IP Address.

/api/v1/ipam/subnet/<subnet_id>/ip-address/

Param Description

ip_address IPv6/IPv4 address value

subnet Subnet UUID

description Optional description for the IP address

Modules

372

Subnet List/Create

An api endpoint to create or retrieve the list of subnet instances.

GET

Returns the list of Subnet instances.

/api/v1/ipam/subnet/

POST

Create a new Subnet.

/api/v1/ipam/subnet/

Param Description

subnet Subnet value in CIDR format

master_subnet Master Subnet UUID

description Optional description for the IP address

Subnet Detail

An api endpoint for retrieving, updating or deleting a subnet instance.

GET

Get details of a Subnet instance

/api/v1/ipam/subnet/<subnet-id>/

DELETE

Delete a Subnet instance

/api/v1/ipam/subnet/<subnet-id>/

PUT

Update details of a Subnet instance.

/api/v1/ipam/subnet/<subnet-id>/

Param Description

subnet Subnet value in CIDR format

master_subnet Master Subnet UUID

description Optional description for the IP address

IP Address Detail

An api endpoint for retrieving, updating or deleting a IP address instance.

Modules

373

GET

Get details of an IP address instance.

/api/v1/ipam/ip-address/<ip_address-id>/

DELETE

Delete an IP address instance.

/api/v1/ipam/ip-address/<ip_address-id>/

PUT

Update details of an IP address instance.

/api/v1/ipam/ip-address/<ip_address-id>/

Param Description

ip_address IPv6/IPv4 value

subnet Subnet UUID

description Optional description for the IP address

Export Subnet

View to export subnet data.

POST

/api/v1/ipam/subnet/<subnet-id>/export/

Import Subnet

View to import subnet data.

POST

/api/v1/ipam/import-subnet/

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP IPAM, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP IPAM Documentation

Modules

374

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP IPAM, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP IPAM Documentation

Installing for Development 375

Alternative Sources 375

Pypi 375

Github 376

Installing for Development

Install sqlite:

sudo apt-get install sqlite3 libsqlite3-dev openssl libssl-dev

Install your forked repo:

git clone git://github.com/<your_fork>/openwisp-ipam
cd openwisp-ipam/
pip install -e .

Install test requirements:

pip install -r requirements-test.txt

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

--parallel and --keepdb are optional but help to speed up the operation
./runtests.py --parallel --keepdb

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-ipam

Modules

375

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-ipam/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-ipam#egg=openwisp_ipam

Extending OpenWISP IPAM

Note

This page is for developers who want to customize or extend OpenWISP IPAM, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP IPAM Documentation

One of the core values of the OpenWISP project is Software Reusability, for this reason openwisp-ipam provides a
set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of openwisp-ipam, you need to perform the steps described in this
section.

When in doubt, the code in the test project and the sample app will serve you as source of truth: just replicate and
adapt that code to get a basic derivative of openwisp-ipam working.

If you want to add new users fields, please follow the tutorial to extend the openwisp-users. As an example, we have
extended openwisp-users to sample_users app and added a field social_security_number in the
sample_users/models.py.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your Custom Module 377

2. Install openwisp-ipam 377

3. Add EXTENDED_APPS 377

4. Add openwisp_utils.staticfiles.DependencyFinder 377

5. Add openwisp_utils.loaders.DependencyLoader 378

6. Inherit the AppConfig Class 378

7. Create your Custom Models 378

8. Add Swapper Configurations 379

9. Create Database Migrations 379

10. Create the Admin 379

1. Monkey Patching 379

2. Inheriting Admin Classes 379

Modules

376

https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/
https://github.com/openwisp/openwisp-ipam/blob/master/tests/openwisp2/sample_users/models.py

11. Create Root URL Configuration 380

12. Import the Automated Tests 380

Other Base Classes That Can be Inherited and Extended 380

1. Extending the API Views 380

1. Initialize your Custom Module

The first thing you need to do is to create a new django app which will contain your custom version of
openwisp-ipam.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call this django app myipam, but you can name it how you want:

django-admin startapp myipam

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add myipam to INSTALLED_APPS in your settings.py, ensuring also that openwisp_ipam has
been removed:

INSTALLED_APPS = [
 # ... other apps ...
 "openwisp_utils.admin_theme",
 # all-auth
 "django.contrib.sites",
 "allauth",
 "allauth.account",
 "allauth.socialaccount",
 # openwisp2 modules
 "openwisp_users",
 # 'myipam', <-- replace without your app-name here
 # admin
 "admin_auto_filters",
 "django.contrib.admin",
 # rest framework
 "rest_framework",
 # Other dependencies
 "reversion",
]

For more information about how to work with django projects and django apps, please refer to the django
documentation.

2. Install openwisp-ipam

Install (and add to the requirements of your project) the openwisp-ipam python package:

pip install openwisp-ipam

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ("openwisp_ipam",)

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

Modules

377

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://docs.djangoproject.com/en/dev/intro/tutorial01/

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py, but ensure it
comes before django.template.loaders.app_directories.Loader:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "openwisp_utils.loaders.DependencyLoader",
 "django.template.loaders.app_directories.Loader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig Class

Please refer to the following files in the sample app of the test project:

• sample_ipam/__init__.py.

• sample_ipam/apps.py.

You have to replicate and adapt that code in your project.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

7. Create your Custom Models

For the purpose of showing an example, we added a simple "details" field to the models of the sample app in the test
project.

You can add fields in a similar way in your models.py file.

Note

If you have questions about using, extending, or developing models, refer to the "Models" section of the Django
documentation.

Modules

378

https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/__init__.py
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/apps.py
https://docs.djangoproject.com/en/dev/ref/applications/
https://docs.djangoproject.com/en/dev/ref/applications/
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/models.py
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/

8. Add Swapper Configurations

Once you have created the models, add the following to your settings.py:

Setting models for swapper module
OPENWISP_IPAM_IPADDRESS_MODEL = "myipam.IpAddress"
OPENWISP_IPAM_SUBNET_MODEL = "myipam.Subnet"

Substitute myipam with the name you chose in step 1.

9. Create Database Migrations

Create and apply database migrations:

./manage.py makemigrations

./manage.py migrate

For more information, refer to the "Migrations" section in the django documentation.

10. Create the Admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

Note

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

1. Monkey Patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_ipam.admin import IpAddressAdmin, SubnetAdmin

SubnetAdmin.app_label = "sample_ipam"

2. Inheriting Admin Classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

from django.contrib import admin
from openwisp_ipam.admin import (
 IpAddressAdmin as BaseIpAddressAdmin,
 SubnetAdmin as BaseSubnetAdmin,
)
from swapper import load_model

IpAddress = load_model("openwisp_ipam", "IpAddress")
Subnet = load_model("openwisp_ipam", "Subnet")

admin.site.unregister(IpAddress)
admin.site.unregister(Subnet)

Modules

379

https://docs.djangoproject.com/en/dev/topics/migrations/
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/admin.py
https://docs.djangoproject.com/en/dev/ref/contrib/admin/
https://docs.djangoproject.com/en/dev/ref/contrib/admin/

@admin.register(IpAddress)
class IpAddressAdmin(BaseIpAddressAdmin):
 # add your changes here
 pass

@admin.register(Subnet)
class SubnetAdmin(BaseSubnetAdmin):
 app_label = "myipam"
 # add your changes here

Substitute myipam with the name you chose in step 1.

11. Create Root URL Configuration

from .sample_ipam import views as api_views
from openwisp_ipam.urls import get_urls

urlpatterns = [
 # ... other urls in your project ...
 # openwisp-ipam urls
 # path('', include(get_urls(api_views))) <-- Use only when changing API views (dicussed below)
 path("", include("openwisp_ipam.urls")),
]

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

12. Import the Automated Tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing features of
openwisp-ipam.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests of the sample app to find out how to do this.

You can then run tests with:

the --parallel flag is optional
./manage.py test --parallel myipam

Substitute myipam with the name you chose in step 1.

For more information about automated tests in django, please refer to "Testing in Django".

Other Base Classes That Can be Inherited and Extended

The following steps are not required and are intended for more advanced customization.

1. Extending the API Views

The API view classes can be extended into other django applications as well. Note that it is not required for
extending openwisp-ipam to your app and this change is required only if you plan to make changes to the API views.

Create a view file as done in views.py.

For more information about django views, please refer to the views section in the django documentation.

Modules

380

https://docs.djangoproject.com/en/dev/topics/http/urls/
https://docs.djangoproject.com/en/dev/topics/http/urls/
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/tests.py
https://docs.djangoproject.com/en/dev/topics/testing/
https://github.com/openwisp/openwisp-ipam/tree/master/tests/openwisp2/sample_ipam/views.py
https://docs.djangoproject.com/en/dev/topics/http/views/

Other useful resources:

• REST API

Notifications

Seealso

Source code: github.com/openwisp/openwisp-notifications.

OpenWISP Notifications is a versatile system designed to deliver email and web notifications. Its primary function is
to enable other OpenWISP modules to alert users about significant events occurring within their network. By
seamlessly integrating with various OpenWISP components, it ensures users are promptly informed about critical
updates and changes. This enhances the overall user experience by keeping network administrators aware and
responsive to important developments.

For a comprehensive overview of features, please refer to the Notifications: Features page.

The following diagram illustrates the role of the Notifications module within the OpenWISP architecture.

OpenWISP Architecture: highlighted notifications module

Modules

381

https://github.com/openwisp/openwisp-notifications
../_images/architecture-v2-openwisp-notifications.png

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Notifications: Features

OpenWISP Notifications offers a robust set of features to keep users informed about significant events in their
network. These features include:

• Sending Notifications

• Web Notifications

• Email Notifications

• Notification Types

• User notification preferences

• Silencing notifications for specific objects temporarily or permanently

• Automatic cleanup of old notifications

• Configurable host for API endpoints

Notification Types

generic_message 382

Properties of Notification Types 383

Defining message_template 384

OpenWISP Notifications allows defining notification types for recurring events. Think of a notification type as a
template for notifications.

generic_message

This module includes a notification type called generic_message.

This notification type is designed to deliver custom messages in the user interface for infrequent events or errors that
occur during background operations and cannot be communicated easily to the user in other ways.

These messages may require longer explanations and are therefore displayed in a dialog overlay, as shown in the
screenshot above. This notification type does not send emails.

The following code example demonstrates how to send a notification of this type:

Modules

382

https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/1.1/generic_message.png

from openwisp_notifications.signals import notify

notify.send(
 type="generic_message",
 level="error",
 message="An unexpected error happened!",
 sender=User.objects.first(),
 target=User.objects.last(),
 description="""Lorem Ipsum is simply dummy text
of the printing and typesetting industry.

Heading 3

Lorem Ipsum has been the industry's standard dummy text ever since the 1500s,
when an unknown printer took a galley of type and scrambled it to make a
type specimen book.

It has survived not only **five centuries**, but also the leap into
electronic typesetting, remaining essentially unchanged.

It was popularised in the 1960s with the release of Letraset sheets
containing Lorem Ipsum passages, and more recently with desktop publishing
software like Aldus PageMaker including versions of *Lorem Ipsum*.""",
)

Properties of Notification Types

The following properties can be configured for each notification type:

Property Description

level Sets level attribute of the notification.

verb Sets verb attribute of the notification.

verbose_name Sets display name of notification type.

message Sets message attribute of the notification.

email_subject Sets subject of the email notification.

message_template Path to file having template for message of the notification.

email_notification Sets preference for email notifications. Defaults to True.

web_notification Sets preference for web notifications. Defaults to True.

actor_link Overrides the default URL used for the actor object.
You can pass a static URL or a dotted path to a callable which returns the
object URL.

action_object_link Overrides the default URL used for the action object.
You can pass a static URL or a dotted path to a callable which returns the
object URL.

target_link Overrides the default URL used for the target object.
You can pass a static URL or a dotted path to a callable which returns the
object URL.

Modules

383

Note

It is recommended that a notification type configuration for recurring events contains either the message or
message_template properties. If both are present, message is given preference over message_template.

If you don't plan on using message or message_template, it may be better to use the existing
generic_message type. However, it's advised to do so only if the event being notified is infrequent.

The callable for actor_link, action_object_link and target_link should have the following signature:

def related_object_link_callable(notification, field, absolute_url=True):
 """
 notification: the notification object for which the URL will be created
 field: the related object field, any one of "actor", "action_object" or
 "target" field of the notification object
 absolute_url: boolean to flag if absolute URL should be returned
 """
 return "https://custom.domain.com/custom/url/"

Defining message_template

You can either extend default message template or write your own markdown formatted message template from
scratch. An example to extend default message template is shown below.

In templates/your_notifications/your_message_template.md
{% extends 'openwisp_notifications/default_message.md' %}
{% block body %}
 [{{ notification.target }}]({{ notification.target_link }}) has malfunctioned.
{% endblock body %}

You can access all attributes of the notification using notification variables in your message template as shown
above. Additional attributes actor_link, action_link and target_link are also available for providing
hyperlinks to respective object.

Important

After writing code for registering or unregistering notification types, it is recommended to run database migrations
to create notification settlings for these notification types.

Sending Notifications

The notify signal 384

Passing Extra Data to Notifications 385

The notify signal

Notifications can be created using the notify signal. Here's an example which uses the generic_message
notification type to alert users of an account being deactivated:

from django.contrib.auth import get_user_model
from swapper import load_model

from openwisp_notifications.signals import notify

Modules

384

User = get_user_model()
admin = User.objects.get(username="admin")
deactivated_user = User.objects.get(username="johndoe", is_active=False)

notify.send(
 sender=admin,
 type="generic_message",
 level="info",
 target=deactivated_user,
 message="{notification.actor} has deactivated {notification.target}",
)

The above snippet will send notifications to all superusers and organization administrators of the target object's
organization who have opted-in to receive notifications. If the target object is omitted or does not have an
organization, it will only send notifications to superusers.

You can override the recipients of the notification by passing the recipient keyword argument. The recipient
argument can be a:

• Group object

• A list or queryset of User objects

• A single User object

However, these users will only be notified if they have opted-in to receive notifications.

The complete syntax for notify is:

notify.send(
 actor,
 recipient,
 verb,
 action_object,
 target,
 level,
 description,
 **kwargs,
)

Since openwisp-notifications uses django-notifications under the hood, usage of the
notify signal has been kept unaffected to maintain consistency with django-notifications. You can learn
more about accepted parameters from django-notifications documentation.

The notify signal supports the following additional parameters:

Parameter Description

type Set values of other parameters based on registered notification types
Defaults to None meaning you need to provide other arguments.

email_subject Sets subject of email notification to be sent.
Defaults to the notification message.

url Adds a URL in the email text, e.g.:
For more information see <url>.
Defaults to None, meaning the above message would not be added to the email text.

Passing Extra Data to Notifications

If needed, additional data, not known beforehand, can be included in the notification message.

A perfect example for this case is an error notification, the error message will vary depending on what has happened,
so we cannot know until the notification is generated.

Here's how to do it:

Modules

385

https://github.com/django-notifications/django-notifications#generating-notifications

from openwisp_notifications.types import register_notification_type

register_notification_type(
 "error_type",
 {
 "verbose_name": "Error",
 "level": "error",
 "verb": "error",
 "message": "Error: {error}",
 "email_subject": "Error subject: {error}",
 },
)

Then in the application code:

from openwisp_notifications.signals import notify

try:
 operation_which_can_fail()
except Exception as error:
 notify.send(type="error_type", sender=sender, error=str(error))

Since the error_type notification type defined the notification message, you don't need to pass the message
argument in the notify signal. The message defined in the notification type will be used by the notification. The error
argument is used to set the value of the {error} placeholder in the notification message.

Web & Email Notifications

Web Notifications 386

Notification Widget 386

Notification Toasts 387

Email Notifications 387

Web Notifications

OpenWISP Notifications sends web notifications to recipients through Django's admin site. The following
components facilitate browsing web notifications:

Notification Widget

Modules

386

https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/notification-widget.gif

A JavaScript widget has been added to make consuming notifications easy for users. The notification widget
provides the following features:

• User Interface to help users complete tasks quickly.

• Dynamically loads notifications with infinite scrolling to prevent unnecessary network requests.

• Option to filter unread notifications.

• Option to mark all notifications as read with a single click.

Notification Toasts

Notification toast delivers notifications in real-time, allowing users to read notifications without opening the
notification widget. A notification bell sound is played each time a notification is displayed through the notification
toast.

Email Notifications

Along with web notifications OpenWISP Notifications also sends email notifications leveraging the send_email
feature of OpenWISP Utils.

Modules

387

https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/notification-toast.gif
https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/email-template.png

Notification Preferences

OpenWISP Notifications enables users to customize their notification preferences by selecting their preferred method
of receiving updates—either through web notifications or email. These settings are organized by notification type and
organization, allowing users to tailor their notification experience by opting to receive updates only from specific
organizations or notification types.

Notification settings are automatically generated for all notification types and organizations for every user.
Superusers have the ability to manage notification settings for all users, including adding or deleting them.
Meanwhile, staff users can modify their preferred notification delivery methods, choosing between receiving
notifications via web, email, or both. Additionally, users have the option to disable notifications entirely by turning off
both web and email notification settings.

Note

If a user has not configured their preferences for email or web notifications for a specific notification type, the
system will default to using the email_notification or web_notification option defined for that
notification type.

Silencing Notifications for Specific Objects

OpenWISP Notifications allows users to silence all notifications generated by specific objects they are not interested
in for a desired period of time or even permanently, while other users will keep receiving notifications normally.

Using the widget on an object's admin change form, a user can disable all notifications generated by that object for a
day, week, month or permanently.

Note

This feature requires configuring "OPENWISP_NOTIFICATIONS_IGNORE_ENABLED_ADMIN" to enable the
widget in the admin section of the required models.

Modules

388

https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/notification-settings.png
https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/silence-notifications.png

Scheduled Deletion of Notifications

Important

If you have deployed OpenWISP using ansible-openwisp2 or docker-openwisp, then this feature has been
already configured for you. Refer to the documentation of your deployment method to know the default value.
This section is only for reference for users who wish to customize OpenWISP, or who have deployed OpenWISP
in a different way.

OpenWISP Notifications provides a celery task to automatically delete notifications older than a preconfigured
number of days. In order to run this task periodically, you will need to configure CELERY_BEAT_SCHEDULE in the
Django project settings.

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

The celery task takes only one argument, i.e. number of days. You can provide any number of days in args key while
configuring CELERY_BEAT_SCHEDULE setting.

E.g., if you want notifications older than 10 days to get deleted automatically, then configure
CELERY_BEAT_SCHEDULE as follows:

CELERY_BEAT_SCHEDULE.update(
 {
 "delete_old_notifications": {
 "task": "openwisp_notifications.tasks.delete_old_notifications",
 "schedule": timedelta(days=1),
 "args": (
 10,
), # Here we have defined 10 instead of 90 as shown in setup instructions
 },
 }
)

Please refer to "Periodic Tasks" section of Celery's documentation to learn more.

REST API

Live Documentation 390

Browsable Web Interface 390

Authentication 390

Pagination 390

List of Endpoints 391

Modules

389

https://docs.celeryproject.org/en/stable/userguide/periodic-tasks.html

Live Documentation

A general live API documentation (following the OpenAPI specification) is available at /api/v1/docs/.

Browsable Web Interface

Additionally, opening any of the endpoints listed below directly in the browser will show the browsable API interface
of Django-REST-Framework, which makes it even easier to find out the details of each endpoint.

Authentication

See openwisp-users: authenticating with the user token.

When browsing the API via the Live Documentation or the Browsable Web Interface, you can also use the session
authentication by logging in the django admin.

Pagination

The list endpoint support the page_size parameter that allows paginating the results in conjunction with the page
parameter.

Modules

390

https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/api-docs.png
https://raw.githubusercontent.com/openwisp/openwisp-notifications/docs/docs/images/api-ui.png
https://www.django-rest-framework.org/topics/browsable-api/
https://www.django-rest-framework.org/topics/browsable-api/

GET /api/v1/notifications/notification/?page_size=10
GET /api/v1/notifications/notification/?page_size=10&page=2

List of Endpoints

Since the detailed explanation is contained in the Live Documentation and in the Browsable Web Interface of each
point, here we'll provide just a list of the available endpoints, for further information please open the URL of the
endpoint in your browser.

List User's Notifications

GET /api/v1/notifications/notification/

Available Filters

You can filter the list of notifications based on whether they are read or unread using the unread parameter.

To list read notifications:

GET /api/v1/notifications/notification/?unread=false

To list unread notifications:

GET /api/v1/notifications/notification/?unread=true

Mark All User's Notifications as Read

POST /api/v1/notifications/notification/read/

Get Notification Details

GET /api/v1/notifications/notification/{pk}/

Mark a Notification Read

PATCH /api/v1/notifications/notification/{pk}/

Delete a Notification

DELETE /api/v1/notifications/notification/{pk}/

List User's Notification Setting

GET /api/v1/notifications/notification/user-setting/

Available Filters

You can filter the list of user's notification setting based on their organization_id.

GET /api/v1/notifications/notification/user-setting/?organization={organization_id}

You can filter the list of user's notification setting based on their organization_slug.

GET /api/v1/notifications/notification/user-setting/?organization_slug={organization_slug}

You can filter the list of user's notification setting based on their type.

Modules

391

GET /api/v1/notifications/notification/user-setting/?type={type}

Get Notification Setting Details

GET /api/v1/notifications/notification/user-setting/{pk}/

Update Notification Setting Details

PATCH /api/v1/notifications/notification/user-setting/{pk}/

List User's Object Notification Setting

GET /api/v1/notifications/notification/ignore/

Get Object Notification Setting Details

GET /api/v1/notifications/notification/ignore/{app_label}/{model_name}/{object_id}/

Create Object Notification Setting

PUT /api/v1/notifications/notification/ignore/{app_label}/{model_name}/{object_id}/

Delete Object Notification Setting

DELETE /api/v1/notifications/notification/ignore/{app_label}/{model_name}/{object_id}/

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

OPENWISP_NOTIFICATIONS_HOST

type str

default Any domain defined in ALLOWED_HOST

This setting defines the domain at which API and Web Socket communicate for working of notification widget.

Note

You don't need to configure this setting if you don't host your API endpoints on a different sub-domain.

Modules

392

If your root domain is example.com and API and Web Socket are hosted at api.example.com, then configure
setting as follows:

OPENWISP_NOTIFICATIONS_HOST = "https://api.example.com"

This feature requires you to allow CORS on your server. We use django-cors-headers module to easily setup
CORS headers. Please refer django-core-headers' setup documentation.

Configure django-cors-headers settings as follows:

CORS_ALLOW_CREDENTIALS = True
CORS_ORIGIN_WHITELIST = ["https://www.example.com"]

Configure Django's settings as follows:

SESSION_COOKIE_DOMAIN = "example.com"
CSRF_COOKIE_DOMAIN = "example.com"

Please refer to Django's settings documentation for more information on SESSION_COOKIE_DOMAIN and
CSRF_COOKIE_DOMAIN settings.

OPENWISP_NOTIFICATIONS_SOUND

ty
pe

str

de
fa
ult

notification_bell.mp3

This setting defines notification sound to be played when notification is received in real-time on admin site.

Provide a relative path (hosted on your web server) to audio file as show below.

OPENWISP_NOTIFICATIONS_SOUND = "your-appname/audio/notification.mp3"

OPENWISP_NOTIFICATIONS_CACHE_TIMEOUT

type int

default 172800 (2 days, in seconds)

It sets the number of seconds the notification contents should be stored in the cache. If you want cached notification
content to never expire, then set it to None. Set it to 0 if you don't want to store notification contents in cache at all.

OPENWISP_NOTIFICATIONS_IGNORE_ENABLED_ADMIN

type list

default []

This setting enables the widget which allows users to silence notifications for specific objects temporarily or
permanently. in the change page of the specified ModelAdmin classes.

E.g., if you want to enable the widget for objects of openwisp_users.models.User model, then configure the
setting as following:

OPENWISP_NOTIFICATIONS_IGNORE_ENABLED_ADMIN = [
 "openwisp_users.admin.UserAdmin"
]

Modules

393

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://github.com/adamchainz/django-cors-headers#setup
https://docs.djangoproject.com/en/4.2/ref/settings/
https://github.com/openwisp/openwisp-notifications/tree/master/openwisp_notifications/static/openwisp-notifications/audio/notification_bell.mp3

OPENWISP_NOTIFICATIONS_POPULATE_PREFERENCES_ON_MIGRATE

type bool

default True

This setting allows to disable creating notification preferences on running migrations.

OPENWISP_NOTIFICATIONS_NOTIFICATION_STORM_PREVENTION

When the system starts creating a lot of notifications because of a general network outage (e.g.: a power outage, a
global misconfiguration), the notification storm prevention mechanism avoids the constant displaying of new
notification alerts as well as their sound, only the notification counter will continue updating periodically, although it
won't emit any sound or create any other visual element until the notification storm is over.

This setting allows tweaking how this mechanism works.

The default configuration is as follows:

OPENWISP_NOTIFICATIONS_NOTIFICATION_STORM_PREVENTION = {
 # Time period for tracking burst of notifications (in seconds)
 "short_term_time_period": 10,
 # Number of notifications considered as a notification burst
 "short_term_notification_count": 6,
 # Time period for tracking notifications in long time interval (in seconds)
 "long_term_time_period": 180,
 # Number of notifications in long time interval to be considered as a notification storm
 "long_term_notification_count": 30,
 # Initial time for which notification updates should be skipped (in seconds)
 "initial_backoff": 1,
 # Time by which skipping of notification updates should be increased (in seconds)
 "backoff_increment": 1,
 # Maximum interval after which the notification widget should get updated (in seconds)
 "max_allowed_backoff": 15,
}

Management Commands

Note

This page is for developers who want to customize or extend OpenWISP Notifications, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Notifications User Docs

populate_notification_preferences

This command will populate notification preferences for all users for organizations they are member of.

Modules

394

Note

Before running this command make sure that the celery broker is running and reachable by celery workers.

Example usage:

cd tests/
./manage.py populate_notification_preferences

create_notification

This command will create a dummy notification with default notification type for the members of default
organization. This command is primarily provided for the sole purpose of testing notification in development only.

Example usage:

cd tests/
./manage.py create_notification

Developer Docs

Note

This page is for developers who want to customize or extend OpenWISP Notifications, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Notifications User Docs

Developer Installation Instructions

Note

This page is for developers who want to customize or extend OpenWISP Notifications, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Notifications User Docs

Installing for Development 396

Alternative Sources 397

Pypi 397

Github 397

Modules

395

Installing for Development

Install the system dependencies:

sudo apt install sqlite3 libsqlite3-dev openssl libssl-dev

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-notifications

Navigate into the cloned repository:

cd openwisp-notifications/

Launch Redis:

docker-compose up -d redis

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .
pip install -r requirements-test.txt
sudo npm install -g jshint stylelint

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch celery worker (for background jobs):

celery -A openwisp2 worker -l info

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

standard tests
./runtests.py

If you running tests on PROD environment
./runtests.py --exclude skip_prod

tests for the sample app
SAMPLE_APP=1 ./runtests.py

When running the last line of the previous example, the environment variable SAMPLE_APP activates the sample app
in /tests/openwisp2/ which is a simple django app that extends openwisp-notifications with the sole
purpose of testing its extensibility, for more information regarding this concept, read the following section.

Run quality assurance tests with:

./run-qa-checks

Modules

396

https://pypi.org/project/virtualenv/

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-notifications

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-notifications/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-notifications#egg=openwisp_notifications

Code Utilities

Note

This page is for developers who want to customize or extend OpenWISP Notifications, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Notifications User Docs

Registering / Unregistering Notification Types 397

register_notification_type 397

unregister_notification_type 398

Exceptions 399

Registering / Unregistering Notification Types

OpenWISP Notifications provides registering and unregistering notifications through utility functions
openwisp_notifications.types.register_notification_type and
openwisp_notifications.types.unregister_notification_type. Using these functions you can
register or unregister notification types from your code.

Important

It is recommended that all notification types are registered or unregistered in ready method of your Django
application's AppConfig.

register_notification_type

This function is used to register a new notification type from your code.

Syntax:

Modules

397

register_notification_type(type_name, type_config, models)

Parameter Description

type_name A str defining name of the notification type.

type_config A dict defining configuration of the notification type.

models An optional list of models that can be associated with the notification type.

An example usage has been shown below.

from openwisp_notifications.types import register_notification_type
from django.contrib.auth import get_user_model

User = get_user_model()

Define configuration of your notification type
custom_type = {
 "level": "info",
 "verb": "added",
 "verbose_name": "device added",
 "message": "[{notification.target}]({notification.target_link}) was {notification.verb} at {notification.timestamp}",
 "email_subject": "[{site.name}] A device has been added",
 "web_notification": True,
 "email_notification": True,
 # static URL for the actor object
 "actor": "https://openwisp.org/admin/config/device",
 # URL generation using callable for target object
 "target": "mymodule.target_object_link",
}

Register your custom notification type
register_notification_type("custom_type", custom_type, models=[User])

It will raise ImproperlyConfigured exception if a notification type is already registered with same name(not to be
confused with verbose_name).

Note

You can use site and notification variables while defining message and email_subject configuration of
notification type. They refer to objects of django.contrib.sites.models.Site and
openwisp_notifications.models.Notification respectively. This allows you to use any of their
attributes in your configuration. Similarly to message_template, message property can also be formatted using
markdown.

unregister_notification_type

This function is used to unregister a notification type from anywhere in your code.

Syntax:

unregister_notification_type(type_name)

Parameter Description

type_name A str defining name of the notification type.

An example usage is shown below.

Modules

398

from openwisp_notifications.types import unregister_notification_type

Unregister previously registered notification type
unregister_notification_type("custom type")

It will raise ImproperlyConfigured exception if the concerned notification type is not registered.

Exceptions

NotificationRenderException

openwisp_notifications.exceptions.NotificationRenderException

Raised when notification properties(email or message) cannot be rendered from concerned notification type. It
sub-classes Exception class.

It can be raised due to accessing non-existing keys like missing related objects in email or message setting of
concerned notification type.

Notification Cache

In a typical OpenWISP installation, actor, action_object and target objects are same for a number of
notifications. To optimize database queries, these objects are cached using Django's cache framework. The cached
values are updated automatically to reflect actual data from database. You can control the duration of caching these
objects using OPENWISP_NOTIFICATIONS_CACHE_TIMEOUT setting.

Cache Invalidation

The function register_notification_cache_update can be used to register a signal of a model which is
being used as an actor, action_object and target objects. As these values are cached for the optimization
purpose so their cached values are need to be changed when they are changed. You can register any signal you
want which will delete the cached value. To register a signal you need to include following code in your apps.py.

from django.db.models.signals import post_save
from swapper import load_model

def ready(self):
 super().ready()

 # Include lines after this inside
 # ready function of you app config class
 from openwisp_notifications.handlers import (
 register_notification_cache_update,
)

 model = load_model("app_name", "model_name")
 register_notification_cache_update(
 model,
 post_save,
 dispatch_uid="myapp_mymodel_notification_cache_invalidation",
)

Important

You need to import register_notification_cache_update inside the ready function or you can define
another function to register signals which will be called in ready and then it will be imported in this function. Also

Modules

399

https://docs.djangoproject.com/en/4.2/topics/cache/

dispatch_uid is unique identifier of a signal. You can pass any value you want but it needs to be unique. For
more details read preventing duplicate signals section of Django documentation

Extending openwisp-notifications

Note

This page is for developers who want to customize or extend OpenWISP Notifications, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Notifications User Docs

One of the core values of the OpenWISP project is Software Reusability, for this reason OpenWISP Notifications
provides a set of base classes which can be imported, extended and reused to create derivative apps.

In order to implement your custom version of openwisp-notifications, you need to perform the steps described in the
rest of this section.

When in doubt, the code in test project and sample_notifications will guide you in the correct direction: just replicate
and adapt that code to get a basic derivative of openwisp-notifications working.

Important

If you plan on using a customized version of this module, we suggest to start with it since the beginning, because
migrating your data from the default module to your extended version may be time consuming.

1. Initialize your custom module 401

2. Install openwisp-notifications 401

3. Add EXTENDED_APPS 401

4. Add openwisp_utils.staticfiles.DependencyFinder 401

5. Add openwisp_utils.loaders.DependencyLoader 401

6. Inherit the AppConfig class 402

7. Create your custom models 402

8. Add swapper configurations 402

9. Create database migrations 402

10. Create your custom admin 403

1. Monkey patching 403

2. Inheriting admin classes 403

11. Create root URL configuration 403

12. Create root routing configuration 403

13. Create celery.py 404

14. Import Celery Tasks 404

15. Register Template Tags 404

16. Register Notification Types 404

Modules

400

https://docs.djangoproject.com/en/4.2/topics/signals/#preventing-duplicate-signals
https://github.com/openwisp/openwisp-notifications/tree/master/tests/openwisp2/
https://github.com/openwisp/openwisp-notifications/tree/master/tests/openwisp2/sample_notifications/

17. Import the automated tests 404

Other base classes that can be inherited and extended 404

API views 405

Web Socket Consumers 405

1. Initialize your custom module

The first thing you need to do in order to extend openwisp-notifications is create a new django app which will contain
your custom version of that openwisp-notifications app.

A django app is nothing more than a python package (a directory of python scripts), in the following examples we'll
call this django app as mynotifications but you can name it how you want:

django-admin startapp mynotifications

Keep in mind that the command mentioned above must be called from a directory which is available in your
PYTHON_PATH so that you can then import the result into your project.

Now you need to add mynotifications to INSTALLED_APPS in your settings.py, ensuring also that
openwisp_notifications has been removed:

INSTALLED_APPS = [
 # ... other apps ...
 # 'openwisp_notifications', <-- comment out or delete this line
 "mynotifications",
]

For more information about how to work with django projects and django apps, please refer to the django
documentation.

2. Install openwisp-notifications

Install (and add to the requirement of your project) openwisp-notifications:

pip install -U https://github.com/openwisp/openwisp-notifications/tarball/master

3. Add EXTENDED_APPS

Add the following to your settings.py:

EXTENDED_APPS = ["openwisp_notifications"]

4. Add openwisp_utils.staticfiles.DependencyFinder

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in your settings.py:

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder",
]

5. Add openwisp_utils.loaders.DependencyLoader

Add openwisp_utils.loaders.DependencyLoader to TEMPLATES in your settings.py:

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {

Modules

401

https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/

 "loaders": [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
 "openwisp_utils.loaders.DependencyLoader",
],
 "context_processors": [
 "django.template.context_processors.debug",
 "django.template.context_processors.request",
 "django.contrib.auth.context_processors.auth",
 "django.contrib.messages.context_processors.messages",
],
 },
 }
]

6. Inherit the AppConfig class

Please refer to the following files in the sample app of the test project:

• sample_notifications/__init__.py.

• sample_notifications/apps.py.

For more information regarding the concept of AppConfig please refer to the "Applications" section in the django
documentation.

7. Create your custom models

For the purpose of showing an example, we added a simple "details" field to the models of the sample app in the test
project.

You can add fields in a similar way in your models.py file.

Note

If you have questions about using, extending, or developing models, refer to the "Models" section of the Django
documentation.

8. Add swapper configurations

Add the following to your settings.py:

Setting models for swapper module
OPENWISP_NOTIFICATIONS_NOTIFICATION_MODEL = "mynotifications.Notification"
OPENWISP_NOTIFICATIONS_NOTIFICATIONSETTING_MODEL = (
 "mynotifications.NotificationSetting"
)
OPENWISP_NOTIFICATIONS_IGNOREOBJECTNOTIFICATION_MODEL = (
 "mynotifications.IgnoreObjectNotification"
)

9. Create database migrations

Create and apply database migrations:

./manage.py makemigrations

./manage.py migrate

Modules

402

https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/__init__.py
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/apps.py
https://docs.djangoproject.com/en/4.2/ref/applications/
https://docs.djangoproject.com/en/4.2/ref/applications/
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/models.py
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/models.py
https://docs.djangoproject.com/en/4.2/topics/db/models/
https://docs.djangoproject.com/en/4.2/topics/db/models/

For more information, refer to the "Migrations" section in the django documentation.

10. Create your custom admin

Refer to the admin.py file of the sample app.

To introduce changes to the admin, you can do it in two main ways which are described below.

Note

For more information regarding how the django admin works, or how it can be customized, please refer to "The
django admin site" section in the django documentation.

1. Monkey patching

If the changes you need to add are relatively small, you can resort to monkey patching.

For example:

from openwisp_notifications.admin import NotificationSettingInline

NotificationSettingInline.list_display.insert(1, "my_custom_field")
NotificationSettingInline.ordering = ["-my_custom_field"]

2. Inheriting admin classes

If you need to introduce significant changes and/or you don't want to resort to monkey patching, you can proceed as
follows:

from django.contrib import admin
from openwisp_notifications.admin import (
 NotificationSettingInline as BaseNotificationSettingInline,
)
from openwisp_notifications.swapper import load_model

NotificationSetting = load_model("NotificationSetting")

admin.site.unregister(NotificationSettingAdmin)
admin.site.unregister(NotificationSettingInline)

@admin.register(NotificationSetting)
class NotificationSettingInline(BaseNotificationSettingInline):
 # add your changes here
 pass

11. Create root URL configuration

Please refer to the urls.py file in the test project.

For more information about URL configuration in django, please refer to the "URL dispatcher" section in the django
documentation.

12. Create root routing configuration

Please refer to the routing.py file in the test project.

Modules

403

https://docs.djangoproject.com/en/4.2/topics/migrations/
https://github.com/openwisp/openwisp-notifications/tests/openwisp2/sample_firmware_upgrader/admin.py
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://docs.djangoproject.com/en/4.2/ref/contrib/admin/
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/urls.py
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/routing.py

For more information about URL configuration in django, please refer to the "Routing" section in the Channels
documentation.

13. Create celery.py

Please refer to the celery.py file in the test project.

For more information about the usage of celery in django, please refer to the "First steps with Django" section in the
celery documentation.

14. Import Celery Tasks

Add the following in your settings.py to import Celery tasks from openwisp_notifications app.

CELERY_IMPORTS = ("openwisp_notifications.tasks",)

15. Register Template Tags

If you need to use template tags, you will need to register them as shown in "templatetags/notification_tags.py" of
sample_notifications.

For more information about template tags in django, please refer to the "Custom template tags and filters" section in
the django documentation.

16. Register Notification Types

You can register notification types as shown in the section for registering notification types.

A reference for registering a notification type is also provided in sample_notifications/apps.py. The registered
notification type of sample_notifications app is used for creating notifications when an object of TestApp
model is created. You can use sample_notifications/models.py as reference for your implementation.

17. Import the automated tests

When developing a custom application based on this module, it's a good idea to import and run the base tests too, so
that you can be sure the changes you're introducing are not breaking some of the existing feature of
openwisp-notifications.

In case you need to add breaking changes, you can overwrite the tests defined in the base classes to test your own
behavior.

See the tests of the sample_notifications to find out how to do this.

Note

Some tests will fail if templatetags and admin/base.html are not configured properly. See preceding
sections to configure them properly.

Other base classes that can be inherited and extended

The following steps are not required and are intended for more advanced customization.

Modules

404

https://channels.readthedocs.io/en/latest/topics/routing.html
https://channels.readthedocs.io/en/latest/topics/routing.html
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/celery.py
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://docs.celeryproject.org/en/master/django/first-steps-with-django.html
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/templatetags/notification_tags.py
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/templatetags/notification_tags.py
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://docs.djangoproject.com/en/4.2/topics/http/urls/
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/apps.py
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/models.py
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/tests.py

API views

The API view classes can be extended into other django applications as well. Note that it is not required for
extending openwisp-notifications to your app and this change is required only if you plan to make changes to the API
views.

Create a view file as done in sample_notifications/views.py

For more information regarding Django REST Framework API views, please refer to the "Generic views" section in
the Django REST Framework documentation.

Web Socket Consumers

The Web Socket Consumer classes can be extended into other django applications as well. Note that it is not
required for extending openwisp-notifications to your app and this change is required only if you plan to make
changes to the consumers.

Create a consumer file as done in sample_notifications/consumers.py

For more information regarding Channels' Consumers, please refer to the "Consumers" section in the Channels
documentation.

Other useful resources:

• REST API

• Settings

Utils

Seealso

Source code: github.com/openwisp/openwisp-utils.

The goal of OpenWISP Utils is to minimize duplication, ease maintenance, and enable the rapid development of new
OpenWISP modules by leveraging battle-tested best practices.

This is achieved by providing code structures that are inherited, extended, and utilized across different modules in
the OpenWISP ecosystem.

The following diagram illustrates the role of the Utils module within the OpenWISP architecture.

Modules

405

https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/views.py
https://www.django-rest-framework.org/api-guide/generic-views/
https://www.django-rest-framework.org/api-guide/generic-views/
https://github.com/openwisp/openwisp-notifications/blob/master/tests/openwisp2/sample_notifications/consumers.py
https://channels.readthedocs.io/en/latest/topics/consumers.html
https://channels.readthedocs.io/en/latest/topics/consumers.html
https://github.com/openwisp/openwisp-utils
../_images/architecture-v2-openwisp-utils.png

OpenWISP Architecture: highlighted utils module

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Collection of Usage Metrics

The openwisp-utils module includes an optional sub-app openwisp_utils.metric_collection, which
allows us to collect of the following information from OpenWISP instances:

• OpenWISP Version

• List of enabled OpenWISP modules and their version

• Operating System identifier, e.g.: Linux version, Kernel version, target platform (e.g. x86)

• Installation method, if available, e.g. ansible-openwisp2 or docker-openwisp

The data above is collected during the following events:

• Install: when OpenWISP is installed the first time

• Upgrade: when any OpenWISP module is upgraded

• Heartbeat: once every 24 hours

We collect data on OpenWISP usage to gauge user engagement, satisfaction, and upgrade patterns. This informs
our development decisions, ensuring continuous improvement aligned with user needs.

To enhance our understanding and management of this data, we have integrated Clean Insights, a
privacy-preserving analytics tool. Clean Insights allows us to responsibly gather and analyze usage metrics without
compromising user privacy. It provides us with the means to make data-driven decisions while respecting our users'
rights and trust.

We have taken great care to ensure no sensitive or personal data is being tracked.

Opting Out from Metric Collection

You can opt-out from sharing this data any time from the "System Info" page. Alternatively, you can also remove the
openwisp_utils.metric_collection app from INSTALLED_APPS in one of the following ways:

• If you are using the ansible-openwisp2 role, you can set the variable
openwisp2_usage_metric_collection to false in your playbook.

• If you are using docker-openwisp, you can set set the environment variable METRIC_COLLECTION to False in
the .env file.

However, it would be very helpful to the project if you keep the colection of these metrics enabled, because
the feedback we get from this data is useful to guide the project in the right direction.

Admin Filters

Modules

406

https://cleaninsights.org/

The admin_theme sub app provides an improved UI for the changelist filter which occupies less space compared to
the original implementation in django: filters are displayed horizontally on the top (instead of vertically on the side)
and filter options are hidden in dropdown menus which are expanded once clicked.

Multiple filters can be applied at same time with the help of "apply filter" button. This button is only visible when total
number of filters is greater than 4. When filters in use are less or equal to 4 the "apply filter" button is not visible and
filters work like in the original django implementation (as soon as a filter option is selected the filter is applied and the
page is reloaded).

Settings

Note

If you're unsure about what "Django settings" are, you can refer to How to Edit Django Settings in OpenWISP for
guidance.

OPENWISP_ADMIN_SITE_CLASS

Default: openwisp_utils.admin_theme.admin.OpenwispAdminSite

If you need to use a customized admin site class, you can use this setting.

OPENWISP_ADMIN_SITE_TITLE

Default: OpenWISP Admin

Title value used in the <title> HTML tag of the admin site.

OPENWISP_ADMIN_SITE_HEADER

Default: OpenWISP

Heading text used in the main <h1> HTML tag (the logo) of the admin site.

OPENWISP_ADMIN_INDEX_TITLE

Default: Network administration

Title shown to users in the index page of the admin site.

OPENWISP_ADMIN_DASHBOARD_ENABLED

Default: True

When True, enables the OpenWISP Dashboard. Upon login, the user will be greeted with the dashboard instead of
the default Django admin index page.

OPENWISP_ADMIN_THEME_LINKS

Default: []

Modules

407

Note

This setting requires the admin_theme_settings context processor in order to work.

Allows to override the default CSS and favicon, as well as add extra <link> HTML elements if needed.

This setting overrides the default theme, you can reuse the default CSS or replace it entirely.

The following example shows how to keep using the default CSS, supply an additional CSS and replace the favicon.

Example usage:

OPENWISP_ADMIN_THEME_LINKS = [
 {
 "type": "text/css",
 "href": "/static/admin/css/openwisp.css",
 "rel": "stylesheet",
 "media": "all",
 },
 {
 "type": "text/css",
 "href": "/static/admin/css/custom-theme.css",
 "rel": "stylesheet",
 "media": "all",
 },
 {
 "type": "image/x-icon",
 "href": "/static/favicon.png",
 "rel": "icon",
 },
]

OPENWISP_ADMIN_THEME_JS

Default: []

Allows to pass a list of strings representing URLs of custom JS files to load.

Example usage:

OPENWISP_ADMIN_THEME_JS = [
 "/static/custom-admin-theme.js",
]

OPENWISP_ADMIN_SHOW_USERLINKS_BLOCK

Default: False

When set to True, enables Django user links on the admin site.

i.e. (USER NAME/ VIEW SITE / CHANGE PASSWORD / LOG OUT).

These links are already shown in the main navigation menu and for this reason are hidden by default.

OPENWISP_API_DOCS

Default: True

Whether the OpenAPI documentation is enabled.

When enabled, you can view the available documentation using the Swagger endpoint at /api/v1/docs/.

Modules

408

You also need to add the following URL to your project urls.py:

urlpatterns += [
 url(r"^api/v1/", include("openwisp_utils.api.urls")),
]

OPENWISP_API_INFO

Default:

{
 "title": "OpenWISP API",
 "default_version": "v1",
 "description": "OpenWISP REST API",
}

Define OpenAPI general information. NOTE: This setting requires OPENWISP_API_DOCS = True to take effect.

For more information about optional parameters check the drf-yasg documentation.

OPENWISP_SLOW_TEST_THRESHOLD

Default: [0.3, 1] (seconds)

It can be used to change the thresholds used by TimeLoggingTestRunner to detect slow tests (0.3s by default) and
highlight the slowest ones (1s by default) among them.

OPENWISP_STATICFILES_VERSIONED_EXCLUDE

Default: ['leaflet/*/*.png']

Allows to pass a list of Unix shell-style wildcards for files to be excluded by CompressStaticFilesStorage.

By default Leaflet PNGs have been excluded to avoid bugs like openwisp/ansible-openwisp2#232.

Example usage:

OPENWISP_STATICFILES_VERSIONED_EXCLUDE = [
 "*png",
]

OPENWISP_HTML_EMAIL

type bool

default True

If True, an HTML themed version of the email can be sent using the send_email function.

OPENWISP_EMAIL_TEMPLATE

type str

default openwisp_utils/email_template.html

This setting allows to change the django template used for sending emails with the send_email function. It is
recommended to extend the default email template as in the example below.

{% extends 'openwisp_utils/email_template.html' %}
{% block styles %}
{{ block.super }}

Modules

409

https://drf-yasg.readthedocs.io/en/stable/readme.html#quickstart
https://github.com/openwisp/ansible-openwisp2/issues/232

<style>
 .background {
 height: 100%;
 background: linear-gradient(to bottom, #8ccbbe 50%, #3797a4 50%);
 background-repeat: no-repeat;
 background-attachment: fixed;
 padding: 50px;
 }

 .mail-header {
 background-color: #3797a4;
 color: white;
 }
</style>
{% endblock styles %}

Similarly, you can customize the HTML of the template by overriding the body block. See email_template.html for
reference implementation.

OPENWISP_EMAIL_LOGO

typ
e

str

def
aul
t

OpenWISP logo

This setting allows to change the logo which is displayed in HTML version of the email.

Note

Provide a URL which points to the logo on your own web server. Ensure that the URL provided is publicly
accessible from the internet. Otherwise, the logo may not be displayed in the email. Please also note that SVG
images do not get processed by some email clients like Gmail so it is recommended to use PNG images.

OPENWISP_CELERY_SOFT_TIME_LIMIT

type int

default 30 (in seconds)

Sets the soft time limit for celery tasks using OpenwispCeleryTask.

OPENWISP_CELERY_HARD_TIME_LIMIT

type int

default 120 (in seconds)

Sets the hard time limit for celery tasks using OpenwispCeleryTask.

OPENWISP_AUTOCOMPLETE_FILTER_VIEW

Modules

410

https://github.com/openwisp/openwisp-utils/blob/master/openwisp_utils/admin_theme/templates/openwisp_utils/email_template.html
https://raw.githubusercontent.com/openwisp/openwisp-utils/master/openwisp_utils/static/openwisp-utils/images/openwisp-logo.png

type str

default 'openwisp_utils.admin_theme.views.AutocompleteJsonView'

Dotted path to the AutocompleteJsonView used by the
openwisp_utils.admin_theme.filters.AutocompleteFilter.

Developer Docs

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

Developer Installation Instructions

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

Installing for Development 411

Alternative Sources 412

Pypi 412

Github 412

Installing for Development

Install the system dependencies:

sudo apt-get install sqlite3 libsqlite3-dev

For running E2E Selenium tests
sudo apt install chromium

Fork and clone the forked repository:

git clone git://github.com/<your_fork>/openwisp-utils

Navigate into the cloned repository:

Modules

411

cd openwisp-utils/

Setup and activate a virtual-environment (we'll be using virtualenv):

python -m virtualenv env
source env/bin/activate

Make sure that your base python packages are up to date before moving to the next step:

pip install -U pip wheel setuptools

Install development dependencies:

pip install -e .[qa,rest]
pip install -r requirements-test.txt
sudo npm install -g jshint stylelint

Set up the git pre-push hook to run tests and QA checks automatically right before the git push action, so that if
anything fails the push operation will be aborted:

openwisp-pre-push-hook --install

Create database:

cd tests/
./manage.py migrate
./manage.py createsuperuser

Launch development server:

./manage.py runserver

You can access the admin interface at http://127.0.0.1:8000/admin/.

Run tests with:

./runtests.py --parallel

Run quality assurance tests with:

./run-qa-checks

Alternative Sources

Pypi

To install the latest Pypi:

pip install openwisp-utils

Github

To install the latest development version tarball via HTTPs:

pip install https://github.com/openwisp/openwisp-utils/tarball/master

Alternatively you can use the git protocol:

pip install -e git+git://github.com/openwisp/openwisp-utils#egg=openwisp_utils

OpenWISP Dashboard

Modules

412

https://pypi.org/project/virtualenv/

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

The admin_theme sub app of this package provides an admin dashboard for OpenWISP which can be manipulated
with the functions described in the next sections.

Example taken from the Controller Module:

register_dashboard_template 413

unregister_dashboard_template 414

register_dashboard_chart 415

Dashboard Chart query_params 415

Dashboard chart quick_link 416

unregister_dashboard_chart 416

register_dashboard_template

Allows including a specific django template in the OpenWISP dashboard.

It is designed to allow the inclusion of the geographic map shipped by OpenWISP Monitoring but can be used to
include any custom element in the dashboard.

Note

It is possible to register templates to be loaded before or after charts using the after_charts keyword
argument (see below).

Syntax:

register_dashboard_template(position, config)

Parameter Description

position (int) The position of the template.

config (dict) The configuration of the template.

extra_config optional (dict) Extra configuration you want to pass to custom template.

Modules

413

https://raw.githubusercontent.com/openwisp/openwisp-utils/media/docs/dashboard2.png

after_charts optional (bool) Whether the template should be loaded after dashboard charts.
Defaults to False, i.e. templates are loaded before dashboard charts by default.

Following properties can be configured for each template config:

Property Description

template (str) Path to pass to the template loader.

css (tuple) List of CSS files to load in the HTML page.

js (tuple) List of Javascript files to load in the HTML page.

Code example:

from openwisp_utils.admin_theme import register_dashboard_template

register_dashboard_template(
 position=0,
 config={
 "template": "admin/dashboard/device_map.html",
 "css": (
 "monitoring/css/device-map.css",
 "leaflet/leaflet.css",
 "monitoring/css/leaflet.fullscreen.css",
),
 "js": (
 "monitoring/js/device-map.js",
 "leaflet/leaflet.js",
 "leaflet/leaflet.extras.js",
 "monitoring/js/leaflet.fullscreen.min.js",
),
 },
 extra_config={
 "optional_variable": "any_valid_value",
 },
 after_charts=True,
)

It is recommended to register dashboard templates from the ready method of the AppConfig of the app where the
templates are defined.

unregister_dashboard_template

This function can be used to remove a template from the dashboard.

Syntax:

unregister_dashboard_template(template_name)

Parameter Description

template_name (str) The name of the template to remove.

Code example:

from openwisp_utils.admin_theme import unregister_dashboard_template

unregister_dashboard_template("admin/dashboard/device_map.html")

An ImproperlyConfigured exception is raised the specified dashboard template is not registered.

Modules

414

register_dashboard_chart

Adds a chart to the OpenWISP dashboard.

At the moment only pie charts are supported.

The code works by defining the type of query which will be executed, and optionally, how the returned values have to
be colored and labeled.

Syntax:

register_dashboard_chart(position, config)

Parameter Description

position (int) Position of the chart.

config (dict) Configuration of chart.

Following properties can be configured for each chart config:

Property Description

query_params It is a required property in form of dict. Refer to the Dashboard Chart query_params
table below for supported properties.

colors An optional dict which can be used to define colors for each distinct value shown in
the pie charts.

labels An optional dict which can be used to define translatable strings for each distinct
value shown in the pie charts. Can be used also to provide fallback human readable
values for raw values stored in the database which would be otherwise hard to
understand for the user.

filters An optional dict which can be used when using aggregate and annotate in
query_params to define the link that will be generated to filter results (pie charts are
clickable and clicking on a portion of it will show the filtered results).

main_filters An optional dict which can be used to add additional filtering on the target link.

filtering An optional str which can be set to 'False' (str) to disable filtering on target links.
This is useful when clicking on any section of the chart should take user to the same
URL.

quick_link An optional dict which contains configuration for the quick link button rendered below
the chart. Refer to the Dashboard chart quick_link table below for supported properties.
Note: The chart legend is disabled if configuration for quick link button is provided.

Dashboard Chart query_params

Property Description

name (str) Chart title shown in the user interface.

app_label (str) App label of the model that will be used to query the database.

model (str) Name of the model that will be used to query the database.

group_by (str) The property which will be used to group values.

annotate Alternative to group_by, dict used for more complex queries.

aggregate Alternative to group_by, dict used for more complex queries.

filter dict used for filtering queryset.

organization_field (str) If the model does not have a direct relation with the Organization
model, then indirect relation can be specified using this property. E.g.:
device__organization_id.

Modules

415

Dashboard chart quick_link

Property Description

url (str) URL for the anchor tag

label (str) Label shown on the button

title (str) Title attribute of the button element

custom_css_classes (list) List of CSS classes that'll be applied on the button

Code example:

from openwisp_utils.admin_theme import register_dashboard_chart

register_dashboard_chart(
 position=1,
 config={
 "query_params": {
 "name": "Operator Project Distribution",
 "app_label": "test_project",
 "model": "operator",
 "group_by": "project__name",
 },
 "colors": {"Utils": "red", "User": "orange"},
 "quick_link": {
 "url": "/admin/test_project/operator",
 "label": "Open Operators list",
 "title": "View complete list of operators",
 "custom_css_classes": ["negative-top-20"],
 },
 },
)

For real world examples, look at the code of OpenWISP Controller and OpenWISP Monitoring.

An ImproperlyConfigured exception is raised if a dashboard element is already registered at same position.

It is recommended to register dashboard charts from the ready method of the AppConfig of the app where the
models are defined. Checkout app.py of the test_project for reference.

unregister_dashboard_chart

This function can used to remove a chart from the dashboard.

Syntax:

unregister_dashboard_chart(chart_name)

Parameter Description

chart_name (str) The name of the chart to remove.

Code example:

from openwisp_utils.admin_theme import unregister_dashboard_chart

unregister_dashboard_chart("Operator Project Distribution")

An ImproperlyConfigured exception is raised the specified dashboard chart is not registered.

Modules

416

https://github.com/openwisp/openwisp-utils/blob/master/tests/test_project/apps.py

Main Navigation Menu

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

Context Processor 417

The register_menu_group function 417

Adding a Custom Link 419

Adding a Model Link 419

Adding a Menu Group 420

The register_menu_subitem function 420

How to Use Custom Icons in the Menu 421

The admin_theme sub app of this package provides a navigation menu that can be manipulated with the functions
described in the next sections.

Context Processor

For this feature to work, we must make sure that the context processor
openwisp_utils.admin_theme.context_processor.menu_groups is enabled in settings.py as shown
below.

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [],
 "OPTIONS": {
 "loaders": [
 # ... omitted ...
],
 "context_processors": [
 # ... other context processors ...
 "openwisp_utils.admin_theme.context_processor.menu_groups" # <----- add this
],
 },
 },
]

This context processor is enabled by default in any OpenWISP installer and in the test project of this module.

The register_menu_group function

Allows registering a new menu item or group at the specified position in the Main Navigation Menu.

Syntax:

register_menu_group(position, config)

Modules

417

Parameter Description

position (int) Position of the group or item.

config (dict) Configuration of the group or item.

Code example:

from django.utils.translation import ugettext_lazy as _
from openwisp_utils.admin_theme.menu import register_menu_group

register_menu_group(
 position=1,
 config={
 "label": _("My Group"),
 "items": {
 1: {
 "label": _("Users List"),
 "model": "auth.User",
 "name": "changelist",
 "icon": "list-icon",
 },
 2: {
 "label": _("Add User"),
 "model": "auth.User",
 "name": "add",
 "icon": "add-icon",
 },
 },
 "icon": "user-group-icon",
 },
)
register_menu_group(
 position=2,
 config={
 "model": "test_project.Shelf",
 "name": "changelist",
 "label": _("View Shelf"),
 "icon": "shelf-icon",
 },
)
register_menu_group(
 position=3, config={"label": _("My Link"), "url": "https://link.com"}
)

An ImproperlyConfigured exception is raised if a menu element is already registered at the same position.

An ImproperlyConfigured exception is raised if the supplied configuration does not match with the different
types of possible configurations available (different configurations will be discussed in the next section).

Note

It is recommended to use register_menu_group in the ready method of the AppConfig.

Important

register_menu_items is obsoleted by register_menu_group and will be removed in future versions. Links
added using register_menu_items will be shown at the top of navigation menu and above any
register_menu_group items.

Modules

418

Adding a Custom Link

To add a link that contains a custom URL the following syntax can be used.

Syntax:

register_menu_group(
 position=1,
 config={"label": "Link Label", "url": "link_url", "icon": "my-icon"},
)

Following is the description of the configuration:

Parameter Description

label (str) Display text for the link.

url (str) URL for the link.

icon An optional str CSS class name for the icon. No icon is displayed if not provided.

Adding a Model Link

To add a link that contains URL of add form or change list page of a model then following syntax can be used. Users
will only be able to see links for models they have permission to either view or edit.

Syntax:

add a link of list page
register_menu_group(
 position=1,
 config={
 "model": "my_project.MyModel",
 "name": "changelist",
 "label": "MyModel List",
 "icon": "my-model-list-class",
 },
)

add a link of add page
register_menu_group(
 position=2,
 config={
 "model": "my_project.MyModel",
 "name": "add",
 "label": "MyModel Add Item",
 "icon": "my-model-add-class",
 },
)

Following is the description of the configuration:

Parameter Description

model (str) Model of the app for which you to add link.

name (str) argument name, e.g.: changelist or add.

label An optional str display text for the link. It is automatically generated if not provided.

icon An optional str CSS class name for the icon. No icon is displayed if not provided.

Modules

419

Adding a Menu Group

To add a nested group of links in the menu the following syntax can be used. It creates a dropdown in the menu.

Syntax:

register_menu_group(
 position=1,
 config={
 "label": "My Group Label",
 "items": {
 1: {
 "label": "Link Label",
 "url": "link_url",
 "icon": "my-icon",
 },
 2: {
 "model": "my_project.MyModel",
 "name": "changelist",
 "label": "MyModel List",
 "icon": "my-model-list-class",
 },
 },
 "icon": "my-group-icon-class",
 },
)

Following is the description of the configuration:

Parameter Description

label (str) Display name for the link.

items (dict) Items to be displayed in the dropdown. It can be a dict of custom links or model links
with key as their position in the group.

icon An optional str CSS class name for the icon. No icon is displayed if not provided.

The register_menu_subitem function

Allows adding an item to a registered group.

Syntax:

register_menu_subitem(group_position, item_position, config)

Parameter Description

group_position (int) Position of the group in which item should be added.

item_position (int) Position at which item should be added in the group

config (dict) Configuration of the item.

Code example:

from django.utils.translation import ugettext_lazy as _
from openwisp_utils.admin_theme.menu import register_menu_subitem

To register a model link
register_menu_subitem(
 group_position=10,
 item_position=2,
 config={
 "label": _("Users List"),

Modules

420

 "model": "auth.User",
 "name": "changelist",
 "icon": "list-icon",
 },
)

To register a custom link
register_menu_subitem(
 group_position=10,
 item_position=2,
 config={"label": _("My Link"), "url": "https://link.com"},
)

An ImproperlyConfigured exception is raised if the group is not already registered at group_position.

An ImproperlyConfigured exception is raised if the group already has an item registered at item_position.

It is only possible to register links to specific models or custom URL. An ImproperlyConfigured exception is
raised if the configuration of group is provided in the function.

Important

It is recommended to use register_menu_subitem in the ready method of the AppConfig.

How to Use Custom Icons in the Menu

Create a CSS file and use the following syntax to provide the image for each icon used in the menu. The CSS class
name should be the same as the icon parameter used in the configuration of a menu item or group. Also icon being
used should be in svg format.

Example:

.icon-class-name {
 mask-image: url(imageurl);
 -webkit-mask-image: url(imageurl);
}

Follow the instructions in Supplying custom CSS and JS for the admin theme to know how to configure your
OpenWISP instance to load custom CSS files.

Using the admin_theme

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

Using DependencyLoader and DependencyFinder 422

DependencyFinder 422

Modules

421

DependencyLoader 422

Supplying Custom CSS and JS for the Admin Theme 423

Extend Admin Theme Programmatically 423

Sending emails 424

The admin theme requires Django >= 2.2..

Make sure openwisp_utils.admin_theme is listed in INSTALLED_APPS (settings.py):

INSTALLED_APPS = [
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "openwisp_utils.admin_theme", # <----- add this
 # add when using autocomplete filter
 "admin_auto_filters", # <----- add this
 "django.contrib.sites",
 # admin
 "django.contrib.admin",
]

Using DependencyLoader and DependencyFinder

Add the list of all packages extended to EXTENDED_APPS in settings.py.

For example, if you've extended django_x509:

EXTENDED_APPS = ["django_x509"]

DependencyFinder

This is a static finder which looks for static files in the static directory of the apps listed in
settings.EXTENDED_APPS.

Add openwisp_utils.staticfiles.DependencyFinder to STATICFILES_FINDERS in settings.py.

STATICFILES_FINDERS = [
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "openwisp_utils.staticfiles.DependencyFinder", # <----- add this
]

DependencyLoader

This is a template loader which looks for templates in the templates directory of the apps listed in
settings.EXTENDED_APPS.

Add openwisp_utils.loaders.DependencyLoader to template loaders in settings.py as shown below.

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [],
 "OPTIONS": {
 "loaders": [
 # ... other loaders ...
 "openwisp_utils.loaders.DependencyLoader", # <----- add this
],
 "context_processors": [

Modules

422

 # ... omitted ...
],
 },
 },
]

Supplying Custom CSS and JS for the Admin Theme

Add openwisp_utils.admin_theme.context_processor.admin_theme_settings to template
context_processors in settings.py as shown below. This will allow to set
OPENWISP_ADMIN_THEME_LINKS and OPENWISP_ADMIN_THEME_JS settings to provide CSS and JS files to
customize admin theme.

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [],
 "OPTIONS": {
 "loaders": [
 # ... omitted ...
],
 "context_processors": [
 # ... other context processors ...
 "openwisp_utils.admin_theme.context_processor.admin_theme_settings" # <----- add this
],
 },
 },
]

Note

You will have to deploy these static files on your own.

In order to make django able to find and load these files you may want to use the STATICFILES_DIR setting in
settings.py.

You can learn more in the Django documentation.

Extend Admin Theme Programmatically

openwisp_utils.admin_theme.theme.register_theme_link

Allows adding items to OPENWISP_ADMIN_THEME_LINKS.

This function is meant to be used by third party apps or OpenWISP modules which aim to extend the core look and
feel of the OpenWISP theme (e.g.: add new menu icons).

Syntax:

register_theme_link(links)

Parameter Description

links (list) List of link items to be added to OPENWISP_ADMIN_THEME_LINKS

Modules

423

https://docs.djangoproject.com/en/4.2/ref/settings/#std:setting-STATICFILES_DIRS

openwisp_utils.admin_theme.theme.unregister_theme_link

Allows removing items from OPENWISP_ADMIN_THEME_LINKS.

This function is meant to be used by third party apps or OpenWISP modules which aim additional functionalities to UI
of OpenWISP (e.g.: adding a support chat bot).

Syntax:

unregister_theme_link(links)

Parameter Description

links (list) List of link items to be removed from OPENWISP_ADMIN_THEME_LINKS

openwisp_utils.admin_theme.theme.register_theme_js

Allows adding items to OPENWISP_ADMIN_THEME_JS.

Syntax:

register_theme_js(js)

Parameter Description

js (list) List of relative path of js files to be added to OPENWISP_ADMIN_THEME_JS

openwisp_utils.admin_theme.theme.unregister_theme_js

Allows removing items from OPENWISP_ADMIN_THEME_JS.

Syntax:

unregister_theme_js(js)

Parameter Description

js (list) List of relative path of js files to be removed from OPENWISP_ADMIN_THEME_JS

Sending emails

openwisp_utils.admin_theme.email.send_email

This function allows sending email in both plain text and HTML version (using the template and logo that can be
customized using OPENWISP_EMAIL_TEMPLATE and OPENWISP_EMAIL_LOGO respectively).

In case the HTML version if not needed it may be disabled by setting OPENWISP_HTML_EMAIL to False.

Syntax:

send_email(subject, body_text, body_html, recipients, **kwargs)

Parameter Description

subject (str) The subject of the email template.

body_text (str) The body of the text message to be emailed.

body_html (str) The body of the html template to be emailed.

recipients (list) The list of recipients to send the mail to.

Modules

424

extra_conte
xt

optional (dict) Extra context which is passed to the template. The dictionary keys
call_to_action_text and call_to_action_url can be passed to show a call to action
button. Similarly, footer can be passed to add a footer.

**kwargs Any additional keyword arguments (e.g. attachments, headers, etc.) are passed directly to
the django.core.mail.EmailMultiAlternatives.

Important

Data passed in body should be validated and user supplied data should not be sent directly to the function.

Database Backends

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

openwisp_utils.db.backends.spatialite

This backend extends django.contrib.gis.db.backends.spatialite database backend to implement a
workaround for handling issue with sqlite 3.36 and spatialite 5.

Quality Assurance Checks

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

This package contains some common QA checks that are used in the automated builds of different OpenWISP
modules.
openwisp-qa-format 426

openwisp-qa-check 426

checkmigrations 427

Modules

425

https://docs.djangoproject.com/en/4.1/topics/email/#sending-alternative-content-types
https://code.djangoproject.com/ticket/32935

checkcommit 427

checkendline 427

checkpendingmigrations 427

checkrst 427

openwisp-qa-format

This shell script automatically formats Python and CSS code according to the OpenWISP coding style conventions.

It runs isort and black to format python code (these two dependencies are required and installed automatically
when running pip install openwisp-utils[qa]).

The stylelint and jshint programs are used to perform style checks on CSS and JS code respectively, but they
are optional: if stylelint and/or jshint are not installed, the check(s) will be skipped.

openwisp-qa-check

Shell script to run the following quality assurance checks:

• checkmigrations

• checkcommit

• checkendline

• checkpendingmigrations

• checkrst

• flake8 - Python code linter

• isort - Sorts python imports alphabetically, and separated into sections

• black - Formats python code using a common standard

• csslinter - Formats and checks CSS code using stylelint common standard

• jslinter - Checks Javascript code using jshint common standard

If a check requires a flag, it can be passed forward in the same way.

Usage example:

openwisp-qa-check --migration-path <path> --message <commit-message>

Any unneeded checks can be skipped by passing --skip-<check-name>

Usage example:

openwisp-qa-check --skip-isort

For backward compatibility csslinter and jslinter are skipped by default. To run them during QA checks pass
arguments as follows.

Usage example:

To activate csslinter
openwisp-qa-check --csslinter

To activate jslinter
openwisp-qa-check --jslinter

You can do multiple checkmigrations by passing the arguments with space-delimited string.

For example, this multiple checkmigrations:

checkmigrations --migrations-to-ignore 3 \
 --migration-path ./openwisp_users/migrations/ || exit 1

Modules

426

checkmigrations --migrations-to-ignore 2 \
 --migration-path ./tests/testapp/migrations/ || exit 1

Can be changed with:

openwisp-qa-check --migrations-to-ignore "3 2" \
 --migration-path "./openwisp_users/migrations/ ./tests/testapp/migrations/"

checkmigrations

Ensures the latest migrations created have a human readable name.

We want to avoid having many migrations named like 0003_auto_20150410_3242.py.

This way we can reconstruct the evolution of our database schemas faster, with less efforts and hence less costs.

Usage example:

checkmigrations --migration-path ./django_freeradius/migrations/

checkcommit

Ensures the last commit message follows our commit message style guidelines.

We want to keep the commit log readable, consistent and easy to scan in order to make it easy to analyze the history
of our modules, which is also a very important activity when performing maintenance.

Usage example:

checkcommit --message "$(git log --format=%B -n 1)"

If, for some reason, you wish to skip this QA check for a specific commit message you can add #noqa to the end of
your commit message.

Usage example:

[qa] Improved #20

Simulation of a special unplanned case
#noqa

checkendline

Ensures that a blank line is kept at the end of each file.

checkpendingmigrations

Ensures there django migrations are up to date and no new migrations need to be created.

It accepts an optional --migration-module flag indicating the django app name that should be passed to
./manage.py makemigrations, e.g.: ./manage.py makemigrations $MIGRATION_MODULE.

checkrst

Checks the syntax of all ReStructuredText files to ensure they can be published on Pypi or using python-sphinx.

Custom Fields

Modules

427

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

This section describes custom fields defined in openwisp_utils.fields that can be used in Django models.
openwisp_utils.fields.KeyField 428

openwisp_utils.fields.FallbackBooleanChoiceField 428

openwisp_utils.fields.FallbackCharChoiceField 428

openwisp_utils.fields.FallbackCharField 429

openwisp_utils.fields.FallbackURLField 429

openwisp_utils.fields.FallbackTextField 430

openwisp_utils.fields.FallbackPositiveIntegerField 430

openwisp_utils.fields.FallbackDecimalField 431

openwisp_utils.fields.KeyField

A model field which provides a random key or token, widely used across openwisp modules.

openwisp_utils.fields.FallbackBooleanChoiceField

This field extends Django's BooleanField and provides additional functionality for handling choices with a fallback
value.

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

This field is particularly useful when you want to present a choice between enabled and disabled options.

from django.db import models
from openwisp_utils.fields import FallbackBooleanChoiceField
from myapp import settings as app_settings

class MyModel(models.Model):
 is_active = FallbackBooleanChoiceField(
 fallback=app_settings.IS_ACTIVE_FALLBACK,
)

openwisp_utils.fields.FallbackCharChoiceField

This field extends Django's CharField and provides additional functionality for handling choices with a fallback value.

Modules

428

https://docs.djangoproject.com/en/4.2/ref/models/fields/#booleanfield
https://docs.djangoproject.com/en/4.2/ref/models/fields/#charfield

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackCharChoiceField
from myapp import settings as app_settings

class MyModel(models.Model):
 is_first_name_required = FallbackCharChoiceField(
 max_length=32,
 choices=(
 ("disabled", _("Disabled")),
 ("allowed", _("Allowed")),
 ("mandatory", _("Mandatory")),
),
 fallback=app_settings.IS_FIRST_NAME_REQUIRED,
)

openwisp_utils.fields.FallbackCharField

This field extends Django's CharField and provides additional functionality for handling text fields with a fallback
value.

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackCharField
from myapp import settings as app_settings

class MyModel(models.Model):
 greeting_text = FallbackCharField(
 max_length=200,
 fallback=app_settings.GREETING_TEXT,
)

openwisp_utils.fields.FallbackURLField

This field extends Django's URLField and provides additional functionality for handling URL fields with a fallback
value.

Note

• The field will return the fallback value whenever is set to None.

Modules

429

https://docs.djangoproject.com/en/4.2/ref/models/fields/#charfield
https://docs.djangoproject.com/en/4.2/ref/models/fields/#urlfield

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackURLField
from myapp import settings as app_settings

class MyModel(models.Model):
 password_reset_url = FallbackURLField(
 max_length=200,
 fallback=app_settings.DEFAULT_PASSWORD_RESET_URL,
)

openwisp_utils.fields.FallbackTextField

This extends Django's TextField and provides additional functionality for handling text fields with a fallback value.

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackTextField
from myapp import settings as app_settings

class MyModel(models.Model):
 extra_config = FallbackTextField(
 max_length=200,
 fallback=app_settings.EXTRA_CONFIG,
)

openwisp_utils.fields.FallbackPositiveIntegerField

This extends Django's PositiveIntegerField and provides additional functionality for handling positive integer fields
with a fallback value.

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackPositiveIntegerField
from myapp import settings as app_settings

class MyModel(models.Model):
 count = FallbackPositiveIntegerField(
 fallback=app_settings.DEFAULT_COUNT,
)

Modules

430

https://docs.djangoproject.com/en/4.2/ref/models/fields/#django.db.models.TextField
https://docs.djangoproject.com/en/4.2/ref/models/fields/#positiveintegerfield

openwisp_utils.fields.FallbackDecimalField

This extends Django's DecimalField and provides additional functionality for handling decimal fields with a fallback
value.

Note

• The field will return the fallback value whenever is set to None.

• Setting the same value as the fallback value will save None (NULL) in the database.

from django.db import models
from openwisp_utils.fields import FallbackDecimalField
from myapp import settings as app_settings

class MyModel(models.Model):
 price = FallbackDecimalField(
 max_digits=4,
 decimal_places=2,
 fallback=app_settings.DEFAULT_PRICE,
)

Admin Utilities

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

openwisp_utils.admin.TimeReadonlyAdminMixin 432

openwisp_utils.admin.ReadOnlyAdmin 432

openwisp_utils.admin.AlwaysHasChangedMixin 432

openwisp_utils.admin.CopyableFieldsAdmin 432

openwisp_utils.admin.UUIDAdmin 432

openwisp_utils.admin.ReceiveUrlAdmin 432

openwisp_utils.admin.HelpTextStackedInline 432

openwisp_utils.admin_theme.filters.InputFilter 433

openwisp_utils.admin_theme.filters.SimpleInputFilter 434

openwisp_utils.admin_theme.filters.AutocompleteFilter 434

Customizing the Submit Row in OpenWISP Admin 435

Modules

431

https://docs.djangoproject.com/en/4.2/ref/models/fields/#decimalfield

openwisp_utils.admin.TimeReadonlyAdminMixin

Admin mixin which adds two read only fields created and modified.

This is an admin mixin for models inheriting TimeStampedEditableModel which adds the fields created and
modified to the database.

openwisp_utils.admin.ReadOnlyAdmin

A read-only ModelAdmin base class.

Will include the id field by default, which can be excluded by supplying the exclude attribute, e.g.:

from openwisp_utils.admin import ReadOnlyAdmin

class PostAuthReadOnlyAdmin(ReadOnlyAdmin):
 exclude = ["id"]

openwisp_utils.admin.AlwaysHasChangedMixin

A mixin designed for inline items and model forms, ensures the item is created even if the default values are
unchanged.

Without this, when creating new objects, inline items won't be saved unless users change the default values.

openwisp_utils.admin.CopyableFieldsAdmin

An admin class that allows to set admin fields to be read-only and makes it easy to copy the fields contents.

Useful for auto-generated fields such as UUIDs, secret keys, tokens, etc.

openwisp_utils.admin.UUIDAdmin

This class is a subclass of CopyableFieldsAdmin which sets uuid as the only copyable field. This class is kept
for backward compatibility and convenience, since different models of various OpenWISP modules show uuid as
the only copyable field.

openwisp_utils.admin.ReceiveUrlAdmin

An admin class that provides an URL as a read-only input field (to make it easy and quick to copy/paste).

openwisp_utils.admin.HelpTextStackedInline

Modules

432

A stacked inline admin class that displays a help text for entire inline object. Following is an example:

from openwisp_utils.admin import HelpTextStackedInline

class SubnetDivisionRuleInlineAdmin(
 MultitenantAdminMixin, TimeReadonlyAdminMixin, HelpTextStackedInline
):
 model = Model
 # It is required to set "help_text" attribute
 help_text = {
 # (required) Help text to display
 "text": _(
 "Please keep in mind that once the subnet division rule is created "
 'and used, changing "Size" and "Number of Subnets" and decreasing '
 '"Number of IPs" will not be possible.'
),
 # (optional) You can provide a link to documentation for user reference
 "documentation_url": (
 "https://github.com/openwisp/openwisp-utils"
),
 # (optional) Icon to be shown along with help text. By default it uses
 # "/static/admin/img/icon-alert.svg"
 "image_url": "/static/admin/img/icon-alert.svg",
 }

openwisp_utils.admin_theme.filters.InputFilter

The admin_theme sub app of this package provides an input filter that can be used in the changelist page to filter
UUIDField or CharField.

Code example:

from django.contrib import admin
from openwisp_utils.admin_theme.filters import InputFilter
from my_app.models import MyModel

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 list_filter = [
 ("my_field", InputFilter),
 "other_field",
 # ...
]

By default InputFilter use exact lookup to filter items which matches to the value being searched by the user.
But this behavior can be changed by modifying InputFilter as following:

from django.contrib import admin
from openwisp_utils.admin_theme.filters import InputFilter
from my_app.models import MyModel

class MyInputFilter(InputFilter):
 lookup = "icontains"

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 list_filter = [
 ("my_field", MyInputFilter),

Modules

433

 "other_field",
 # ...
]

To know about other lookups that can be used please check Django Lookup API Reference

openwisp_utils.admin_theme.filters.SimpleInputFilter

A stripped down version of openwisp_utils.admin_theme.filters.InputFilter that provides flexibility to
customize filtering. It can be used to filter objects using indirectly related fields.

The derived filter class should define the queryset method as shown in following example:

from django.contrib import admin
from openwisp_utils.admin_theme.filters import SimpleInputFilter
from my_app.models import MyModel

class MyInputFilter(SimpleInputFilter):
 parameter_name = "shelf"
 title = _("Shelf")

 def queryset(self, request, queryset):
 if self.value() is not None:
 return queryset.filter(name__icontains=self.value())

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 list_filter = [
 MyInputFilter,
 "other_field",
 # ...
]

openwisp_utils.admin_theme.filters.AutocompleteFilter

The admin_theme sub app of this package provides an auto complete filter that uses the django-autocomplete
widget to load filter data asynchronously.

This filter can be helpful when the number of objects is too large to load all at once which may cause the slow loading
of the page.

from django.contrib import admin
from openwisp_utils.admin_theme.filters import AutocompleteFilter
from my_app.models import MyModel, MyOtherModel

class MyAutoCompleteFilter(AutocompleteFilter):
 field_name = "field"
 parameter_name = "field_id"
 title = _("My Field")

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 list_filter = [MyAutoCompleteFilter, ...]

@admin.register(MyOtherModel)

Modules

434

https://docs.djangoproject.com/en/4.2/ref/models/lookups/#django.db.models.Lookup

class MyOtherModelAdmin(admin.ModelAdmin):
 search_fields = ["id"]

To customize or know more about it, please refer to the django-admin-autocomplete-filter documentation.

Customizing the Submit Row in OpenWISP Admin

In the OpenWISP admin interface, the submit_line.html template controls the rendering of action buttons in the
model form's submit row. OpenWISP Utils extends this template to allow the addition of custom buttons.

To add custom buttons, you can use the additional_buttons context variable. This variable should be a list of
dictionaries, each representing a button with customizable properties such as type, class, value, title, URL, or even
raw HTML content.

Here's an example of adding a custom button with both standard properties and raw HTML to the submit row in the
change_view method:

from django.contrib import admin
from django.utils.safestring import mark_safe
from .models import MyModel

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 def change_view(
 self, request, object_id, form_url="", extra_context=None
):
 extra_context = extra_context or {}
 extra_context["additional_buttons"] = [
 {
 "type": "button",
 "class": "btn btn-secondary",
 "value": "Custom Action",
 "title": "Perform a custom action",
 "url": "https://example.com",
 },
 {
 "raw_html": mark_safe(
 '<button type="button" class="btn btn-warning" '
 "onclick=\"alert('This is a raw HTML button!')\">"
 "Raw HTML Button</button>"
)
 },
]
 return super().change_view(
 request, object_id, form_url, extra_context
)

In this example, two buttons are added to the submit row:

1. A standard button labeled "Custom Action" with a link to https://example.com.

2. A button rendered using raw HTML that triggers an alert when clicked, labeled "Raw HTML Button." The raw
HTML is wrapped in mark_safe to ensure it is rendered correctly.

The mark_safe function is necessary to ensure that the raw HTML is rendered as HTML and not escaped as plain
text.

Test Utilities

Modules

435

https://github.com/farhan0581/django-admin-autocomplete-filter#usage

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

openwisp_utils.tests.catch_signal 436

openwisp_utils.tests.TimeLoggingTestRunner 436

openwisp_utils.tests.capture_stdout 437

openwisp_utils.tests.capture_stderr 437

openwisp_utils.tests.capture_any_output 438

openwisp_utils.tests.AssertNumQueriesSubTestMixin 438

openwisp_utils.test_selenium_mixins.SeleniumTestMixin 438

openwisp_utils.tests.catch_signal

This method can be used to mock a signal call in order to easily verify that the signal has been called.

Usage example as a context-manager:

from openwisp_utils.tests import catch_signal

with catch_signal(openwisp_signal) as handler:
 model_instance.trigger_signal()
 handler.assert_called_once_with(
 arg1="value1",
 arg2="value2",
 sender=ModelName,
 signal=openwisp_signal,
)

openwisp_utils.tests.TimeLoggingTestRunner

Modules

436

This class extends the default test runner provided by Django and logs the time spent by each test, making it easier
to spot slow tests by highlighting time taken by it in yellow (time shall be highlighted in red if it crosses the second
threshold).

By default tests are considered slow if they take more than 0.3 seconds but you can control this with
OPENWISP_SLOW_TEST_THRESHOLD.

In order to switch to this test runner you have set the following in your settings.py:

TEST_RUNNER = "openwisp_utils.tests.TimeLoggingTestRunner"

openwisp_utils.tests.capture_stdout

This decorator can be used to capture standard output produced by tests, either to silence it or to write assertions.

Example usage:

from openwisp_utils.tests import capture_stdout

@capture_stdout()
def test_something(self):
 function_generating_output() # pseudo code

@capture_stdout()
def test_something_again(self, captured_ouput):
 # pseudo code
 function_generating_output()
 # now you can create assertions on the captured output
 self.assertIn("expected stdout", captured_ouput.getvalue())
 # if there are more than one assertions, clear the captured output first
 captured_error.truncate(0)
 captured_error.seek(0)
 # you can create new assertion now
 self.assertIn("another output", captured_ouput.getvalue())

Notes:

• If assertions need to be made on the captured output, an additional argument (in the example above is named
captured_output) can be passed as an argument to the decorated test method, alternatively it can be
omitted.

• A StingIO instance is used for capturing output by default but if needed it's possible to pass a custom
StringIO instance to the decorator function.

openwisp_utils.tests.capture_stderr

Equivalent to capture_stdout, but for standard error.

Example usage:

from openwisp_utils.tests import capture_stderr

@capture_stderr()
def test_error(self):
 function_generating_error() # pseudo code

@capture_stderr()
def test_error_again(self, captured_error):
 # pseudo code
 function_generating_error()

Modules

437

https://docs.djangoproject.com/en/4.2/ref/settings/#std:setting-TEST_RUNNER

 # now you can create assertions on captured error
 self.assertIn("expected error", captured_error.getvalue())
 # if there are more than one assertions, clear the captured error first
 captured_error.truncate(0)
 captured_error.seek(0)
 # you can create new assertion now
 self.assertIn("another expected error", captured_error.getvalue())

openwisp_utils.tests.capture_any_output

Equivalent to capture_stdout and capture_stderr, but captures both types of output (standard output and
standard error).

Example usage:

from openwisp_utils.tests import capture_any_output

@capture_any_output()
def test_something_out(self):
 function_generating_output() # pseudo code

@capture_any_output()
def test_out_again(self, captured_output, captured_error):
 # pseudo code
 function_generating_output_and_errors()
 # now you can create assertions on captured error
 self.assertIn("expected stdout", captured_output.getvalue())
 self.assertIn("expected stderr", captured_error.getvalue())

openwisp_utils.tests.AssertNumQueriesSubTestMixin

This mixin overrides the assertNumQueries assertion from the django test case to run in a subTest so that the
query check does not block the whole test if it fails.

Example usage:

from django.test import TestCase
from openwisp_utils.tests import AssertNumQueriesSubTestMixin

class MyTest(AssertNumQueriesSubTestMixin, TestCase):
 def my_test(self):
 with self.assertNumQueries(2):
 MyModel.objects.count()

 # the assertion above will fail but this line will be executed
 print("This will be printed anyway.")

openwisp_utils.test_selenium_mixins.SeleniumTestMixin

This mixin provides basic setup for Selenium tests with method to open URL and login and logout a user.

Other Utilities

Modules

438

https://docs.djangoproject.com/en/4.2/topics/testing/tools/#django.test.TransactionTestCase.assertNumQueries

Note

This documentation page is aimed at developers who want to customize, change or extend the code of
OpenWISP Utils in order to modify its behavior (e.g.: for personal or commercial purposes or to fix a bug,
implement a new feature or contribute to the project in general).

If you aren't a developer and you are looking for information on how to use OpenWISP, please refer to:

• General OpenWISP Quickstart

• OpenWISP Utils User Docs

Model Utilities 439

openwisp_utils.base.UUIDModel 439

openwisp_utils.base.TimeStampedEditableModel 439

REST API Utilities 439

openwisp_utils.api.serializers.ValidatedModelSerializer 439

openwisp_utils.api.apps.ApiAppConfig 440

Storage Utilities 440

openwisp_utils.storage.CompressStaticFilesStorage 440

Other Utilities 440

openwisp_utils.utils.get_random_key 440

openwisp_utils.utils.deep_merge_dicts 440

openwisp_utils.utils.default_or_test 441

openwisp_utils.utils.print_color 441

openwisp_utils.utils.SorrtedOrderedDict 441

openwisp_utils.tasks.OpenwispCeleryTask 441

openwisp_utils.utils.retryable_request 441

Model Utilities

openwisp_utils.base.UUIDModel

Model class which provides a UUID4 primary key.

openwisp_utils.base.TimeStampedEditableModel

Model class inheriting UUIDModel which provides two additional fields:

• created

• modified

Which use respectively AutoCreatedField, AutoLastModifiedField from model_utils.fields
(self-updating fields providing the creation date-time and the last modified date-time).

REST API Utilities

openwisp_utils.api.serializers.ValidatedModelSerializer

A model serializer which calls the model instance full_clean().

Modules

439

openwisp_utils.api.apps.ApiAppConfig

If you're creating an OpenWISP module which provides a REST API built with Django REST Framework, chances is
that you may need to define some default settings to control its throttling or other aspects.

Here's how to easily do it:

from django.conf import settings
from django.utils.translation import ugettext_lazy as _
from openwisp_utils.api.apps import ApiAppConfig

class MyModuleConfig(ApiAppConfig):
 name = "my_openwisp_module"
 label = "my_module"
 verbose_name = _("My OpenWISP Module")

 # assumes API is enabled by default
 API_ENABLED = getattr(
 settings, "MY_OPENWISP_MODULE_API_ENABLED", True
)
 # set throttling rates for your module here
 REST_FRAMEWORK_SETTINGS = {
 "DEFAULT_THROTTLE_RATES": {"my_module": "400/hour"},
 }

Every openwisp module which has an API should use this class to configure its own default settings, which will be
merged with the settings of the other modules.

Storage Utilities

openwisp_utils.storage.CompressStaticFilesStorage

A static storage backend for compression inheriting from django-compress-staticfiles's
CompressStaticFilesStorage class.

Adds support for excluding file types using OPENWISP_STATICFILES_VERSIONED_EXCLUDE setting.

To use point STATICFILES_STORAGE to openwisp_utils.storage.CompressStaticFilesStorage in
settings.py.

STATICFILES_STORAGE = "openwisp_utils.storage.CompressStaticFilesStorage"

Other Utilities

openwisp_utils.utils.get_random_key

Generates an random string of 32 characters.

openwisp_utils.utils.deep_merge_dicts

Returns a new dict which is the result of the merge of the two dictionaries, all elements are deep-copied to avoid
modifying the original data structures.

Usage:

from openwisp_utils.utils import deep_merge_dicts

mergd_dict = deep_merge_dicts(dict1, dict2)

Modules

440

https://pypi.org/project/django-compress-staticfiles/

openwisp_utils.utils.default_or_test

If the program is being executed during automated tests the value supplied in the test argument will be returned,
otherwise the one supplied in the value argument is returned.

from openwisp_utils.utils import default_or_test

THROTTLE_RATE = getattr(
 settings,
 "THROTTLE_RATE",
 default_or_test(value="20/day", test=None),
)

openwisp_utils.utils.print_color

default colors: ['white_bold', 'green_bold', 'yellow_bold', 'red_bold']

If you want to print a string in Red Bold, you can do it as below.

from openwisp_utils.utils import print_color

print_color("This is the printed in Red Bold", color_name="red_bold")

You may also provide the end argument similar to built-in print method.

openwisp_utils.utils.SorrtedOrderedDict

Extends collections.SortedDict and implements logic to sort inserted items based on key value. Sorting is
done at insert operation which incurs memory space overhead.

openwisp_utils.tasks.OpenwispCeleryTask

A custom celery task class that sets hard and soft time limits of celery tasks using
OPENWISP_CELERY_HARD_TIME_LIMIT and OPENWISP_CELERY_SOFT_TIME_LIMIT settings respectively.

Usage:

from celery import shared_task

from openwisp_utils.tasks import OpenwispCeleryTask

@shared_task(base=OpenwispCeleryTask)
def your_celery_task():
 pass

Note: This task class should be used for regular background tasks but not for complex background tasks which can
take a long time to execute (e.g.: firmware upgrades, network operations with retry mechanisms).

openwisp_utils.utils.retryable_request

A utility function for making HTTP requests with built-in retry logic. This function is useful for handling transient errors
encountered during HTTP requests by automatically retrying failed requests with exponential backoff. It provides
flexibility in configuring various retry parameters to suit different use cases.

Usage:

from openwisp_utils.utils import retryable_request

response = retryable_request(
 method="GET",

Modules

441

 url="https://openwisp.org",
 timeout=(4, 8),
 max_retries=3,
 backoff_factor=1,
 backoff_jitter=0.0,
 status_forcelist=(429, 500, 502, 503, 504),
 allowed_methods=(
 "HEAD",
 "GET",
 "PUT",
 "DELETE",
 "OPTIONS",
 "TRACE",
 "POST",
),
 retry_kwargs=None,
 headers={"Authorization": "Bearer token"},
)

Paramters:

• method (str): The HTTP method to be used for the request in lower case (e.g., 'get', 'post', etc.).

• timeout (tuple): A tuple containing two elements: connection timeout and read timeout in seconds (default: (4,
8)).

• max_retries (int): The maximum number of retry attempts in case of request failure (default: 3).

• backoff_factor (float): A factor by which the retry delay increases after each retry (default: 1).

• backoff_jitter (float): A jitter to apply to the backoff factor to prevent retry storms (default: 0.0).

• status_forcelist (tuple): A tuple of HTTP status codes for which retries should be attempted (default: (429,
500, 502, 503, 504)).

• allowed_methods (tuple): A tuple of HTTP methods that are allowed for the request (default: ('HEAD', 'GET',
'PUT', 'DELETE', 'OPTIONS', 'TRACE', 'POST')).

• retry_kwargs (dict): Additional keyword arguments to be passed to the retry mechanism (default: None).

• **kwargs: Additional keyword arguments to be passed to the underlying request method (e.g. 'headers', etc.).

This method will raise a requests.exceptions.RetryError if the request remains unsuccessful even after all
retry attempts have been exhausted. This exception indicates that the operation could not be completed successfully
despite the retry mechanism.

Other useful resources:

• Settings

OpenWrt Agents

OpenWISP Config Agent

Seealso

Source code: github.com/openwisp/openwisp-config.

OpenWISP Config is an OpenWrt configuration agent that automates network management tasks. It interfaces with
the OpenWISP Controller to streamline configuration deployment.

For a comprehensive overview of features, please refer to the OpenWISP Config: Features page.

OpenWrt Agents

442

https://github.com/openwisp/openwisp-config
https://openwrt.org/

The following diagram illustrates the role of the OpenWrt Config Agent in the OpenWISP architecture.

OpenWISP Architecture: highlighted OpenWISP Config Agent for OpenWrt

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

OpenWISP Config: Features

OpenWISP Config agent provides the following features:

• Fetches the latest configuration from the OpenWISP Controller, ensuring devices stay up-to-date.

• Combines centrally managed settings with local configurations, preserving local overrides.

• Performs rollback of previous configuration when the new configuration fails to apply.

• Simplifies onboarding by automatically registering devices with the controller using a shared secret.

• Supports OpenWrt hotplug events.

Quick Start Guide

To install the Config Agent on your OpenWrt system, follow these steps:

OpenWrt Agents

443

../_images/architecture-v2-openwrt-config-agent.png

Download and install the latest build from downloads.openwisp.io. Copy the URL of the IPK file you want to
download, then run the following commands on your OpenWrt device:

cd /tmp # /tmp runs in memory
wget <URL-just-copied>
opkg update
opkg install ./<file-just-downloaded>

Replace <URL-just-copied> with the URL of the package from downloads.openwisp.io.

You can also install from the official OpenWrt packages:

opkg update
opkg install openwisp-config

Important

We recommend installing from our latest builds because the OpenWrt packages are not always up to date.

Once the config agent is installed, you need to configure it. Edit the config file located at /etc/config/openwisp.

You will see the default config file, as shown below.

For more information about the config options please see the README
or https://openwisp.io/docs/dev/openwrt-config-agent/user/settings.html

config controller 'http'
 #option url 'https://openwisp2.mynetwork.com'
 #option interval '120'
 #option verify_ssl '1'
 #option shared_secret ''
 #option consistent_key '1'
 #option mac_interface 'eth0'
 #option management_interface 'tun0'
 #option merge_config '1'
 #option test_config '1'
 #option test_script '/usr/sbin/mytest'
 #option hardware_id_script '/usr/sbin/read_hw_id'
 #option hardware_id_key '1'
 option uuid ''
 option key ''
 # curl options
 #option connect_timeout '15'
 #option max_time '30'
 #option capath '/etc/ssl/certs'
 #option cacert '/etc/ssl/certs/ca-certificates.crt'
 # hooks
 #option pre_reload_hook '/usr/sbin/my_pre_reload_hook'
 #option post_reload_hook '/usr/sbin/my_post_reload_hook'

Uncomment and change the following fields:

• url: the hostname of your OpenWISP controller. For example, if you are hosting your OpenWISP server locally
and set the IP Address to "192.168.56.2", the URL would be https://192.168.56.2.

• verify_ssl: set to '0' if your controller's SSL certificate is self-signed; in production, you need a valid SSL
certificate to keep your instance secure.

• shared_secret: you can retrieve this from the OpenWISP admin panel, in the Organization settings. The list
of organizations is available at /admin/openwisp_users/organization/.

OpenWrt Agents

444

http://downloads.openwisp.io/?prefix=openwisp-config/
http://downloads.openwisp.io/?prefix=openwisp-config/

• management_interface: this is the interface which OpenWISP uses to reach the device. Please refer to
Setting Up the Management Network for more information.

Note

When testing or developing using the Django development server directly from your computer, make sure the
server listens on all interfaces (./manage.py runserver 0.0.0.0:8000) and then just point OpenWISP
Config to use your local IP address (e.g., http://192.168.1.34:8000).

Save the file and start openwisp-config:

/etc/init.d/openwisp-config restart

Your OpenWrt device should register itself to your OpenWISP controller. Check the devices page in the OpenWISP
admin dashboard to make sure your device has registered successfully.

Seealso

• For troubleshooting and debugging, refer to Debugging.

• To learn more about the configuration options of the config agent, refer to Settings.

• For instructions on how to compile the package, refer to Compiling a Custom OpenWrt Image.

• Read about the complementary Monitoring Agent.

Settings

Configuration Options 445

Merge Configuration 447

Configuration Test 447

Disable Testing 447

Define Custom Tests 447

Hardware ID 447

Boot Up Delay 447

Hooks 448

pre-reload-hook 448

post-reload-hook 448

post-registration-hook 449

Unmanaged Configurations 449

Configuration Options

UCI configuration options must go in /etc/config/openwisp.

• url: URL of controller, e.g.: https://demo.openwisp.io

• interval: time in seconds between checks for changes to the configuration, defaults to 120

• management_interval: time in seconds between the management ip discovery attempts, defaults to
$interval/12

• registration_interval: time in seconds between the registration attempts, defaults to $interval/4

• verify_ssl: whether SSL verification must be performed or not, defaults to 1

OpenWrt Agents

445

• shared_secret: shared secret, needed for Automatic registration

• consistent_key: whether Consistent Key Generation is enabled or not, defaults to 1

• merge_config: whether Merge Configuration is enabled or not, defaults to 1

• tags: template tags to use during registration, multiple tags separated by space can be used, for more
information see Template Tags

• test_config: whether a new configuration must be tested before being considered applied, defaults to 1

• test_retries: maximum number of retries when doing the default configuration test, defaults to 3

• test_script: custom test script, read more about this feature in Configuration Test

• uuid: unique identifier of the router configuration in the controller application

• key: key required to download the configuration

• hardware_id_script: custom script to read out a hardware id (e.g. a serial number), read more about this
feature in Hardware ID

• hardware_id_key: whether to use the hardware id for key generation or not, defaults to 1

• bootup_delay: maximum value in seconds of a random delay after boot, defaults to 10, see Boot Up Delay

• unmanaged: list of config sections which won't be overwritten, see Unmanaged Configurations

• capath: value passed to curl --capath argument, by default is empty; see also curl capath argument

• cacert: value passed to curl --cacert argument, by default is empty; see also curl cacert argument

• connect_timeout: value passed to curl --connect-timeout argument, defaults to 15; see curl
connect-timeout argument

• max_time: value passed to curl --max-time argument, defaults to 30; see curl max-time argument

• mac_interface: the interface from which the MAC address is taken when performing automatic registration,
defaults to eth0

• management_interface: management interface name (both openwrt UCI names and linux interface names
are supported), it's used to collect the management interface ip address and send this information to the
OpenWISP server, for more information please read how to make sure OpenWISP can reach your devices

• default_hostname: if your firmware has a custom default hostname, you can use this configuration option so
the agent can recognize it during registration and replicate the standard behavior (new device will be named
after its mac address, to avoid having many new devices with the same name), the possible options are to
either set this to the value of the default hostname used by your firmware, or set it to * to always force to
register new devices using their mac address as their name (this last option is useful if you have a firmware
which can work on different hardware models and each model has a different default hostname)

• pre_reload_hook: path to custom executable script, see pre-reload-hook

• post_reload_hook: path to custom executable script, see post-reload-hook

• post_reload_delay: delay in seconds to wait before the post-reload-hook and any configuration test,
defaults to 5

• post_registration_hook: path to custom executable script, see post-registration-hook

• respawn_threshold: time in seconds used as procd respawn threshold, defaults to 3600

• respawn_timeout: time in seconds used as procd respawn timeout, defaults to 5

• respawn_retry: number of procd respawn retries (use 0 for infinity), defaults to 5

• checksum_max_retries: maximum number of retries for checksum requests which fail with 404, defaults to
5, after these failures the agent will assume the device has been deleted from OpenWISP Controller and will
exit; please keep in mind that due to respawn_retry, procd will try to respawn the agent after it exits, so the
total number of attempts which will be tried has to be calculated as:
checksum_max_retries * respawn_retry

• checksum_retry_delay: time in seconds between retries, defaults to 6

OpenWrt Agents

446

https://curl.haxx.se/docs/manpage.html#--capath
https://curl.haxx.se/docs/manpage.html#--cacert
https://curl.haxx.se/docs/manpage.html#--connect-timeout
https://curl.haxx.se/docs/manpage.html#--connect-timeout
https://curl.haxx.se/docs/manpage.html#-m

Merge Configuration

By default the remote configuration is merged with the local one. This has several advantages:

• less boilerplate configuration stored in the remote controller

• local users can change local configurations without fear of losing their changes

It is possible to turn this feature off by setting merge_config to 0 in /etc/config/openwisp.

Details about the merging behavior:

• if a configuration option or list is present both in the remote configuration and in the local configuration, the
remote configurations will overwrite the local ones

• configuration options that are present in the local configuration but are not present in the remote configuration
will be retained

• configuration files that were present in the local configuration and are replaced by the remote configuration are
backed up and eventually restored if the modifications are removed from the controller

Configuration Test

When a new configuration is downloaded, the agent will first backup the current running configuration, then it will try
to apply the new one and perform a basic test, which consists in trying to contact the controller again;

If the test succeeds, the configuration is considered applied and the backup is deleted.

If the test fails, the backup is restored and the agent will log the failure via syslog (see Debugging for more
information on auditing logs).

Disable Testing

To disable this feature, set the test_config option to 0, then reload/restart openwisp-config.

Define Custom Tests

If the default test does not satisfy your needs, you can define your own tests in an executable script and indicate the
path to this script in the test_script config option.

If the exit code of the executable script is higher than 0 the test will be considered failed.

Hardware ID

It is possible to use a unique hardware id for device identification, for example a serial number.

If hardware_id_script contains the path to an executable script, it will be used to read out the hardware id from
the device. The hardware id will then be sent to the controller when the device is registered.

If the above configuration option is set then the hardware id will also be used for generating the device key, instead
of the mac address. If you use a hardware id script but prefer to use the mac address for key generation then set
hardware_id_key to 0.

See also the related hardware ID settings in OpenWISP Controller.

Boot Up Delay

The option bootup_delay is used to delay the initialization of the agent for a random amount of seconds after the
device boots.

The value specified in this option represents the maximum value of the range of possible random values, the
minimum value being 0.

OpenWrt Agents

447

The default value of this option is 10, meaning that the initialization of the agent will be delayed for a random number
of seconds, this random number being comprised between 0 and 10.

This feature is used to spread the load on the OpenWISP server when a large amount of devices boot at the same
time after a blackout.

Large OpenWISP installations may want to increase this value.

Hooks

Warning

Hooks are deprecated in favor of Hotplug events.

Below are described the available hooks in openwisp-config.

pre-reload-hook

Defaults to /etc/openwisp/pre-reload-hook; the hook is not called if the path does not point to an executable
script file.

This hook is called each time openwisp-config applies a configuration, but before services are reloaded, more
precisely in these situations:

• after a new remote configuration is downloaded and applied

• after a configuration test failed (see Configuration Test) and a previous backup is restored

You can use this hook to perform custom actions before services are reloaded, e.g.: to perform auto-configuration
with LibreMesh.

Example configuration:

config controller 'http'
 ...
 option pre_reload_hook '/usr/sbin/my-pre-reload-hook'
 ...

Complete example:

set hook in configuration
uci set openwisp.http.pre_reload_hook='/usr/sbin/my-pre-reload-hook'
uci commit openwisp
create hook script
cat <<EOF > /usr/sbin/my-pre-reload-hook
#!/bin/sh
put your custom operations here
EOF
make script executable
chmod +x /usr/sbin/my-pre-reload-hook
reload openwisp-config by using procd's convenient utility
reload_config

post-reload-hook

Defaults to /etc/openwisp/post-reload-hook; the hook is not called if the path does not point to an
executable script file.

Same as pre_reload_hook but with the difference that this hook is called after the configuration services have been
reloaded.

OpenWrt Agents

448

http://libre-mesh.org/

post-registration-hook

Defaults to /etc/openwisp/post-registration-hook;

Path to an executable script that will be called after the registration is completed.

Unmanaged Configurations

In some cases it could be necessary to ensure that some configuration sections won't be overwritten by the
controller.

These settings are called "unmanaged", in the sense that they are not managed remotely. In the default configuration
of openwisp-config there are no unmanaged settings.

Example unmanaged settings:

config controller 'http'
 ...
 list unmanaged 'system.@led'
 list unmanaged 'network.loopback'
 list unmanaged 'network.@switch'
 list unmanaged 'network.@switch_vlan'
 ...

Note the lines with the @ sign; this syntax means any UCI section of the specified type will be unmanaged.

In the previous example, the loopback interface, all led settings, all switch and switch_vlan directives will
never be overwritten by the remote configuration and will only be editable via SSH or via the web interface.

Automatic registration

When the agent starts, if both uuid and key are not defined, it will consider the router to be unregistered and it will
attempt to perform an automatic registration.

The automatic registration is performed only if shared_secret is correctly set.

The device will choose as name one of its mac addresses, unless its hostname is not OpenWrt, in the latter case it
will simply register itself with the current hostname.

When the registration is completed, the agent will automatically set uuid and key in /etc/config/openwisp.

To enable this feature by default on your firmware images, follow the procedure described in Compiling a Custom
OpenWrt Image.

Consistent Key Generation

When using Automatic registration, this feature allows devices to keep the same configuration even if reset or
reflashed.

The key is generated consistently with an operation like md5sum(mac_address + shared_secret); this allows
the controller application to recognize that an existing device is registering itself again.

The mac_interface configuration key specifies which interface is used to calculate the mac address, this setting
defaults to eth0. If no eth0 interface exists, the first non-loopback, non-bridge and non-tap interface is used. You
won't need to change this setting often, but if you do, ensure you choose a physical interface which has constant
mac address.

The "Consistent key generation" feature is enabled by default, but must be enabled also in the controller application
in order to work.

Hotplug Events

The agent sends the following Hotplug events:

OpenWrt Agents

449

https://openwrt.org/docs/guide-user/base-system/hotplug

• After the registration is successfully completed: post-registration

• After the registration failed: registration-failed

• When the agent first starts after the booting process: bootup

• After any subsequent restart: restart

• After the configuration has been successfully applied: config-applied

• After the previous configuration has been restored: config-restored

• Before services are reloaded: pre-reload

• After services have been reloaded: post-reload

• After the agent has finished its check cycle, before going to sleep: end-of-cycle

If a hotplug event is sent by openwisp-config then all scripts existing in /etc/hotplug.d/openwisp/ will be
executed. In scripts the type of event is visible in the variable $ACTION. For example, a script to log the hotplug
events, /etc/hotplug.d/openwisp/01_log_events, could look like this:

#!/bin/sh

logger "openwisp-config sent a hotplug event. Action: $ACTION"

It will create log entries like this:

Wed Jun 22 06:15:17 2022 user.notice root: openwisp-config sent a hotplug event. Action: registration-failed

For more information on using these events refer to the Hotplug Events OpenWrt Documentation.

Compiling a Custom OpenWrt Image

If you are managing many devices and customizing your openwisp-config configuration by hand on each new
device, you should switch to using a custom OpenWrt firmware image that includes openwisp-config and its
precompiled configuration file, this strategy has a few important benefits:

• you can save yourself the effort of installing and configuring openwisp-config on each device

• you can enable Automatic registration by setting shared_secret, hence saving extra time and effort to
register each device on the controller app

• if you happen to reset the firmware to initial settings, these precompiled settings will be restored as well

The following procedure illustrates how to compile a custom OpenWrt image with a precompiled minimal
/etc/config/openwisp configuration file:

git clone https://github.com/openwrt/openwrt.git openwrt
cd openwrt
git checkout <openwrt-branch>

include precompiled file
mkdir -p files/etc/config
cat <<EOF > files/etc/config/openwisp
config controller 'http'
 # change the values of the following 2 options
 option url 'https://demo.openwisp.io'
 option shared_secret 'nzXTd7qpXKPNdrWZDsYoMxbGpOrEVjeD'
EOF

configure feeds
echo "src-git openwisp https://github.com/openwisp/openwisp-config.git" > feeds.conf
cat feeds.conf.default >> feeds.conf
./scripts/feeds update -a
./scripts/feeds install -a
replace with your desired arch target
arch="ar71xx"

OpenWrt Agents

450

https://openwrt.org/docs/guide-user/base-system/hotplug
https://openwrt.org/

echo "CONFIG_TARGET_$arch=y" > .config
echo "CONFIG_PACKAGE_openwisp-config=y" >> .config
make defconfig
compile with verbose output
make -j1 V=s

Automate Compilation for Different Organizations

If you are working with OpenWISP, there are chances you may be compiling several images for different
organizations (clients or non-profit communities) and use cases (full featured, mesh, 4G, etc).

Doing this by hand without tracking your changes can lead you into a very disorganized and messy situation.

To alleviate this pain you can use ansible-openwisp2-imagegenerator.

Debugging

Debugging openwisp-config can be easily done by using the logread command:

logread

Use grep to filter out any other log message:

logread | grep openwisp

If you are in doubt openwisp-config is running at all, you can check with:

ps | grep openwisp

You should see something like:

3800 root 1200 S {openwisp-config} /bin/sh /usr/sbin/openwisp-config --url https://demo.openwisp.io --verify-ssl 1 --consistent-key 1 ...

You can inspect the version of openwisp-config currently installed with:

openwisp-config --version

Developer Documentation

Note

This page is for developers who want to customize or extend OpenWISP Config, whether for bug fixes, new
features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWISP Config User Docs

Compiling openwisp-config 451

Quality Assurance Checks 452

Run tests 452

Compiling openwisp-config

The following procedure illustrates how to compile openwisp-config and its dependencies:

OpenWrt Agents

451

https://github.com/openwisp/ansible-openwisp2-imagegenerator

git clone https://github.com/openwrt/openwrt.git openwrt
cd openwrt
git checkout <openwrt-branch>

configure feeds
echo "src-git openwisp https://github.com/openwisp/openwisp-config.git" > feeds.conf
cat feeds.conf.default >> feeds.conf
./scripts/feeds update -a
./scripts/feeds install -a
any arch/target is fine because the package is architecture indipendent
arch="ar71xx"
echo "CONFIG_TARGET_$arch=y" > .config;
echo "CONFIG_PACKAGE_openwisp-config=y" >> .config
make defconfig
make tools/install
make toolchain/install
make package/openwisp-config/compile

Alternatively, you can configure your build interactively with make menuconfig, in this case you will need to select
openwisp-config by going to Administration > openwisp:

git clone https://github.com/openwrt/openwrt.git openwrt
cd openwrt
git checkout <openwrt-branch>

configure feeds
echo "src-git openwisp https://github.com/openwisp/openwisp-config.git" > feeds.conf
cat feeds.conf.default >> feeds.conf
./scripts/feeds update -a
./scripts/feeds install -a
make menuconfig
go to Administration > openwisp and select the variant you need interactively
make -j1 V=s

Quality Assurance Checks

We use LuaFormatter and shfmt to format lua files and shell scripts respectively.

First of all, you will need install the lua packages mentioned above, then you can format all files with:

./qa-format

To run quality assurance checks you can use the run-qa-checks script:

install openwisp-utils QA tools first
pip install openwisp-utils[qa]

run QA checks before committing code
./run-qa-checks

Run tests

To run the unit tests, you must install the required dependencies first; to do this, you can take a look at the
install-dev.sh script.

You can run all the unit tests by launching the dedicated script:

./runtests

Alternatively, you can run specific tests, e.g.:

cd openwisp-config/tests/
lua test_utils.lua -v

OpenWrt Agents

452

https://luarocks.org/modules/tammela/luaformatter
https://github.com/mvdan/sh#shfmt
https://github.com/openwisp/openwisp-config/blob/master/install-dev.sh

OpenWISP Monitoring Agent

Seealso

Source code: github.com/openwisp/openwrt-openwisp-monitoring.

The OpenWISP Monitoring OpenWrt agent is responsible for collecting monitoring metrics from network devices and
sending them to a central OpenWISP Monitoring Server via HTTPS, allowing to collect critical network metrics
without the need of a VPN.

These metrics include:

• General system information, uptime

• Interface traffic

• WiFi client statistics

• CPU load averages

• Memory usage

• Storage space and usage

• Cellular Modem Status, Cellular Signal Quality/Strength

By collecting this data, administrators gain valuable insights into network health and performance, facilitating
proactive troubleshooting of potential issues.

The following diagram illustrates the role of OpenWrt Monitoring Agent within the OpenWISP architecture.

OpenWISP Architecture: highlighted OpenWrt Monitoring Agent

Important

For an enhanced viewing experience, open the image above in a new browser tab.

Refer to Architecture, Modules, Technologies for more information.

Quick Start Guide

To install the Monitoring Agent on your OpenWrt system, follow these steps.

Download and install the latest builds of both netjson-monitoring and openwisp-monitoring from
downloads.openwisp.io. Copy the URL of the IPK file you want to download, then run the following commands on
your OpenWrt device:

OpenWrt Agents

453

https://github.com/openwisp/openwrt-openwisp-monitoring
../_images/architecture-v2-openwrt-monitoring-agent.png
http://downloads.openwisp.io/?prefix=openwisp-monitoring/

cd /tmp # /tmp runs in memory
opkg update
Install netjson-monitoring first
wget <URL-just-copied>
opkg install ./<file-just-downloaded>
Install openwisp-monitoring last
wget <URL-just-copied>
opkg install ./<file-just-downloaded>

Replace <URL-just-copied> with the URL of the respective package from downloads.openwisp.io.

Now you can start the agent:

/etc/init.d/openwisp-monitoring start

Seealso

• For troubleshooting and debugging, refer to Debugging.

• To learn more about the configuration options of the monitoring agent, refer to Settings.

• For instructions on how to compile the package, refer to Compiling the Monitoring Agent.

• Read about the complementary Config Agent.

Settings

Configuration Options 454

Collecting vs. Sending 454

Collect Mode 455

Send Mode 455

Boot-Up Delay 455

Configuration Options

UCI configuration options should be placed in /etc/config/openwisp-monitoring.

• monitored_interfaces: Specifies the interfaces to be monitored. Defaults to *, meaning all interfaces.

• interval: Sets the interval in seconds for the agent to send data to the server. The default is 300 seconds.

• verbose_mode: Can be enabled by setting to 1 to assist in debugging. The default is 0 (disabled).

• required_memory: Minimum available memory required to temporarily store data. Defaults to 0.05 (5
percent).

• max_retries: Maximum number of retries if there is a failure in sending data to the server. The default is 5
retries.

• bootup_delay: Maximum value, in seconds, of a random delay after boot-up. Defaults to 10. See Boot-Up
Delay.

If the maximum retries are reached, the agent will attempt to send data in the next cycle.

Collecting vs. Sending

The monitoring agent uses two procd services: one for collecting data and another for sending it.

This setup allows for more flexible handling of data transmission failures. Data collected during network outages can
be sent later, while new data continues to be collected. If there is a backlog of data to upload, the collection process
will continue independently.

OpenWrt Agents

454

http://downloads.openwisp.io/?prefix=openwisp-monitoring/
https://github.com/openwisp/openwrt-openwisp-monitoring/blob/master/openwisp-monitoring/files/monitoring.agent

The monitoring agent operates in two modes: send and collect.

Collect Mode

When the OpenWISP monitoring agent operates in this mode, it is responsible for collecting and storing data.

The agent periodically checks if there is enough memory available. If sufficient memory is detected, data will be
collected and saved in temporary storage with a timestamp (in UTC).

Once the data is stored, a signal is sent to the other agent to ensure the data is transmitted promptly.

Important

Ensure that the date and time on the device are correctly set. Incorrect timestamps can lead to inaccurate data in
the time series database.

Send Mode

When operating in this mode, the OpenWISP monitoring agent handles data transmission.

The agent checks for available data files in temporary storage. If no data files are found, the agent will wait for the
specified interval and check again. This process continues until data files are detected. If a signal is received from
the other agent, the wait will be interrupted, and the agent will start sending data.

If the agent fails to send data, a randomized backoff (between 2 and 15 seconds) is used to retry until the
max_retries limit is reached. If all attempts fail, the agent will try again in the next cycle.

Upon successful data transmission, the corresponding data file is deleted, and the agent checks for any remaining
files.

SIGUSR1 signals are used to trigger immediate data transmission when new data is collected. The service will
continue to attempt data transmission at regular intervals.

Boot-Up Delay

The bootup_delay option introduces a random delay during the agent's initialization after the device boots.

This option specifies the maximum value for the random delay, with a minimum value of 0.

The default setting is 10, meaning the agent's initialization will be delayed by a random number of seconds, ranging
from 0 to 10.

This feature is designed to distribute the load on the OpenWISP server when a large number of devices boot
simultaneously after a power outage.

Large OpenWISP installations may benefit from increasing this value.

Debugging

Debugging the openwisp-monitoring package can be easily done by using the logread command:

logread | grep openwisp-monitoring

In case of any issue, you can enable verbose_mode.

If you are in that doubt openwisp-monitoring is running at all or not, you can check with:

ps | grep openwisp-monitoring

You should see something like:

OpenWrt Agents

455

2712 root 1224 S /bin/sh /usr/sbin/openwisp-monitoring --interval 300 --monitored_interfaces ...
2713 root 1224 S /bin/sh /usr/sbin/openwisp-monitoring --url https://demo.openwisp.io ...

You can inspect the version of openwisp-monitoring currently installed with:

openwisp-monitoring --version

Developer Documentation

Note

This page is for developers who want to customize or extend the OpenWrt package for OpenWISP Monitoring,
whether for bug fixes, new features, or contributions.

For user guides and general information, please see:

• General OpenWISP Quickstart

• OpenWrt OpenWISP Monitoring Docs

Compiling the Monitoring Agent 456

Quality Assurance Checks 457

Run tests 457

Compiling the Monitoring Agent

This repository ships 2 OpenWrt packages:

• netjson-monitoring: provides NetJSON DeviceMonitoring output

• openwisp-monitoring: daemon which collects and sends NetJSON DeviceMonitoring data to OpenWISP
Monitoring It depends on netjson-monitoring and openwisp-config

The following procedure illustrates how to compile openwisp-monitoring, netjson-monitoring and their dependencies:

git clone https://git.openwrt.org/openwrt/openwrt.git
cd openwrt
git checkout <openwrt-branch>

configure feeds
echo "src-git openwisp_config https://github.com/openwisp/openwisp-config.git" > feeds.conf
echo "src-git openwisp_monitoring https://github.com/openwisp/openwrt-openwisp-monitoring.git" >> feeds.conf
cat feeds.conf.default >> feeds.conf
./scripts/feeds update -a
./scripts/feeds install -a
echo "CONFIG_PACKAGE_netjson-monitoring=y" >> .config
echo "CONFIG_PACKAGE_openwisp-monitoring=y" >> .config
make defconfig
make tools/install
make toolchain/install
make package/openwisp-monitoring/compile

The compiled packages will go in bin/packages/*/openwisp.

Alternatively, you can configure your build interactively with make menuconfig, in this case you will need to select
the openwisp-monitoring and netjson-monitoring by going to Administration > admin > openwisp:

git clone https://git.openwrt.org/openwrt/openwrt.git
cd openwrt
git checkout <openwrt-branch>

OpenWrt Agents

456

https://netjson.org/docs/what.html#devicemonitoring
https://netjson.org/docs/what.html#devicemonitoring

configure feeds
echo "src-git openwisp_config https://github.com/openwisp/openwisp-config.git" > feeds.conf
echo "src-git openwisp_monitoring https://github.com/openwisp/openwrt-openwisp-monitoring.git" >> feeds.conf
cat feeds.conf.default >> feeds.conf
./scripts/feeds update -a
./scripts/feeds install -a
make menuconfig
go to Administration > admin > openwisp and select the packages you need interactively
make tools/install
make toolchain/install
make package/openwisp-monitoring/compile

Quality Assurance Checks

We use LuaFormatter and shfmt to format lua files and shell scripts respectively.

Once they are installed, you can format all files by:

./qa-format

Run quality assurance tests with:

#install openwisp-utils QA tools first
pip install openwisp-utils[qa]

#run QA checks before committing code
./run-qa-checks

Run tests

To run the unit tests, you must install the required dependencies first; to do this, you can take a look at the
install-dev.sh script.

Install test requirements:

sudo ./install-dev.sh

You can run all unit tests by launching the dedicated script:

./runtests

Alternatively, you can run specific tests, e.g.:

cd openwrt-openwisp-monitoring/tests/
lua test_utils.lua -v

Tutorials

OpenWISP Demo

Tutorials

457

https://luarocks.org/modules/tammela/luaformatter
https://github.com/mvdan/sh#shfmt
https://github.com/openwisp/openwrt-openwisp-monitoring/blob/master/install-dev.sh

Screenshot of OpenWISP web UI dashboard.

Accessing the demo system 458

Firmware instructions (flashing OpenWISP Firmware) 458

1. Downloading the firmware 458

2. Flashing the firmware 459

Alternative firmware instructions 459

Connecting your device to OpenWISP 460

DHCP client mode 460

Static address mode 460

Registration 461

Monitoring charts and status 461

Health status 461

Device Status 462

Charts 463

Get help 464

Accessing the demo system

• URL: demo.openwisp.io

• Username: demo

• Password: tester123

The content of the demo organization is reset every day at 1:00 AM UTC, and the demo user's password is reset
every minute.

To ensure the safety and integrity of our managed OpenWISP system, certain features are disabled for the demo
user, including:

• Deleting existing devices

• Sending custom shell commands to devices

• Sending password change commands to devices

• Uploading new firmware builds

• Launching firmware upgrade operations

• Creating new users or modifying the details of the demo organization

• Changing the details of RADIUS groups

If you would like to test any of these features, we offer a free 30-day trial period. You can access the request form for
the free trial by using the demo system, or by contacting our support.

Firmware instructions (flashing OpenWISP Firmware)

We offer an OpenWrt-based firmware that includes all the packages typically used in OpenWISP installations.

This firmware can help you quickly get started and test the core features of OpenWISP Cloud.

If you prefer to use your existing firmware, please refer to the the alternative firmware instructions.

1. Downloading the firmware

To download the OpenWISP firmware for your device, visit downloads.openwisp.io and select the appropriate target
architecture and image.

Tutorials

458

https://demo.openwisp.io/
http://downloads.openwisp.io/?prefix=firmware/22.03/ath79/

At present, we are generating firmware only for ath79, but we plan to add support for more targets in the future.

If your device is not currently supported, please let us know through our support channels and/or follow our
alternative firmware instructions below.

2. Flashing the firmware

You can Flash the firmware via web UI, or via other means available on OpenWrt.

Make sure not to keep settings: supply the -n command line option to sysupgrade. If you're using the OpenWrt web
UI, there is a specific checkbox labeled "Keep settings and retain the current configuration" which appears just
before confirming the upgrade and needs to be unchecked.

Alternative firmware instructions

If your device is missing from our list of available firmware images or if you have a custom firmware you do not want
to lose, you can get the basic features working by downloading and installing the following packages on your device:

• openvpn (management tunnel, needed for active checks and push operations)

• openwisp-config

• openwisp-monitoring (and its dependency netjson-monitoring)

The easiest thing is to use the following commands:

opkg update
install OpenVPN
opkg install openvpn-wolfssl
install OpenWISP agents
opkg install openwisp-config
opkg install openwisp-monitoring

If you want to install more recent versions of the OpenWISP packages, you can download them onto your device
from downloads.openwisp.io and then install them, e.g.:

opkg update
install OpenVPN anyway
opkg install openvpn-wolfssl
cd /tmp

WARNING: the URL may change overtime, so verify the right URL
from downloads.openwisp.io

wget https://downloads.openwisp.io/openwisp-config/latest/openwisp-config_1.1.0a-1_all.ipk
wget https://downloads.openwisp.io/openwisp-monitoring/latest/netjson-monitoring_0.2.0a-1_all.ipk
wget https://downloads.openwisp.io/openwisp-monitoring/latest/openwisp-monitoring_0.2.0a-1_all.ipk
opkg install openwisp-config_1.1.0a-1_all.ipk
opkg install netjson-monitoring_0.2.0a-1_all.ipk
opkg install openwisp-monitoring_0.2.0a-1_all.ipk

Note

If wget doesn't work (e.g.: SSL issues), you can use curl, or alternatively you can download the packages onto
your machine and from there upload them to your device via scp.

Once the packages are installed, copy the following contents to /etc/config/openwisp:

config controller 'http'
 option url 'https://cloud.openwisp.io'
 # the following shared secret is for the demo organization

Tutorials

459

https://openwisp.org/support.html
https://openwrt.org/docs/guide-user/installation/generic.sysupgrade
https://openwrt.org/docs/guide-user/installation/generic.flashing
http://downloads.openwisp.io/

 option shared_secret 'nzXTd7qpXKPNdrWZDsYoMxbGpOrEVjeD'
 option management_interface 'tun0'

Once the configuration has been changed, you will need to restart the agent:

service openwisp_config restart

Connecting your device to OpenWISP

Once your device is flashed, connect an Ethernet cable from your LAN into one of the LAN ports.

DHCP client mode

Assuming your LAN is equipped with a DHCP server (usually your main ISP router), after booting up, the device will
be assigned an IP address from the LAN DHCP server. At this point, the device should be able to reach the internet
and register to the OpenWISP demo system.

Static address mode

If your LAN does not have a DHCP server, you will need to configure a static IP address and gateway address for the
LAN interface.

Tutorials

460

Registration

If the above steps have been completed correctly, and the device is connected to the internet, then it will
automatically register and appear in the list of available devices for the demo organization. You will then be able to
locate the device by its MAC address, as shown in the screenshot above, or by its name if you have changed it from
"OpenWrt" to something else.

At this point, the device should have already downloaded and applied the configuration. After a few minutes the
management tunnel will be set up and the device will start collecting monitoring information.

Monitoring charts and status

Once the OpenWISP Monitoring package has been installed and launched, it will start collecting metrics from your
device. You will be able to see this information displayed in the UI, which will be similar to the screenshots shown
below.

Health status

Tutorials

461

../_images/device-list-registered.png
../_images/health-status.png

Device Status

Tutorials

462

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-1.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-2.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-3.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/device-status-4.png

Charts

Tutorials

463

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/uptime.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/packet-loss.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/rtt.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/traffic.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/wifi-clients.png

The following charts are displayed only for devices with mobile connections (e.g.: 3G, LTE).

Find out more information about the Monitoring module of OpenWISP.

Get help

If you need help or want to request a free 30-day trial of the full feature set, you can write to us via the support
channels or just click on the tab Contact support as indicated in the screenshot below.

Tutorials

464

https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/cpu-load.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/access-technology.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/signal-strength.png
https://raw.githubusercontent.com/openwisp/openwisp-monitoring/docs/docs/signal-quality.png
https://openwisp.org/support.html
https://openwisp.org/support.html

Seealso

• Open and/or WPA protected WiFi Access Point SSID

• WiFi Hotspot, Captive Portal (Public WiFi), Social Login

• How to Set Up a Wireless Mesh Network

• How to Set Up WPA Enterprise (EAP-TTLS-PAP) authentication

How to Set Up WiFi Access Point SSIDs

Introduction & Prerequisites 465

Set Up an Open Access Point SSID on a Device 466

Set Up a WPA Encrypted Access Point SSID on a Device 467

Set Up the Same SSID and Password on Multiple Devices 468

Multiple SSIDs, multiple radios 469

Roaming (802.11r: Fast BSS Transition) 469

Monitoring WiFi Clients 470

Introduction & Prerequisites

This tutorial shows different ways to set up a WiFi SSID in access point mode on your devices.

The requirement for this to work is that your device must be equipped with at least one radio and that it is named
radio0 in the OpenWrt configuration (this is the default).

Tutorials

465

../_images/contact-support.png

Set Up an Open Access Point SSID on a Device

Open the device detail page of your device, then go to the configuration tab, then scroll down and click on
"Configuration Menu", then select "Interfaces", then click on "Add new interface", select "Wireless interface", then
add wlan0 as interface name, radio0 for the radio, then type any SSID you want, then in "Attached networks" click
on "Add network" and type lan, this will bridge this WiFi interface to the LAN interface, now click on "Save and
continue".

The screenshot below shows how the preview will look like.

Once the configuration is applied on the device, the SSID will be broadcast.

Once clients start to connect to this access point their information will be logged in the WiFi Sessions tab.

Tutorials

466

../_images/open-ap-wifi-ui.gif
../_images/open-wifi-ap-preview.png
../_images/open-ap-wifi-iwinfo.png

Set Up a WPA Encrypted Access Point SSID on a Device

Open the detail page of your device, then go to the configuration tab, then scroll down and click on "Configuration
Menu", then select "Interfaces", then click on "Add new interface", select "Wireless interface", then add wlan0 as
interface name, radio0 for the radio, then type any SSID you want, then in "Attached networks" click on "Add
network" and type lan, this will bridge this WiFi interface to the LAN interface, now select the desired encryption, for
example, WPA3/WPA2 Personal Mixed Mode, enter the password and finally click on "Save and continue".

The screenshot below shows how the preview will look like.

Once the configuration is applied on the device, the SSID will be broadcast.

Once clients start to connect to this access point their information will be logged in the WiFi Sessions tab.

Tutorials

467

../_images/encrypted-wifi-ui.gif
../_images/wpa3-mixed-preview.png
../_images/wpa3-mixed-iwinfo.png

Set Up the Same SSID and Password on Multiple Devices

The procedure is very similar to the previous one, with the difference that we will be using a configuration template,
then we will assign this template to the devices we want to have the SSID.

In this example we are defining two configuration variables: wlan0_ssid and wlan0_password, this allows us to
change the SSID and password on a specific device if we need. Below you can find a demonstration of how to
change these default template values from the device page in the "configuration variables" section.

The template can even be flagged as "Default" if we want this to be applied automatically when new devices register!

Hint

If you want to find out more about configuration templates and/or variables, consult the respective documentation
sections:

• Configuration Templates

• Configuration Variables

Tutorials

468

../_images/wifi-wpa-template.gif
../_images/wifi-template-change-ssid-password.gif

Multiple SSIDs, multiple radios

Dual radio (2.4 GHz and 5 GHz) hardware is very common nowadays.

Multiple WiFi interfaces can be created for each available radio, as long as they have different names. The SSID can
be the same, although this only makes sense for having the same SSID broadcast on different WiFi bands (e.g.: 2.4
GHz and 5 GHz).

In order to do this, just repeat the procedure shown in the previous sections, with the difference that instead of
adding only one interface, you will have to add multiple wireless interfaces and define a different name and, if you
want to deploy the SSID on different bands, a different value for the radio field, e.g. radio0 and radio1.

Roaming (802.11r: Fast BSS Transition)

Fast transition enables WiFi clients to seamlessly roam between access points without interrupting media flows, such
as video or phone calls, streaming, etc., caused by delays in re-authentication.

Enabling 802.11r on OpenWrt via OpenWISP can be easily done with the following steps:

1. Prepare a WiFi AP template as explained in the previous sections, ensuring that the SSID used on the access
points remains consistent.

2. Check the "roaming" checkbox.

3. Check the "FT PSK generate local" checkbox.

4. Increase the default "reassociation deadline" to at least 2000.

5. Save the changes.

To verify whether WiFi clients are roaming between APs, launch the shell command logread -f on each AP.
Then, move the WiFi client from one AP to another, making sure they are sufficiently distant.

When the WiFi client successfully transitions from one AP to another, you should see log lines like:

WPA: FT authentication already completed - do not start 4-way handshake

You may wish to test the configuration and adjust the following options:

• Reassociation deadline: Increase it to avoid frequent timeouts on busy networks.

• FT-over-DS.

Tutorials

469

../_images/roaming-fast-transition-80211r.png

Monitoring WiFi Clients

Since OpenWISP 23, in the device page, whenever any WiFi client data is collected by the Monitoring module of
OpenWISP, a "WiFi Sessions" tab will appear as in the screenshot above, showing WiFi clients connected right now.

The data is sent by default by devices every 5 minutes.

Clicking on "Full History of WiFi Sessions" will redirect to the full list of all clients which have connected to this access
point, as shown below.

In this page it will be possible to use more filters and even perform a text search.

Seealso

• WiFi Hotspot, Captive Portal (Public WiFi), Social Login

• How to Set Up a Wireless Mesh Network

• How to Set Up WPA Enterprise (EAP-TTLS-PAP) authentication

Tutorials

470

../_images/ap-wifi-sessions.png
../_images/wifi-sessions-general.png

WiFi Hotspot & Captive Portal

Introduction & Prerequisites 471

Enable Captive Portal Template 472

Accessing the Public WiFI Hotspot 473

Logging Out 474

Session Limits 475

Automatic Captive Portal Login 475

Sign Up 475

Social Login 476

Paid WiFi Hotspot Subscription Plans 476

Introduction & Prerequisites

OpenWISP is widely used as an open source software solution for WiFi Hotspot Management in Public WiFi
settings.

In this tutorial, we'll explain the technical details of the most common WiFi Hotspot deployments and how to test the
most important functionalities of this use case on the OpenWISP Demo System.

The OpenWrt firmware image for the OpenWISP Demo System includes a captive portal package called
Coova-Chilli. This supports the RADIUS protocol, a standard security protocol used in Accounting, Authorization and
Authentication (AAA), a way of authenticating, authorizing, and rate-limiting network usage supported by networking
hardware and software.

Tutorials

471

../_images/openwisp-wifi-hotspot-demo.png
../_images/openwrt-coova-chilli-firmware.png
https://coova.github.io/CoovaChilli/
https://networkradius.com/doc/current/introduction/RADIUS.html

Warning

Unfortunately, at the moment, installing Coova-Chilli from the OpenWrt packages will not work because the
default configuration of the Coova-Chilli OpenWrt package does not enable the chilli-redir feature, nor has
SSL support enabled, which will not allow the captive portal to redirect the user to the captive page and will not
support HTTPs requests.

The OpenVPN package is also required and included in the firmware instructions for the OpenWISP Demo System,
as it's needed to facilitate secure communication between the Coova-Chilli captive portal and FreeRADIUS over the
Management VPN tunnel. This setup prevents the routing of unencrypted RADIUS packets through the public
internet, ensuring security, privacy, and mitigating potential legal risks associated with exposing users' personal
information to malicious actors.

Enable Captive Portal Template

Hint

If you don't know what a template is, please see Configuration Templates.

If you flashed the OpenWrt based firmware and registered your device as explained in the OpenWISP Demo Page,
proceed to assign the captive portal template to your device:

Tutorials

472

../_images/captive-portal-demo.png

• Go to the device list.

• Open the device details.

• Click on the configuration tab.

• Select the "Captive Portal Demo" template.

• Hit "Save".

Then, make sure the OpenVPN management tunnel is working otherwise the captive portal software will not be able
to talk to the demo FreeRADIUS server instance.

Shortly after the configuration is applied successfully, the Public WiFi SSID will be broadcast by the access point.

Accessing the Public WiFI Hotspot

Connect your laptop or phone to the SSID "OpenWISP Public WiFi Demo". If everything is working correctly, your
operating system should open a browser window showing the captive page as shown in the screenshot above.

At this point, sign in using the same credentials you used to access the demo system (demo/tester123).

Note

Trying to surf the internet without authenticating will not work.

Once you've logged in, you'll see a status page as shown in the following screenshot:

This page communicates that the user can now use the internet provided by the hotspot, it also provides the
following features:

• It shows a list of the user's sessions, including the start time, stop time, duration, traffic consumed (download
and upload), and the MAC address of the device that accessed the WiFi service.

• It allows the account password and phone number (if SMS verification is enabled, which is not the case for the
demo system) to be changed.

• It allows users to close their session and log out (more on why this is useful below).

On some mobile operating systems, the mini-browser automatically closes when switching windows, for example,
when opening the real browser to surf the internet. This can be problematic if the user needs to use one of the
features of the status page listed above.

Tutorials

473

https://freeradius.org/
../_images/wifi-login-pages-public-wifi-hotspot.jpeg
../_images/hotspot-status.jpeg

To resolve this, OpenWISP will send an email to the user with a magic link. This will allow the user access to the
status page of WiFi Login Pages without entering their credentials again, as shown in the image above.

Note

For more technical information and implementation details about the magic links feature, refer to the related
section: openwisp_users.api.authentication.SesameAuthentication.

If you are using the demo account, the email will be sent to the email address linked to the demo account. Therefore,
if you want to try this feature, you will have to sign up for your own account or use the social login feature. Please see
more information on this below.

Logging Out

Most WiFi hotspot services have limitations in place that do not allow users to browse indefinitely.

Some services only allow surfing for a limited amount of time per day, while others limit the amount of data you can
consume. Some services use a combination of both methods and when either the daily time or data limit is reached,
the session is closed.

Therefore, users who plan to use the service again later on the same day, should log out to avoid consuming their
daily time and/or data.

Tutorials

474

../_images/public-wifi-session-started.jpeg
../_images/hotspot-logout.gif

Session Limits

The default session limits in the OpenWISP RADIUS configuration are 300 MB of daily traffic or three hours of daily
surfing.

Note

To find out more technical information about this topic please read: OpenWISP RADIUS - Enforcing session
limits.

Automatic Captive Portal Login

The WiFi Login Pages application. allows users who have logged in previously, and who use a browser which
supports cookies (not all mini-browsers that are used for captive portal logins do), to automatically log in without
entering their credentials again.

The video below demonstrates this feature:

Sign Up

To sign up for the WiFi hotspot demo, select the free plan and enter dummy data (this data is deleted every day).
However, it is recommended that you enter a real email address so that you can test features that require receiving
emails, such as email confirmation, password reset, and the "WiFi session started" notification.

Tutorials

475

../_images/session-limit-exceeded.jpeg
../_images/signup.png

Note

The sign up process uses the OpenWISP RADIUS REST API under the hood.

Social Login

Another way to sign up for a free WiFi hotspot account is to use social login. Simply click on one of the social login
buttons to initiate the process.

Please note that your personal data is stored for less than 24 hours, as the demo system is reset every day.

Note

For more technical information about social login, please read OpenWISP RADIUS - Social Login

Paid WiFi Hotspot Subscription Plans

Testing the WiFi hotspot paid subscription plans is easy, the demo system is configured to use the Paypal
Sandbox, a test version of Paypal with unlimited fake money, which allows users to test the feature at any time
without incurring any costs.

Follow these steps to try the paid WiFi subscription feature:

• Sign up for one of the non-free plans.

• Enter your real email address and dummy personal information.

• Click "Proceed with the payment."

• Enter the following Paypal credentials: support@openwisp.io / tester123 and click on "start session".

• Choose to pay with Paypal balance and click "Continue to Review Order."

After following the steps above you will be logged in to the WiFi service and redirected to the status page, from then
on you can surf the web.

You should also receive a test invoice via email as in the screenshots below.

Tutorials

476

../_images/social-login.png
../_images/wifi-paid-plan-invoice-email.png

Seealso

• Open and/or WPA protected WiFi Access Point SSID

• How to Set Up a Wireless Mesh Network

• How to Set Up WPA Enterprise (EAP-TTLS-PAP) authentication

How to Set Up WPA Enterprise (EAP-TTLS-PAP) Authentication

Introduction & Prerequisites 477

Enable OpenWISP RADIUS 477

VPN Tunnel 478

Firmware Requirements 478

One Radio Available 478

Configuring FreeRADIUS for WPA Enterprise 479

Self-Signed Certificates 480

Public Certificates 480

Creating the Template 481

Enable the WPA Enterprise Template on the Devices 485

Connecting to the WiFi with WPA2 Enterprise 486

Verifying and Debugging 487

Introduction & Prerequisites

In this tutorial, we will guide you on how to set up WPA Enterprise (EAP-TTLS-PAP) authentication for WiFi networks
using OpenWISP. The RADIUS capabilities of OpenWISP provide integration with FreeRADIUS to allow users to
authenticate with their Django user accounts. Users can either be created manually via the admin interface,
generated with voucher-like codes, imported from CSV or can register autonomously via the REST API of
OpenWISP RADIUS.

Enable OpenWISP RADIUS

Note

If you are following this tutorial on our Demo System, you can skip this step.

Tutorials

477

../_images/wifi-paid-plan-invoice-sample.png

To use WPA2 Enterprise, the RADIUS module must be enabled first.

See Enabling the RADIUS Module in the Ansible OpenWISP role. In Docker OpenWISP, the RADIUS module is
enabled by default.

VPN Tunnel

We recommend setting up a VPN tunnel to secure the communication between the RADIUS server and the NAS
devices.

Routing unencrypted RADIUS traffic through the internet is not recommended for security. When security breaches
in the RADIUS protocol are discovered (like the "Blast-RADIUS attack" in July 2024), your entire network would be at
risk.

If you are using OpenWrt, you can use OpenWISP to automate the provisioning of OpenVPN tunnels on your
OpenWrt devices. For more information, please refer to Automating OpenVPN Tunnels.

Note

If you are following this tutorial on our Demo System, the Management VPN (OpenVPN) template will be
applied to your device by default. If not, you need to enable that template on your device. Otherwise, your device
won't connect to the FreeRADIUS server.

Using radsec (RADIUS over TLS) is a good option, but it's not covered in this tutorial.

Firmware Requirements

To use WPA Enterprise authentication, your firmware needs to be equipped with a version of the wpad package that
supports WPA Enterprise encryption.

Please refer to the OpenWrt WPA encryption documentation for more information.

In tutorial we use OpenVPN to tunnel RADIUS packets from NAS devices to FreeRADIUS, for this reason you must
ensure that your OpenWrt device has the openvpn package installed.

Note

The OpenWrt firmware image provided for the OpenWISP Demo System includes openvpn and the full wpad
package by default.

One Radio Available

At least one radio named radio0 needs to be available and enabled for the successful execution of this tutorial.

Tutorials

478

../_images/enable-openvpn-template.png
https://openwrt.org/docs/guide-user/network/wifi/encryption#wpa_encryption

For simplicity, we will focus on a single radio, but it's important to note that the WPA Enterprise functionality can be
extended to multiple radios if necessary.

Alternatively, you have the option of using WPA Enterprise encryption on one radio while the other radios use
different encryption methods. However, these additional scenarios are not explained in this tutorial and are left as an
exercise for the reader.

Configuring FreeRADIUS for WPA Enterprise

Note

If you are following this tutorial on our Demo System, you can skip this step.

Before making changes to the FreeRADIUS configuration, we need to gather the following information:

• Organization's UUID

• Organization's RADIUS token

From the OpenWISP navigation menu, go to Users & Organizations and then Organizations. From here,
click on the desired organization.

From the organization's page, find the organization's UUID and RADIUS token.

Tutorials

479

../_images/navigating-to-organization.png

This is a good point to decide whether to use self-signed certificates or public certificates issued by a trusted
Certificate Authority (CA). Both options have their pros and cons, and the choice largely depends on your specific
requirements and constraints.

Self-Signed Certificates

Pros:

• Generated locally without involving a third-party CA.

• Eliminates the need for external entities, reducing the risk of compromised trust.

Cons:

• Requires installation of the self-signed CA on all client devices.

Public Certificates

Pros:

• Issued by trusted CAs, thus works out of the box with most devices.

Tutorials

480

../_images/organization-uuid.png
../_images/organization-radius-token.png

Cons:

• Higher risk of compromise.

• More cumbersome to set up.

We recommend using the Ansible OpenWISP2 role, which simplifies configuring FreeRADIUS to use WPA
Enterprise. Please refer to the "Configuring FreeRADIUS for WPA Enterprise (EAP-TTLS-PAP)" section in the
ansible-openwisp2 documentation for details.

If you prefer to configure the FreeRADIUS site manually, refer to the "Freeradius Setup for WPA Enterprise
(EAP-TTLS-PAP) authentication" section of the OpenWISP RADIUS documentation.

Creating the Template

Note

This template is also available in our Demo System as WPA Enterprise (EAP-TTLS), feel free to try it out!

Hint

If you don't know what a template is, please see Configuration Templates.

From the OpenWISP navigation menu, go to Configurations and then Templates, from here click on
Add template.

Fill in the name, organization, leave type set to "Generic", and backend set to "OpenWrt". Scroll down to the
Configuration variables section, then click on "Toggle Raw JSON Editing".

Tutorials

481

https://demo.openwisp.io/admin/config/template/5f279920-60fd-4274-b367-450aa4d30004/change/
../_images/create-template.png

Paste the following JSON in the Raw JSON Editing field.

{
 "mac_address": "00:00:00:00:00:00"
}

Hint

For more information about variables, please refer to Configuration Variables.

Scroll down to the Configuration section, then click on "Advanced mode (raw JSON)".

Tutorials

482

../_images/config-variables-raw-json.png
../_images/config-variable-mac-json.png

Before copying the following NetJSON to the advanced mode editor, you will need to update these fields to reflect
your configuration:

• key - RADIUS secret should be the same as set in NAS

• server - RADIUS server authentication IP

• port - RADIUS server authentication port

• acct_server - RADIUS accounting server IP

• acct_server_port - RADIUS accounting server port

{
 "interfaces": [{
 "name": "wlan_eap",
 "type": "wireless",
 "mac": "{{mac_address}}",
 "mtu": 1500,
 "disabled": false,
 "network": "",
 "autostart": true,
 "addresses": [],
 "wireless": {
 "network": [
 "lan"
],
 "mode": "access_point",

Tutorials

483

../_images/advanced-mode.png

 "radio": "radio0",
 "ssid": "WPA Enterprise 2 (EAP-PAP-TTLS)",
 "ack_distance": 0,
 "rts_threshold": 0,
 "frag_threshold": 0,
 "hidden": false,
 "wds": false,
 "wmm": true,
 "isolate": false,
 "ieee80211r": false,
 "reassociation_deadline": 1000,
 "ft_psk_generate_local": false,
 "ft_over_ds": true,
 "rsn_preauth": false,
 "macfilter": "disable",
 "maclist": [],
 "encryption": {
 "protocol": "wpa2_enterprise",
 "key": "testing123",
 "disabled": false,
 "cipher": "auto",
 "ieee80211w": "0",
 "server": "10.8.0.1",
 "port": 1822,
 "acct_server": "10.8.0.1",
 "acct_server_port": 1823
 }
 }
 }],
 "files": [{
 "path": "/etc/openwisp/pre-reload-hook",
 "mode": "0700",
 "contents": "#!/bin/sh\n\n# Ensure radio0 is enabled \nuci set wireless.radio0.disabled='0'\nuci commit wireless"
 }]
}

Then click on "back to normal mode" to close the advanced mode editor.

Now you can save the new template.

Tutorials

484

../_images/back-to-normal-mode.png

At this point, you're ready to assign the template to your devices. However, before doing so, you may want to read on
to understand the different components of this template:

• The wlan_eap creates the wireless interface that supports WPA2 Enterprise encryption bound to radio0. This
interface is attached to the lan interface, which is configured to provide internet access in the default OpenWrt
configuration.

• A pre-reload-hook script is executed before OpenWrt reloads its services to ensure that radio0 is
enabled.

• The mac_address configuration variable is added to the template as a placeholder. When the template is
applied to a device, the device's actual MAC address will automatically override the placeholder, ensuring that
the wireless interface is created with the correct MAC address. This is necessary for tracing which device is
being used in RADIUS accounting stats.

Enable the WPA Enterprise Template on the Devices

Now it is time to apply this template to the devices where you want to enable WPA Enterprise authentication on WiFi.

Click on Devices in the navigation menu, click on the device you want to assign the WPA Enterprise template to,
then go to the Configuration tab, select the template just created, and then click on save.

Tutorials

485

../_images/save.png

Connecting to the WiFi with WPA2 Enterprise

For brevity, this section only includes an example of connecting a smartphone running Android 11 to the WiFi
network. Similar steps can typically be followed on other devices. If unsure, consult your device's manual for
guidance.

Find the "OpenWISP" SSID in the list of available WiFi networks on your mobile and click on it. Fill in the details as
follows:

• EAP method: Set this to TTLS.

• Phase 2 authentication: Set this to PAP.

• CA certificate: Select one of the options based on your

FreeRADIUS configuration.

• Domain: Enter the domain based on the server certificate used by FreeRADIUS.

• Identity and Password: Use the OpenWISP user's username for Identity and password for Password.

Note

If you are trying this feature on our OpenWISP Demo System, you can use the demo user to authenticate. You
will need to update the following fields as mentioned:

• CA certificate: Set this to Use system certificates

• Domain: Set this to demo.openwisp.io

• Identity and Password: Use the demo user credentials.

Tutorials

486

../_images/enable-wpa-enterprise-template.png

You can leave the Advanced options unchanged and click on Connect after filling in the details.

Verifying and Debugging

If everything worked as expected, your device should connect to the WiFi and allow you to browse the internet.

You can also verify the RADIUS session created on OpenWISP. From the OpenWISP navigation menu, go to
RADIUS and then Accounting Sessions.

Tutorials

487

../_images/connect-to-wpa-enterprise.png

You should see a RADIUS accounting session for this device.

If your smartphone does not connect to the internet, you can troubleshoot the FreeRADIUS configuration by
following the steps in the Debugging & Troubleshooting.

Seealso

• Open and/or WPA protected WiFi Access Point SSID

• WiFi Hotspot, Captive Portal (Public WiFi), Social Login

• How to Set Up a Wireless Mesh Network

Tutorials

488

../_images/navigating-to-radius-accounting.png
../_images/verify-openwisp-radius-accounting.png

How to Set Up a Wireless Mesh Network

Introduction & Prerequisites 489

Firmware Requirements 490

General Assumptions 490

At Least 2 Devices 490

One Radio Available 490

Existing DHCP server on the LAN 490

Creating the Template 490

Why we use a pre-reload-hook script 494

Enable the Mesh Template on the Devices 495

Verifying and Debugging 495

Monitoring the Mesh Nodes 497

Mesh Topology Collection and Visualization 498

Changing the Default 802.11s Routing Protocol 501

Introduction & Prerequisites

What is a Mesh Network?

A mesh network is a decentralized network architecture where each node not only communicates with its
immediate neighbors but also relays data for other mesh nodes, creating a peer-to-peer network.

The word "mesh" primarily describes the interconnected topology of the network, while wireless mesh networks
specifically refer to mesh networks deployed using standard WiFi bands (2.4 GHz / 5 GHz) as the physical
connection medium.

The advantages of this network architecture include:

• Resilience: Due to its interconnected topology, there's no single point of failure, so the dynamic routing mesh
protocols used to route traffic are able to implement self-healing behavior, rerouting traffic along alternative
paths when a link fails. This redundancy ensures continued operation and makes the network resilient to
temporary failures.

• Flexibility: Deploying new nodes or relocating existing ones is straightforward due to consistent configurations
across all nodes. This allows the network to scale without increasing configuration maintenance costs.
Additionally, ad-hoc deployment is possible without extensive planning.

These benefits make mesh networking technologies particularly valuable for expanding WiFi coverage area in large
spaces like offices, spacious houses, and rural areas, while controlling deployment and maintenance costs.

How to configure a wireless mesh network?

In this tutorial, we'll guide you through the best practices for mesh network setup using the mesh mode (also known
as 802.11s) on OpenWrt through OpenWISP. Additionally, we'll provide valuable tips on monitoring and maintaining
the mesh network, focusing on signal strength and network performance.

This tutorial focuses on using open source solutions for mesh networking.

Tutorials

489

../_images/mesh-network-topology-graph.png
https://en.wikipedia.org/wiki/IEEE_802.11s
https://en.wikipedia.org/wiki/IEEE_802.11s
https://openwrt.org/

Firmware Requirements

In order to use mesh mode with wireless encryption, your firmware needs to be equipped with a version of the wpad
package which supports mesh encryption.

Please refer to the OpenWrt 802.11s documentation for more information.

Note

The OpenWrt firmware image provided for the OpenWISP Demo System includes the full wpad package by
default.

General Assumptions

In this tutorial we make a few assumptions and choices which are explained below.

At Least 2 Devices

We assume you are already managing and monitoring at least two devices through your OpenWISP instance.

One Radio Available

We require at least one radio named radio0 to be available and enabled for the successful execution of this tutorial.

For simplicity, we will focus on a single radio, but it's important to note that the mesh functionality can be extended to
multiple radios if necessary. This can improve backhaul performance and reduce interference.

Alternatively, you have the option of running the mesh on one radio while the access points operate on another radio
to avoid interference and increase the performance of the mesh network, mitigating issues like interference,
optimizing for latency and throughput.

However, these additional scenarios are not explained in this tutorial and are left as an exercise for the reader.

Existing DHCP server on the LAN

WiFi in mesh mode (802.11s) operates at the layer 2 protocol, enabling us to bridge the mesh interface with the LAN
interface, effectively creating a wireless extension of the LAN network.

This configuration assumes that the mesh devices will function as wireless extenders for an existing LAN, already
equipped with a DHCP server.

Consequently, we will define a br-lan interface in DHCP client mode, with the spanning tree protocol enabled.

This helps prevent loops in case of accidental Ethernet cable connections to another mesh extender within the LAN.

Additionally, we will disable the default DHCP server on the LAN interface, which comes preconfigured in OpenWrt.

Creating the Template

Hint

If you don't know what a template is, please see Configuration Templates.

Tutorials

490

https://openwrt.org/docs/guide-user/network/wifi/mesh/80211s#config

Note

This template is also available in our Demo System as Mesh Demo, feel free to try it out!

How to automate a mesh network?

In this section we'll explain how to automate the provisioning of new mesh nodes with a Mesh Configuration
Template.

From the OpenWISP navigation menu, go to Configurations and then Templates, from here click on the
Add template.

Fill in name, organization, leave type set to "Generic", backend set to "OpenWrt", scroll down to the Configuration
section, then click on "Advanced mode (raw JSON)".

Tutorials

491

https://demo.openwisp.io/admin/config/template/ae564575-f251-4f78-aaaf-7821e7a06ad3/change/
../_images/create-template.png

Once the advanced mode editor is open you can paste the following NetJSON:

{
 "interfaces": [
 {
 "name": "lan",
 "type": "bridge",
 "mtu": 1500,
 "disabled": false,
 "stp": true,
 "igmp_snooping": false,
 "bridge_members": [
 "lan",
 "mesh0",
 "wlan0"
],
 "addresses": [
 {
 "proto": "dhcp",
 "family": "ipv4"
 }
]
 },
 {
 "type": "wireless",

Tutorials

492

../_images/advanced-mode.png

 "name": "mesh0",
 "mtu": 1500,
 "disabled": false,
 "wireless": {
 "mode": "802.11s",
 "radio": "radio0",
 "ack_distance": 0,
 "rts_threshold": 0,
 "frag_threshold": 0,
 "mesh_id": "mesh0",
 "encryption": {
 "protocol": "wpa2_personal",
 "key": "0penW1SP0987654321",
 "disabled": false,
 "cipher": "auto",
 "ieee80211w": "0"
 },
 "network": [
 "lan"
]
 }
 },
 {
 "type": "wireless",
 "name": "wlan0",
 "mtu": 1500,
 "disabled": false,
 "wireless": {
 "mode": "access_point",
 "radio": "radio0",
 "ssid": "Mesh AP",
 "hidden": false,
 "wds": false,
 "wmm": true,
 "isolate": false,
 "ieee80211r": true,
 "reassociation_deadline": 1000,
 "ft_psk_generate_local": false,
 "ft_over_ds": true,
 "rsn_preauth": false,
 "macfilter": "disable",
 "maclist": [],
 "encryption": {
 "protocol": "wpa2_personal_mixed",
 "key": "meshApTesting1234",
 "disabled": false,
 "cipher": "ccmp",
 "ieee80211w": "1"
 },
 "network": [
 "lan"
]
 }
 }
],
 "files": [
 {
 "path": "/etc/openwisp/pre-reload-hook",
 "mode": "0700",
 "contents": "#!/bin/sh\n\n# delete any br-lan definition to avoid conflicts\nuci delete network.device1\n\n# make sure radio is enabled and on the same channel\nband=$(uci get wireless.radio0.band)\nhwmode=$(uci get wireless.radio0.hwmode)\nif [\"$band\" = \"2g\"] || [\"$hwmode\" = \"11g\"]; then\n channel=1\nelif [\"$band\" = \"5g\"] || [\"$hwmode\" = \"11a\"]; then\n channel=36\nfi\nuci set wireless.radio0.channel=\"$channel\"\nuci set wireless.radio0.disabled='0'\nuci set wireless.radio0.country='US' # feel free to customize the country code\nuci commit wireless\n\n# ensure DHCP server on the lan is disabled\nuci set dhcp.lan.ignore='1'\nuci set dhcp.lan.dhcpv6='disabled'\nuci set dhcp.lan.ra='disabled'\nuci commit dhcp\n\n# increase retries of the config test to account for\n# temporary network failures caused by the reloading of the wifi stack\nuci set openwisp.http.test_retries=8\nuci commit openwisp\n"

Tutorials

493

 }
]
}

Then click on "back to normal mode" to close the advanced mode editor.

Now you can save the new template.

At this point you're ready to assign the template to your devices, but before doing so you may want to read on to
understand the different components of this template:

• The br-lan defines a bridge with the following members: lan, mesh0 and wlan0.

• The mesh0 provides the encrypted wireless mesh interface bound to radio0.

• The wlan0 interface provides WiFi access to the mesh network for clients not equipped with 802.11s.

• A pre-reload-hook script which is executed before OpenWrt reloads its services to make the configuration
changes effective.

Why we use a pre-reload-hook script

In the template shared above, we utilize a pre-reload-hook script to execute the following configuration changes:

• Ensure that radio0 is enabled, set on a specific channel and country code to allow communication between
mesh nodes. You can customize the channel and country code according to your preferences. However, make
these changes before deploying your mesh nodes and disconnecting them from the Ethernet network, as
modifying the channel or country code on an active mesh network will disrupt it.

Tutorials

494

../_images/back-to-normal-mode.png
../_images/save.png

• Disable the default DHCP server preconfigured in OpenWrt on the br-lan interface to prevent interference
with the existing DHCP server in the LAN.

• Increase the test_retries option of the openwisp-config agent to 8. This enhancement enhances the
agent's resilience to temporary failures in reaching the OpenWISP server after applying configuration changes.
Mesh configuration changes trigger a reload of the WiFi stack, which may take a few minutes to become
effective. During this period, we want to avoid the agent to mistakenly consider the connection as lost, to
prevent it from flagging the upgrade as failed and rollback to the previous configuration.

We could have redefined the entire configuration for radio0, the LAN DHCP server and openwisp-config, but doing
so would have posed some issues:

• There's no guarantee that the same radio settings will work uniformly on every hardware supported by
OpenWrt. By altering only the necessary settings, we ensure the same template can be applied across a broad
spectrum of devices, making the tutorial easy for a wide range of users.

• Creating a template that includes all possible settings would result in verbosity, making it challenging for
readers to digest.

Once you have successfully set this up, feel free to modify the template configuration and tailor any part to suit your
requirements.

Enable the Mesh Template on the Devices

Now is time to apply this mesh template to the nodes that we want to make part of the mesh.

Click on "devices" in the navigation menu, click on the device you want to assign the mesh template to, then go to
the "Configuration" tab, select the template just created, then click on save.

Verifying and Debugging

Once the configuration is applied to the device, if you access your device via SSH you can double check that
everything worked fine by comparing the output you get from the command outputs shown below.

Tutorials

495

../_images/assign-mesh-template.png

Check the bridge with brctl show:

bridge name bridge id STP enabled interfaces
br-lan 7fff.44d1fad204c5 yes lan
 wlan0
 mesh0

Check the WiFi interfaces with iwinfo:

mesh0 ESSID: "mesh0"
 Access Point: 44:D1:FA:D2:00:01
 Mode: Mesh Point Channel: 1 (2.412 GHz) HT Mode: HT20
 Center Channel 1: 1 2: unknown
 Tx-Power: 20 dBm Link Quality: 68/70
 Signal: -42 dBm Noise: -87 dBm
 Bit Rate: 1.0 MBit/s
 Encryption: WPA3 SAE (CCMP)
 Type: nl80211 HW Mode(s): 802.11ax/b/g/n
 Hardware: 14C3:7915 14C3:7915 [MediaTek MT7915E]
 TX power offset: none
 Frequency offset: none
 Supports VAPs: yes PHY name: phy0

wlan0 ESSID: "Mesh AP"
 Access Point: 44:D1:FA:D2:00:01
 Mode: Master Channel: 1 (2.412 GHz) HT Mode: HE20
 Center Channel 1: 1 2: unknown
 Tx-Power: 20 dBm Link Quality: unknown/70
 Signal: unknown Noise: -85 dBm
 Bit Rate: unknown
 Encryption: mixed WPA2/WPA3 PSK/SAE (CCMP)
 Type: nl80211 HW Mode(s): 802.11ax/b/g/n
 Hardware: 14C3:7915 14C3:7915 [MediaTek MT7915E]
 TX power offset: none
 Frequency offset: none
 Supports VAPs: yes PHY name: phy0

Once you have assigned the template to at least two devices which are close to each other, you can verify whether
they have formed a mesh with iw mesh0 station dump, which should return the number of connected mesh
nodes (called stations):

Station 44:d1:fa:d2:04:d6 (on mesh0)
 inactive time: 10 ms
 rx bytes: 9050195
 rx packets: 80356
 tx bytes: 1169064
 tx packets: 7196
 tx retries: 0
 tx failed: 0
 rx drop misc: 200
 signal: -42 [-43, -49] dBm
 signal avg: -42 [-43, -49] dBm
 Toffset: 287058701286 us
 tx bitrate: 243.7 MBit/s HE-MCS 10 HE-NSS 2 HE-GI 1 HE-DCM 0
 tx duration: 32732793 us
 rx bitrate: 258.0 MBit/s HE-MCS 10 HE-NSS 2 HE-GI 0 HE-DCM 0
 rx duration: 3451735 us
 airtime weight: 256
 mesh llid: 0
 mesh plid: 0

Tutorials

496

 mesh plink: ESTAB
 mesh airtime link metric: 48
 mesh connected to gate: yes
 mesh connected to auth server: no
 mesh local PS mode: ACTIVE
 mesh peer PS mode: ACTIVE
 mesh non-peer PS mode: ACTIVE
 authorized: yes
 authenticated: yes
 associated: yes
 preamble: long
 WMM/WME: yes
 MFP: yes
 TDLS peer: no
 DTIM period: 2
 beacon interval:100
 connected time: 3511 seconds
 associated at [boottime]: 272718.754s
 associated at: 1706572676925 ms
 current time: 1706576187500 ms

If you didn't get the expected results we recommend looking at the logread output and look for any critical error
shown in the log output, this should help you to fix it.

Monitoring the Mesh Nodes

If everything has worked out successfully and you have the OpenWISP monitoring agent running correctly on your
device, you should start seeing monitoring information about the mesh network in the status tab of the device page.

Bridge interface:

Mesh0 interface:

Tutorials

497

../_images/status-br-lan.png

Wlan0 interface:

Mesh Topology Collection and Visualization

In June 2023, we introduced a new feature to the Network Topology module of OpenWISP, enabling the automatic
collection of mesh network topology data from for visualization purposes.

Setting up this feature is beyond the scope of this tutorial, but we provide pointers to demonstrate its usefulness and
guide you in finding the information needed to set it up:

Tutorials

498

../_images/status-mesh0.png
../_images/status-mesh0-associated-clients.png
../_images/status-wlan0.png
../_images/mesh-network-topology.gif

• Relevant Network Topology documentation

• Github pull request: [feature] WiFi Mesh integration

If you have been playing with our Demo System, you can try this feature there! You only have to register at least 2
devices to the Demo System, enable the Mesh Demo template on your devices and wait a few minutes until the data
is collected and shown in the Network Topology List as shown below.

Tutorials

499

https://github.com/openwisp/openwisp-network-topology/pull/179
https://demo.openwisp.io/admin/config/template/ae564575-f251-4f78-aaaf-7821e7a06ad3/change/
../_images/mesh-network-topology-list.png

Tutorials

500

../_images/mesh-network-topology-detail.png

Changing the Default 802.11s Routing Protocol

Switching the mesh routing protocol can be beneficial for optimizing the most efficient path between two nodes and
reducing the number of hops, but it is essential to configure it correctly to achieve optimal performance.

Using a mesh routing protocol other than the default protocol shipped in the 802.11s implementation is out of scope
of this tutorial but can be done.

You will need to turn off mesh forwarding and configure the routing daemon of your choice.

Seealso

• Open and/or WPA protected WiFi Access Point SSID

• WiFi Hotspot, Captive Portal (Public WiFi), Social Login

• How to Set Up WPA Enterprise (EAP-TTLS-PAP) authentication

Community Resources

Help us to grow

You don't need necessarily to be a programmer in order to help out.

Community Resources

501

../_images/mesh-network-topology-demo.png

An apparently insignificant action can have a very positive impact on the project and in this page we'll explain why it's
in your interest to help the project grow.

Table of Contents:
Are you using OpenWISP for your organization? 502

How to help 502

1. Open new discussion threads 502

2. Send feedback 503

3. Stars on github 503

4. Documentation 503

5. Social media 503

6. Blogging 503

7. Conferences & Meetups 504

8. Participate 504

9. Contribute technically 504

10. Commercial support and funding development 504

Are you using OpenWISP for your organization?

If you are using OpenWISP for your company or no profit organization, it's in your best interest to help the project to
grow, because the more we grow as a community, the more contributors we'll attract which in turn will help us to
improve the software, its documentation and keep alive the support channels.

Even small and apparently meaningless actions can make a big difference if performed by a sufficient
number of people.

Note

If you need commercial support for your business, see the paragraph about Commercial support and funding
development.

How to help

1. Open new discussion threads

The Github Discussions Forum and the Mailing List are excellent places to ask questions or share information
regarding OpenWISP.

Every question and its replies are archived and indexed by search engines, creating a repository of solved problems
that people can find over time.

For this reason, using these channels for support questions should be preferred over the chats.

Warning

Please be mindful that over 700 people read these channels and discussions are indexed forever. For these
reasons, you should:

• Keep the focus of the discussion technical.

• Avoid irrelevant comments.

Community Resources

502

http://openwisp.org/support.html
http://openwisp.org/support.html

• Be mindful about what you write.
• Keep the tone calm and constructive.

• Be respectful to the volunteers who reply in their free time.

• Avoid generating noise.

When subscribing to the mailing list, we suggest choosing one of these options:

• Receive all emails by creating a filter in your mailbox that moves the messages to a dedicated folder.

• Receive a periodic summary (abridged or digest).

2. Send feedback

When you use OpenWISP, you may find ideas about improvements, new features or you may incur in bugs.

It's very helpful to us if you send us your feedback in some way. The preferred way to send feedback is to use the
mailing list, but you can send feedback in any way you want.

If you have found a bug we will likely ask you to open a bug report in a specific github repository, if you can follow up
with this activity it will be very helpful to us.

3. Stars on github

Unfortunately, when evaluating a project, a disproportionate amount of people look at the github stars as a method of
evaluation on how popular a project is and if they don't see many stars they discard the idea of using it.

OpenWISP is composed of many modules and for that reason we don't have a single super popular github repository
with thousands of stars, but when new users and developers look at our github organization page they may not get
this at first glance and they will start looking for the numbers of stars.

Yes, we know it sounds silly, but since it doesn't cost you anything, it would be really useful if you could take a look
at our projects on github and star the ones you find most interesting.

4. Documentation

If you find anything in this documentation that you think may be improved, please edit the document on github and
send us a pull request, alternatively you can file a bug report or write to the support channels.

5. Social media

If you are using OpenWISP, it's very useful to let the world know about it by sharing a public post on social media
using the #openwisp hashtag.

We also have a twitter account and a facebook page you can follow to help us share news about our community.

If more people talk about OpenWISP on social media, we increase the chance that those who have the will and
technical skills to contribute will hear about its existence.

6. Blogging

Write a blog post about how you are using OpenWISP!

It would be great if you could explain the reasons for which you chose OpenWISP, the traits you like about it and the
traits you don't like about it.

This is VERY helpful not only for the core developers but also for potential readers that may find your blog post and
read about your use case: maybe they have the same use case and they want to know if OpenWISP is a good fit for
them.

Community Resources

503

http://openwisp.org/support.html
https://github.com/openwisp
http://openwisp.org/support.html
https://twitter.com/openwisp
https://www.facebook.com/OpenWISP/

A concise, straight to the point blog post with some images and screenshots will go a long way in attracting new
people into the community.

7. Conferences & Meetups

If you like to share your knowledge at conferences and meetups, you may cite OpenWISP in one of your
presentations or lightning talks, you may also show some of its features, if relevant.

8. Participate

By participating actively in the support channels you can also help us a lot: the welcoming level of an open source
community is a key factor in attracting a good numbers of contributors.

9. Contribute technically

Are you skilled in one of the following areas?

• technical writing

• python

• networking

• graphic/web design

• frontend development

• OpenWrt

• Freeradius

• linux

• devops

If yes, you can help us greatly. Find out more about this subject in How to contribute to OpenWISP.

10. Commercial support and funding development

If your company uses OpenWISP for its business and needs professional support on custom setups,
development of new features or commercial support, you can hire a specialist which very active in the
community so they can help you achieve what you need.

Hiring a specialist is usually more effective than trying to figure it out alone: specialists know OpenWISP very
well, they can suggest what are the best ways to accomplish something with the least effort, with the highest quality
and in the least time at the least cost. Moreover, they will produce solutions that can also be shared with the rest of
the community and become part of the OpenWISP ecosystem.

Press

In this page we aim to collect the following:

• presentations, blog posts and academic publications in which OpenWISP is either the main subject or it's
mentioned

• logos and other design files

Presentations

OpenWISP: a Hackable Network Management System for the 21st Century

Presented by Federico Capoano at the IETF Meeting 103 Bangkok:

Community Resources

504

http://openwisp.org/support.html
https://www.ietf.org/how/meetings/103/

• slides

django-freeradius at PyCon Italia 2018

Presented by Fiorella De Luca at PyCon Italy 2018:

• video

• abstract

OpenWISP 2: the modular configuration manager for OpenWrt

Presented by Federico Capoano at OpenWrt Summit 2017 in Prague:

• video

• slides

Applying the Unix Philosophy to Django projects

Presented by ederico Capoano at PyCon Italy 2017:

• video

• slides

Opening Proprietary Networks with OpenWISP

Lightning talk by Federico Capoano at DjangoCon Europe 2017:

• slides

OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices

Talk by Federico Capoano at FOSDEM 2017 in Brussels:

• video

• abstract

Do you really need to fork OpenWrt?

Presented at OpenWrt Summit 2015 in Dublin:

• video

OpenWISP GARR Conference 2011

Interview for GARR Conference presented by Davide Guerri (in Italian):

• video

OpenWISP e Progetti WiFi Nazionali

Interview for GARRTV by Davide Guerri (in Italian):

• video

Community Resources

505

https://datatracker.ietf.org/meeting/103/materials/slides-103-gaia-openwisp-a-hackable-network-management-system-for-the-21st-centry-00
https://www.pycon.it/en/
https://www.youtube.com/watch?v=Yapdso_6EGA
https://www.pycon.it/conference/talks/django-freeradius
http://openwrtsummit.org
https://www.youtube.com/watch?v=n531yTtJimU
http://static.nemesisdesign.net/openwisp2-openwrt-summit-2017/
https://www.pycon.it/conference/talks/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://www.youtube.com/watch?v=tm7Opg3QyZk
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://2017.djangocon.eu/
https://www.slideshare.net/FedericoCapoano/opening-propietary-networks-with-openwisp
https://fosdem.org/
https://www.youtube.com/watch?v=lGiW-uA4Btk
https://archive.fosdem.org/2017/schedule/event/openwisp2
http://openwrtsummit.org
https://www.youtube.com/watch?v=2uioGZuITbA
https://www.garr.it/en/
https://www.youtube.com/watch?v=4mxiupJNPKo
https://www.garr.tv
https://www.youtube.com/watch?v=4AE7XSTPCT0

Blog Posts

• How Bottom-up Broadband will overcome the 'last mile' problem

• netjsonconfig: convert NetJSON to OpenWrt UCI

• Automate OpenWrt/LEDE firmware generation with Ansible

• django-x509: a reusable django app for PKI management

• Network Topology Visualizer: django-netjsongraph

• Marco and Alessia for an increasingly open network (in Italian)

• Fly with Uniurb and OpenWISP to the Google Summer of Code 2018 (in Italian)

• Uniurb at the Google Summer of Code with OpenWISP2 and Marco (in Italian)

• Post by the Metropolitan City of Rome (in Italian)

Google Summer of Code Blog Posts

2023 Contributors

• ZeroTier Tunnels Support for OpenWISP Controller by Aryaman (Aryamanz29).

2022 Contributors

• Iperf3 Check for OpenWISP Monitoring by Aryaman (Aryamanz29).

• Improve netjsongraph.js for its new release by Vaishnav Nair (totallynotvaishnav).

2021 Students

• OpenWISP REST API by Manish Kumar Shah (manishshah120).

• OpenWrt OpenWISP Monitoring by Kapil Bansal (devkapilbansal).

• OpenWISP WiFi Login Pages by Sankalp (codesankalp).

• Modern UI/UX by Nitesh Sinha (nitehsinha17).

• Revamp Netengine and add its SNMP capability to OpenWISP Monitoring by Purhan Kaushik (purhan).

2020 Students

• Introducing OpenWISP Monitoring: Project report by Hardik Jain (nepython).

• Merge django reusable-apps by Ajay Tripathi (atb00ker).

• OpenWISP Notifications Module by Gagan Deep (pandafy).

2019 Students

• Dockerization of OpenWISP by Ajay Tripathi (atb00ker).

• Project Report: NetJSONGraph.js Library of OpenWISP by KuTuGu.

Community Resources

506

https://blog.p2pfoundation.net/how-bottom-up-broadband-will-overcome-the-last-mile-problem/2013/07/23
http://nemesisdesign.net/blog/coding/netjsonconfig-convert-netjson-to-openwrt-uci/
http://nemesisdesign.net/blog/coding/automate-openwrt-lede-firmware-generation-ansible/
http://nemesisdesign.net/blog/coding/django-x509-pki-pem/
http://nemesisdesign.net/blog/coding/network-topology-visualizer-django-netjsongraph/
https://uniamo.uniurb.it/openwisp/
https://uniamo.uniurb.it/google-summer-of-code-2018/
https://uniamo.uniurb.it/uniurb-google-summer-of-code-openwisp2/
http://www.cittametropolitanaroma.it/homepage/elenco-siti-tematici/wifimetropolitano/openwisp-la-soluzione-open-source-la-diffusione-servizi-wifi/
https://aryamanz29.medium.com/add-support-for-automatic-management-of-zerotier-tunnels-791be96903bf
https://aryamanz29.medium.com/iperf-check-to-openwisp-monitoring-gsoc22-project-report-2661eddd3f77
https://medium.com/@vaishnavnair365/improve-netjsongraph-js-for-its-new-release-project-report-b87002fcfe34
https://manishshah120.medium.com/openwisp-rest-api-gsoc21-project-report-f2c4e0a22673
https://dev.to/devkapilbansal/openwrt-openwisp-monitoring-2bmj
https://codesankalp.medium.com/openwisp-wifi-login-pages-project-report-fbc77ff6cc8b
https://medium.com/@niteshsinha1707/new-navigation-menu-and-ui-ux-improvements-project-report-a94c37514b7d
https://medium.com/@purhan/gsoc-2021-final-project-report-85dc49c59a87
https://medium.com/@nepython/openwisp-monitoring-gsoc-2020-project-report-332441961629
https://medium.com/@atb00ker/merge-openwisp-django-modules-project-report-e8959049d496
https://medium.com/@pandafy/openwisp-notifications-6c11ae577994
https://medium.com/@atb00ker/docker-openwisp-9b2040f03966
https://medium.com/@zhongliwang48/project-report-netjsongraph-js-library-of-openwisp-d05ef95757d8

2018 Students

• OpenWISP IPAM: IP Address Management tool for OpenWISP2 by Anurag Sharma.

2017 Students

• Adding AirOS support to netjsonconfig by Edoardo Putti.

• Building a Javascript Based Configuration UI for OpenWISP by Nkhoh Gaston Che.

• OpenWISP 2 Network Topology by Rohith A. S. R. K.

• Google Summer of Code 2017 Django-freeradius by Fiorella De Luca.

• Raspbian backend for OpenWISP 2 by Ritwick DSouza.

Research and publications

• A Comprehensive Study on OpenWISP for Evolving Infrastructure Needs

• Monitoring Community Networks: Report on Experimentations on Community Networks

• Network Infrastructure as Commons

• Bottom-up Broadband Initiatives in the Commons for Europe Project

• Free Europe WiFi by Justel Pizarro (in Spanish)

• Bottom-up Broadband: Free Software Philosophy Applied to Networking Initiatives

• Study of community organizations and the creation of a
collaborative environment for the initiative "Bottom up Broadband" (in Catalan)

• Control and management of WiFi networks (in Slovenian)

• IEEE publication: ProvinciaWiFi: A 1000 hotspot free, public, open source WiFi network

• OpenWISP, an original open source solution for the diffusion of wifi services (in
Italian)

Logos and Graphic material

OpenWISP Logo (Black Foreground)

Community Resources

507

https://gist.github.com/anurag-ks/75d033c9652c559b065f9cc6320ea707
https://edoput.github.io/openwispgsoc/
https://medium.com/@gastonche/building-a-javascript-based-configuration-ui-for-openwisp-5eab15088a55
https://medium.com/@rohithasrk/openwisp-2-network-topology-gsoc-17-4765008ccba
https://delucafiorella2602.wordpress.com/
https://medium.com/@ritwickdsouza/gsoc-openwisp-raspbian-backend-for-openwisp-2-61ff91843362
https://ieeexplore.ieee.org/document/6381720

OpenWISP Logo (White Foreground)

OpenWISP Logo (Black Foreground, with openwisp.org)

Community Resources

508

Code of Conduct

1. Purpose 509

2. Open Source Citizenship 509

3. Expected Behavior 509

4. Unacceptable Behavior 509

5. Consequences of Unacceptable Behavior 510

6. Reporting Guidelines 510

7. Addressing Grievances 510

8. Scope 510

9. Contact info 510

10. License and attribution 511

1. Purpose

OpenWISP aims to be a welcoming organization for contributors with the most varied and diverse backgrounds
possible. We are devoted towards providing a friendly, safe and welcoming environment for all, regardless of gender,
sexual orientation, ability, ethnicity, socioeconomic status, and religion.

This code of conduct outlines our expectations for all those who participate in our community, as well as the
consequences for unacceptable behavior.

We invite all those who participate in OpenWISP to help us create safe and positive experiences for everyone.

2. Open Source Citizenship

An additional purpose of this Code of Conduct is to boost open source citizenship by encouraging participants to
recognize and strengthen the relationships between our actions and their effects on our community.

Communities mirror the societies in which they exist and positive action is essential to prevent the many forms of
inequality and abuses of power that exist in society.

If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages
all participants to contribute to the fullest extent, we want to know.

3. Expected Behavior

The following behaviors are expected and requested of all community members:

• Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this
community.

• Exercise consideration and respect in your speech and actions.

• Attempt collaboration before conflict.

• Refrain from demeaning, discriminatory, or harassing behavior and speech.

• Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a
dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem
inconsequential.

• Remember that community event venues may be shared with members of the public; please be respectful to all
patrons of these locations.

4. Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

Community Resources

509

• Violence, threats of violence or violent language directed against another person.

• Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

• Posting or displaying sexually explicit or violent material.

• Posting or threatening to post other people’s personally identifying information ("doxing").

• Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

• Inappropriate photography or recording.

• Inappropriate physical contact. You should have someone’s consent before touching them.

• Unwelcome sexual attention. This includes, sexual comments or jokes; inappropriate touching, groping, and
unwelcome sexual advances.

• Deliberate intimidation, stalking or following (online or in person).

• Advocating for, or encouraging, any of the above behavior.

• Sustained disruption of community events, including talks and presentations.

5. Consequences of Unacceptable Behavior

We do not tolerate harassment of the participants in any form. Unacceptable behavior from any community member,
including sponsors and those with decision-making authority, will not be tolerated.

Anyone asked to stop unacceptable behavior is expected to comply immediately.

If a community member engages in unacceptable behavior, the community organizers may take any action they
deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning
(and without refund in the case of a paid event).

6. Reporting Guidelines

If you are being harassed, noticed that someone else is being harassed, or have any other concerns, please contact
community organizers immediately.

Additionally, community organizers are available to aid community members to engage with local law enforcement or
to otherwise help those experiencing unacceptable behavior feel safe. In the situation of in-person events, organizers
will also provide escorts as desired by the person experiencing distress.

7. Addressing Grievances

If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should get in touch with
the OpenWISP community managers by sending a short explanation of your grievance.

Your grievance will be handled in accordance with our existing governing policies.

8. Scope

All community participants (contributors, paid or otherwise; sponsors; and other guests) must abide by this Code of
Conduct in all forms of communications within the community such as venues, online and in-person as well as in all
one-on-one communications pertaining to community business.

This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of
community activities when such behavior has the potential to adversely affect the safety and well-being of community
members.

9. Contact info

E-mail:

Community Resources

510

10. License and attribution

This Code of Conduct is distributed under a Creative Commons Attribution-ShareAlike License.

Portions of text derived from the Django Under The Hood.

Developer Resources

Welcome to the Developer Resources section! If you're a developer eager to contribute to OpenWISP, you've come
to the right place. This section provides a wealth of information to help you get started, contribute effectively, and
make the most out of your development experience with OpenWISP.

Contributing guidelines

We are glad and thankful that you want to contribute to OpenWISP.

Important

Please read these guidelines carefully, it will help to save precious time for everyone involved.

Table of Contents:
Introduce yourself 511

Look for open issues 511

Priorities for the next release 512

Setup 512

How to commit your changes properly 512

1. Branch naming guidelines 512

2. Commit message style guidelines 512

3. Pull-Request guidelines 513

4. Avoiding unnecessary changes 513

Coding Style Conventions 514

1. Python code conventions 514

2. Javascript code conventions 514

3. OpenWrt related conventions 514

Thank You 514

Introduce yourself

It won't hurt to join our main communication channel and introduce yourself, although to coordinate with one another
on technical matters we use the development channel. Use these two channels share feedback, share your
OpenWISP derivative work, ask questions or announce your intentions.

Look for open issues

Check out these two kanban boards:

• OpenWISP Contributor's Board: lists issues that are suited to newcomers.

• OpenWISP Priorities for next releases, lists issues that are more urgently needed by the community and is
frequently used and reviewed by more seasoned contributors.

Developer Resources

511

http://creativecommons.org/licenses/by-sa/3.0/
https://www.djangounderthehood.com/coc/
https://matrix.to/#/#openwisp_general:gitter.im
https://matrix.to/#/#openwisp_development:gitter.im
https://github.com/orgs/openwisp/projects/42/views/1
https://github.com/orgs/openwisp/projects/37/views/1

If there's anything you don't understand regarding the board or a specific github issue, don't hesitate to ask questions
in our general chat.

You don't need to wait for the issue to be assigned to you. Just check if there is anyone else actively working on
it (e.g.: an open pull request with recent activity). If nobody else is actively working on it, just announce your
intention to work on it by leaving a comment in the issue.

Priorities for the next release

When we are close to releasing a new major version of OpenWISP, we will encourage all contributors to focus on the
To Do column of the OpenWISP Priorities for next releases board and filter the issues according to their expertise:

• Newcomer: filter by Good first issue or Hacktoberfest.

• Expert: filter by Important.

Setup

Once you have chosen an issue to work on, read the documentation section of the module you want to contribute to,
follow the setup instructions, each module has its own specific developer installation instructions which we highly
advise to read carefully.

Important

For a complete list of the OpenWISP modules, refer to Architecture, Modules, Technologies.

How to commit your changes properly

Our main development branch is master, it's our central development branch.

You should open a pull request on github. The pull request will be merged only once the CI build completes
successfully (automated tests, code coverage check, QA checks, etc.) and after project maintainers have reviewed
and tested it.

You can run QA checks locally by running ./run-qa-checks in the top level directory of the repository you're
working on. Every OpenWISP module should have this script (if a module doesn't have it, please open an issue on
github).

1. Branch naming guidelines

Create a new branch for your patch, use a self-descriptive name, e.g.:

git pull origin master
if there's an issue your patch addresses
git checkout -b issues/48-issue-title-shortened

if there is no issue for your branch, (we suggest creating one anyway)
use a descriptive name
git checkout -b autoregistration

2. Commit message style guidelines

Please follow our commit message style conventions.

If the issue is present on Github, use following commit style:

Developer Resources

512

https://matrix.to/#/#openwisp_general:gitter.im
https://github.com/orgs/openwisp/projects/37/views/1
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=good+first+issue
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=hacktoberfest
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=important

[module/file/feature] Short description #<issue-number>

Long description here.
Fixes #<issue-number>

Here's a real world commit message example from one of our modules:

[admin] Fixed VPN context in preview #57

Fortunately it was just a frontend JS issue.
The preview instance was getting the UUID of the Device
object instead of the Config object, and that prevented
the system from finding the associated VPN and fill the
context VPN keys correctly.

Fixes #57

Moreover, keep in mind the following guidelines:

• commits should be descriptive in nature, the message should explain the nature of the change

• make sure to follow the code style used in the module you are contributing to

• before committing and pushing the changes, test the code both manually and automatically with the automated
test suite if applicable

• after pushing your branch code, make a pull-request of that corresponding change of yours which should
contain a descriptive message and mention the issue number as suggested in the example above

• make sure to send one pull request for each feature. Whenever changes are requested during reviews, please
send new commits (do not amend previous commits), if multiple commits are present in a single pull request,
they will be squashed in a single commit by the maintainers before merging

• in case of big features in which multiple related features/changes needs to be implemented, multiple commits
(one commit per feature) in a single PR are acceptable.

3. Pull-Request guidelines

After pushing your changes to your fork, prepare a new Pull Request (from now on we will shorten it often to just PR):

• from your forked repository of the project select your branch and click "New Pull Request"

• check the changes tab and review the changes again to ensure everything is correct

• write a concise description of the PR, if an issue exists for

• after submitting your PR, check back again whether your PR has passed our required tests and style checks

• if the tests fail for some reason, try to fix them and if you get stuck seek our help on our communication
channels

• if the tests pass, maintainers will review the PR and may ask you to improve details or changes, please be
patient: creating a good quality open source project takes a bit of sweat and effort; ensure to follow up with this
type of operations

• once everything is fine with us we'll merge your PR

4. Avoiding unnecessary changes

Keep your contribution focused and change the least amount of lines of code as possible needed to reach the goal
you're working on.

Avoid changes unrelated to the feature/fix/change you're working on.

Avoid changes related to white-space (spaces, tabs, blank lines) by setting your editor as follows:

• always add a blank line at the end of the file

Developer Resources

513

https://github.com/openwisp/django-netjsonconfig/commit/7a5dad9f97e708b89149c2765f8298c5a94b652b
http://openwisp.org/support.html
http://openwisp.org/support.html

• clear empty lines containing only spaces or tabs

• show white space (this will help you to spot unnecessary white space)

Coding Style Conventions

1. Python code conventions

OpenWISP follows PEP 8 -- Style Guide for Python Code and several other style conventions which can be enforced
by using the following tools:

• openwisp-qa-format: this command is shipped in openwisp-utils, a dependency used in every OpenWISP
python module, it formats the Python code according to the OpenWISP style conventions, it's based on popular
tools like: isort and black (please do not run black directly but always call openwisp-qa-format)

• ./run-qa-checks: it's a script present in the top level directory of each OpenWISP module and performs all
the QA checks that are specific to each module. It mainly calls the openwisp-qa-check command, which
performs several common QA checks used across all OpenWISP modules to ensure consistency (including
flake8), for more info consult the documentation of openwisp-qa-check.

Keep in mind that the QA checks defined in the run-qa-checks script are also executed in the CI builds, which will
fail if any QA check fails.

To fix QA check failures, run openwisp-qa-format and apply manual fixes if needed until ./run-qa-checks
runs without errors.

Note

If you want to learn more about our usage of python and django, we suggest reading Useful Python & Django
Tools for OpenWISP Development.

2. Javascript code conventions

• OpenWISP follows standard JavaScript coding style conventions that are generally accepted or the ones that
are specified in .jshintrc files; find out more about JSHint here

• please follow this JavaScript Style Guide and Coding Conventions link for proper explanation and wonderful
examples

3. OpenWrt related conventions

OpenWISP follows the standard OpenWrt coding style conventions of OpenWrt:

• Working with Patches

• Naming patches

• Adding new files.

Thank You

If you follow these guidelines closely your contribution will have a very positive impact on the OpenWISP project.

Thanks a lot for your patience.

Developer Resources

514

https://www.python.org/dev/peps/pep-0008/
http://isort.readthedocs.io/en/latest/
https://black.readthedocs.io/en/stable/
http://flake8.pycqa.org/en/latest/
https://github.com/openwisp/openwisp-controller/blob/master/.jshintrc
https://jshint.com/about/
https://www.w3schools.com/js/js_conventions.asp
https://wiki.openwrt.org/doc/devel/patches
https://wiki.openwrt.org/doc/devel/patches#naming_patches
https://wiki.openwrt.org/doc/devel/patches#naming_patches

Useful Python & Django Tools for OpenWISP Development

In this page we aim to help users and contributors who want to work on the internal code of OpenWISP in the
following ways:

1. By explaining why OpenWISP uses Python and Django as its main technologies for the backend application

2. By introducing some Python tools and Django extensions which are extremely useful during development
and debugging.

Table of Contents:
Why Python? 515

Why Django? 516

Why Django REST Framework? 516

Useful Development Tools 517

IPython and ipdb 517

Django Extensions 517

Django Debug Toolbar 517

Using these Tools in OpenWISP 517

Why Python?

Note

The first version of OpenWISP was written in Ruby.

OpenWISP 2 was rewritten in Python because Ruby developers were becoming scarce, which led to stagnation.
The widespread use of Python in the networking world also played a significant role in this decision.

Python is an interpreted, high-level programming language designed for general-purpose programming, emphasizing
productivity, fast prototyping, and high readability.

Python is widely used today, with major organizations like Google, Mozilla, and Dropbox extensively employing it in
their systems.

Here are the main reasons why OpenWISP is written in Python:

Developer Resources

515

https://www.python.org

• It is widely used in the networking and configuration management world. Famous libraries such as networkx,
ansible, salt, paramiko, and fabric are written in Python. This allows our users to work with a familiar
programming language.

• Finding developers who know Python is not a hard task, which helps the community grow and contributes to the
improvement of the OpenWISP software ecosystem over time.

• Python allows great flexibility and extensibility, making OpenWISP hackable and highly customizable. This
aligns with our emphasis on software reusability, which is one of the core values of our project.

Resources for learning Python:

• LearnPython.org.

• SoloLearn (a detailed beginner course).

Why Django?

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design.

In OpenWISP we chose Django mainly for these reasons:

• It has a rich ecosystem and pluggable apps that allow us to accomplish a lot very quickly.

• It has been battle-tested over many years by a large number of users and high-profile companies.

• Security vulnerabilities are usually privately disclosed to the developers and quickly fixed.

• Being popular, it's easy to find Python developers with experience in Django who can quickly start contributing
to OpenWISP.

• Django projects are easily customizable by editing a settings.py file. This allows OpenWISP to design its
modules so they can be imported into larger, more complex, and customized applications, enabling the creation
of tailored network management solutions. This makes OpenWISP similar to a framework: users can use the
default installation, but if they need a more tailored solution, they can use it as a base, avoiding the need to
redevelop a lot of code from scratch.

Resources for learning Django:

• Official Basic Django Tutorial

• DjangoGirls Tutorial (excellent for absolute beginners!)

PS: If you are wondering why the second tutorial mentions the word "Girls," we suggest taking a look at
djangogirls.org.

Why Django REST Framework?

Django REST framework is a powerful and flexible toolkit for building Web APIs, used and trusted by internationally
recognized companies including Mozilla, Red Hat, Heroku, and Eventbrite.

Here are some reasons why OpenWISP uses Django REST framework:

• Simplicity, flexibility, quality, and extensive test coverage of the source code.

• Powerful serialization engine compatible with both ORM and non-ORM data sources.

• Clean, simple views for resources, using Django's class-based views.

• Efficient HTTP response handling and content type negotiation using HTTP Accept headers.

• Easy publishing of metadata along with querysets.

Resources for learning Django REST Framework:

• Django REST Framework Official Tutorial

Developer Resources

516

https://networkx.org/
https://www.ansible.com
https://docs.saltstack.com/en/latest/topics/
http://www.paramiko.org
http://www.fabfile.org
https://www.learnpython.org
https://www.sololearn.com
https://www.djangoproject.com/start/
https://www.djangoproject.com/start/
https://tutorial.djangogirls.org/en/
https://djangogirls.org/
https://www.django-rest-framework.org
http://www.django-rest-framework.org/tutorial/quickstart/

Useful Development Tools

IPython and ipdb

IPython (Interactive Python) is a command shell for interactive computing in multiple programming languages,
originally developed for Python. It offers introspection, rich media, shell syntax, tab completion, and history.

It provides:

• A powerful interactive shell with syntax highlighting

• A browser-based notebook interface with support for code, text, mathematical expressions, inline plots, and
other media

• Support for interactive data visualization and use of GUI toolkits

• Flexible, embeddable interpreters to load into one's own projects

• Tools for parallel computing

More details, including installation and updates, can be found on the official website.

As for ipdb, it allows the use of the ipython shell when using the Python debugger (pdb).

Try adding this line in a Django project (or an OpenWISP module), for example in a settings.py file:

import ipdb

ipdb.set_trace()

Now load the Django development server and have fun while learning how to debug Python code!

Django Extensions

Django Extensions is a collection of extensions for the Django framework. These include management commands,
additional database fields, admin extensions, and much more. We will focus on three of them for now: shell_plus,
runserver_plus, and show_urls.

Django Extensions can be installed with:

pip install django-extensions

shell_plus: Django shell which automatically imports the project settings and the django models defined in the
settings.

runserver_plus: the typical runserver with the Werkzeug debugger baked in.

show_urls: displays the registered URLs of a Django project.

Django Debug Toolbar

The Django Debug Toolbar is a configurable set of panels that display various debug information about the current
HTTP request/response and, when clicked, provide more details about the panel's content.

It can be installed with:

pip install django-debug-toolbar

More information can be found in the django-debug-toolbar documentation.

Using these Tools in OpenWISP

These tools can be added to an OpenWISP development environment to significantly improve the efficiency and
experience of development. Here's a guide on how to use them in OpenWISP Controller.

In the tests/ folder, local_settings.example.py should be copied and renamed to local_settings.py
for customization. This technique can be used in other OpenWISP development environments too.

Developer Resources

517

https://ipython.org
https://ipython.org
https://github.com/gotcha/ipdb
https://django-extensions.readthedocs.io/
https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://django-extensions.readthedocs.io/en/latest/runserver_plus.html
https://django-debug-toolbar.readthedocs.io/
https://django-debug-toolbar.readthedocs.io/en/latest/

cd tests/
cp local_settings_example.py local_settings.py

Follow the installation steps for OpenWISP Controller. Run the command pipenv install --dev, then run
pipenv run ./manage.py migrate and pipenv run ./manage.py createsuperuser. Ensure
SPATIALITE_LIBRARY_PATH is specified in the local_settings.py file.

To start the development server with more debugging information, run:

python manage.py runserver_plus

For an interactive shell, use ipython alongside shell_plus by running:

./manage.py shell_plus --ipython

To debug the code, use ipdb. For example:

ipdb mymodule.py

This command will provide a list of lines where errors have been found or lines that can be further optimized.

To use django-debug-toolbar for displaying information about processes occurring on the website, some
configuration is required. Add the following lines to your local_settings.py:

from django.conf import settings

settings.INSTALLED_APPS += ["debug_toolbar", "django_extensions"]
settings.MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"]
INTERNAL_IPS = ["127.0.0.1"]

This ensures that the Django Debug Toolbar is displayed. Note that django_extensions is already included in
settings.py.

Finally, add the Debug Toolbar's URL to the URLconf of openwisp-controller as shown in the installation
tutorial, though this should already be present in the last lines of urls.py:

from django.conf import settings

if settings.DEBUG and "debug_toolbar" in settings.INSTALLED_APPS:
 import debug_toolbar

 urlpatterns.append(url(r"^__debug__/", include(debug_toolbar.urls)))

When you open http://127.0.0.1:8000 in the browser and log in with the credentials created earlier, you
should see something like this:

Now that you know the basics, you can experiment and apply these techniques to other OpenWISP modules.

Developer Resources

518

https://django-debug-toolbar.readthedocs.io/en/latest/installation.html
https://django-debug-toolbar.readthedocs.io/en/latest/installation.html

Google Summer of Code

Note

OpenWISP is a mentoring organization for the Google Summer of Code 2024.

If you are reading this page you are probably considering OpenWISP as a possible mentoring organization for the
Google Summer of Code, that's great!

If you are looking for a friendly community where your contribution will have a very tangible positive effect
from the first day of your participation and where you can grow your tech skills at 360°, then
CONGRATULATIONS! OpenWISP is the right organization for you.

Table of Contents:
How to run a successful Google Summer of Code 520

Traits we look for in applicants 520

How to become an OpenWISP star 521

Time to start hacking 522

Project ideas 522

Application Template 522

1. Your Details 522

2. Tell Us About Yourself 523

3. Your GSoC Project 523

4. After GSoC 523

Developer Resources

519

https://summerofcode.withgoogle.com/programs/2024/organizations/openwisp
https://summerofcode.withgoogle.com/

How to run a successful Google Summer of Code

First of all: PLEASE, PLEASE, read all the information contained in this page (including links!) because this
will save everybody involved a lot of time. We would rather spend our time coding than repeating the same stuff over
and over.

Have you read the Student manual yet? If not, please do because it's a MUST if you want to be successful!

Communication with the rest of the community is vital for a successful Google Summer of Code, please join our
communication channels, join our mailing list (we have a dedicated mailing list for GSoC, receive all emails please,
and filter them in your mail box so they are moved to an "OpenWISP" folder), present yourself in our general chat, tell
us who you are, what your values are, what is attracting to OpenWISP and don't be cold like a robot! Stay human :-).

Traits we look for in applicants

We participate in GSoC because we believe it's a great opportunity for us to give back to Open Source by helping
newcomers to get trained and thrive in this industry, but we also do it because we want to grow the pool of
maintainers of our project so we can help a greater number of users to use OpenWISP successfully.

Contributors who also become maintainers and start working professionally with OpenWISP are rare, but over time
we found out the traits that are good leading indicators for contributors who are likely to become core members of our
project, here are the traits we look for in GSoC applicants which give a higher chance of getting selected:

• Genuinely interested in networking: we look for people who are genuinely attracted in the topics we cover
because we believe they are the ones who most likely will benefit from a long term contribution to our project.

• Participate actively: they become active participants of the community, not just by submitting pull requests, but
also by helping new users or reviewing patches of other less experienced contributors.

• Put effort in understanding: they put effort in understanding the problem they need to solve and the outcomes
that is expected from them, which means actively researching the problem, expand the project idea with more
details, create a prototype, note down a list of questions regarding points that are not clear.

• Value the time of mentors: they read carefully the description of issues and put effort in understanding what
they have to do, when something is not clear they do not hesitate to explain the problem carefully via email or
on github.

Developer Resources

520

https://developers.google.com/open-source/gsoc/resources/guide#student_guide
https://openwisp.org/support.html
https://openwisp.org/support.html
https://groups.google.com/g/openwisp-gsoc
https://gitter.im/openwisp/general

• Parallelize tasks when waiting for a reply: while they wait for mentors to review or answer their questions,
they start tackling other issues for which they have enough information to get started, in order to avoid staying
idle.

• Value quality: they ensure their work is of the highest quality and doesn't break existing features of the system
thanks to thorough testing before flagging a patch as ready to be merged.

How to become an OpenWISP star

Here's a few quick tricks you can use to become a star in our community:

• read the founding values and goals of OpenWISP, are you on our side?

• study and follow closely the contributing guidelines

• be patient in the interaction with your mentors, we are all volunteers, we are taking our time to mentor you from
our free time which we usually spend family and loved ones

• we know our documentation is incomplete and fragmented, we are working hard to fix it; if you find a passage
that is not clear or you have an idea about how to improve it, please let us know!

• start using OpenWISP 2: install it, run it, play with it; understand its structure

• start contributing (e.g.: fix easy bugs, write documentation, improve tests); look for open issues in our most
used repositories on github.com/openwisp (ask in our support channels before starting to code please! we have
many legacy repositories that are not under active development anymore)

• if we ask you to open an issue in one of our github repository, please take at least 5 minutes of time to write a
proper bug report

• watch the OpenWISP 2 presentation at the recent OpenWrt Summit 2017 and read the slides of this more
technical OpenWISP 2 talk

• try using OpenWISP in real use case scenarios (find out if there's a free wifi community near your area), spend
time reading its code, ask questions

Developer Resources

521

https://github.com/openwisp
https://www.youtube.com/watch?v=n531yTtJimU
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world

• try to participate in the community, if a fellow member is in need of help and you know how to help him, please
do so, we will reward you

Time to start hacking

If you are not familiar with the following concepts yet, take the time to read these resources, it will help you to speed
up your raise to the top!

Programming languages and frameworks:

• Python (book)

• Django (official documentation)

• Lua (video tutorial)

• Shell

(video tutorial)

• Javascript (tutorial)

Networking concepts:

• Introduction to networking terminology

Configuration management:

• Introduction to configuration management

• Writing Ansible playbooks

• Creating Ansible roles from scratch

Project ideas

• Project Ideas 2024

Application Template

Please make sure to include the information requested below in your GSoC application.

1. Your Details

• Full name

• Date of birth

• Country/Region

• Email

• GitHub/GitLab profile

• Phone number

• What's your availability in UTC times?

Developer Resources

522

https://runestone.academy/ns/books/published/pythonds/index.html
https://docs.djangoproject.com/
https://www.youtube.com/watch?v=iMacxZQMPXs/
https://www.youtube.com/watch?v=hwrnmQumtPw/
https://www.tutorialspoint.com/javascript/
https://goo.gl/YG3RLd
https://goo.gl/3YTQgg
https://goo.gl/R2XptC
https://goo.gl/KMXcmr

2. Tell Us About Yourself

• What is your background?

• Have you ever contributed to open-source software projects? If yes, how?

• Please list the links to your OpenWISP contributions and/or notable contributions to other Open Source & Free
Software projects.

• Do you have any experience with OpenWrt?

• Do you have a router at home on which you can flash OpenWrt to test OpenWISP?

• What's your motivation for working on OpenWISP during the Google Summer of Code?

3. Your GSoC Project

• Project Title

• Possible Mentor

• Measurable Outcomes

• Project Details:

How are you going to implement the solution?

What technologies do you want to use?

Make sure to include code samples.

Linking to a repository containing a prototype and an explicative README, which includes screenshots or GIF
recordings demonstrating how the prototype works, is a great way to demonstrate your technical understanding
and boost your chances.

• Project Schedule: Can you provide a rough estimate? When can you begin to work?

• Availability: How many hours per week can you spend working on this? What other obligations do you have this
summer?

4. After GSoC

• Are you interested in continuing to collaborate with OpenWISP after the GSoC ends?

• Will you help maintain your implementation for a while?

• If we get new business opportunities to build new features, are you interested in occasional freelance paid
work?

It's not enough to reply "YES," please explain what your motivation is (e.g., gaining experience, tech
challenges).

GSoC Project Ideas 2024

Tip

Do you want to apply with us?

We have a page that describes how to increase your chances of success. Please read it carefully.

Read our Google Summer of Code guidelines.

Developer Resources

523

Table of Contents:

Project ideas 522

GSoC Project Ideas 2024 523

General suggestions and warnings 524

Project Ideas 524

Improve OpenWISP General Map: Indoor, Mobile, Linkable URLs 524

Improve netjsongraph.js resiliency and visualization 526

Improve UX and Flexibility of the Firmware Upgrader Module 527

Improve UX of the Notifications Module 528

Add more timeseries database clients to OpenWISP Monitoring 529

General suggestions and warnings

• Project ideas describe the goals we want to achieve but may miss details that have to be defined during
the project: we expect applicants to do their own research, propose solutions and be ready to deal with
uncertainty and solve challenges that will come up during the project

• Code and prototypes are preferred over detailed documents and unreliable estimates: rather than using
your time to write a very long application document, we suggest to invest in writing a prototype (which means
the code may be thrown out entirely) which will help you understand the challenges of the project you want to
work on; your application should refer to the prototype or other Github contributions you made to OpenWISP
that show you have the capability to succeed in the project idea you are applying for.

• Applicants who have either shown to have or have shown to be fast learners for the required hard and
soft skills by contributing to OpenWISP have a lot more chances of being accepted: in order to get
started contributing refer to the OpenWISP Contributing Guidelines

• Get trained in the projects you want to apply for: once applicants have completed some basic training by
contributing to OpenWISP we highly suggest to start working on some aspects of the project they are interested
in applying: all projects listed this year are improvements of existing modules so these modules already have a
list of open issues which can be solved as part of your advanced training. It will also be possible to complete
some of the tasks listed in the project idea right now before GSoC starts. We will list some easy tasks in the
project idea for this purpose.

Project Ideas

Improve OpenWISP General Map: Indoor, Mobile, Linkable URLs

Developer Resources

524

Important

Languages and technologies used: Python, Django, JavaScript, Leaflet, netjsongraph.js.

Mentors: Federico Capoano, Gagan Deep.

Project size: 350 hours.

Difficulty rate: medium.

This GSoC project aims to enhance the user experience of the general map within OpenWISP, a feature introduced
in the last stable version.

By developing a dedicated map page, facilitating precise device tracking, and seamlessly integrating indoor floor
plans, the project endeavors to significantly improve the usability and functionality of the mapping interface, ensuring
a more intuitive and effective user experience.

Prerequisites to work on this project

Applicants must demonstrate a solid understanding of Python, Django, Leaflet library, JavaScript, OpenWISP
Controller, OpenWISP Monitoring. and netjsongraph.js.

Expected outcomes

• Add a dedicated map page: Introduce a dedicated page to display all network devices on a map. This view will
offer the same functionality as the map in the dashboard, with the sole difference being that this page focuses
on rendering only the map. It will be used for linking specific points on the map within the rest of the OpenWISP
UI.

• Allow tracking mobile coordinates: OpenWISP Controller provides a way for devices to update their
co-ordinates, we want to make the map able to update in real time as devices send their updated coordinates.

• Integrate indoor floor plan functionality in the map: The netjsongraph.js library allows to render indoor maps, we
want to make use of this feature to display the indoor location of devices and we want this feature to be
accessible from the general map. When zooming in on a device which is flagged as indoor and has floor plans
saved in the database, users should see an option to switch to the indoor view. This view would show the floor
plan of the indoor location and any device located on the floor plan, it shall also account for the following use
cases:

• An indoor location can have multiple floors. The view should be allow users to navigate between
different floors.

• There can be multiple devices on the same floor. The view should show all the devices on a floor. This
will require developing an API endpoint which returns location of devices on the floor plan

• Make map actions bookmarkable: Update the URL when clicking on a node/link to view its details. Visiting this
URL should automatically focus on the specified node/link and display its details, if available. This functionality
should also accommodate geo-maps using coordinates. Clicking on a node/link to view it's details should
update the the page's URL. When visiting this URL, the map should automatically focus the said node/link. It
shall also open the node's/link's details if they are available. This should work on geographic maps, indoor
maps and logical maps.

• Add button to general map from device detail: Implement a button on the device detail page to allow users to
navigate from the device detail to the general map and inspect the device's location on the map. The map
should focus on the specific device in question. This feature should also be available for indoor maps, providing
a button in the floor plan section to open the general map with the indoor view focused.

Throughout the code changes, it is imperative to maintain stable test coverage and keep the README
documentation up to date.

Developer Resources

525

https://github.com/makinacorpus/django-leaflet
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://github.com/openwisp/netjsongraph.js?tab=readme-ov-file#netjsongraphjs
https://github.com/openwisp/openwisp-monitoring/issues/561
https://github.com/openwisp/openwisp-controller/issues/828
https://github.com/openwisp/openwisp-monitoring/issues/564
https://github.com/openwisp/netjsongraph.js/issues/238
https://github.com/openwisp/openwisp-monitoring/issues/562

Note

The "expected outcomes" mentioned above include links to corresponding GitHub issues. However, these issues
may not cover all aspects of the project and are primarily intended to gather technical details. Applicants are
encouraged to seek clarification, propose solutions and open more issues if needed.

Applicants are also expected to deepen their understanding of the UI changes required by preparing wireframes or
mockups, which must be included in their application. Demonstrating a willingness and enthusiasm to learn about
UI/UX development is crucial for the success of this project.

Improve netjsongraph.js resiliency and visualization

Important

Languages and technologies used: Javascript, NodeJS, HTML, CSS

Mentors: Federico Capoano (more mentors TBA).

Project size: 175 hours.

Difficulty rate: medium.

The goal of this project is to improve the latest version of the netjsongraph.js visualization library to improve
resiliency and functionality.

Prerequisites to work on this project

The contributor should have a proven track record and experience with Javascript, React JS, NodeJS, HTML and
CSS.

Familiarity with OpenWISP Network Topology and OpenWISP Monitoring is a plus.

Expected outcomes

The applicant must open pull requests for the following issues which must be merged by the final closing date of the
program:

Developer Resources

526

https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-monitoring

• Allow showing node names on geo map on high zoom levels: The node names should be shown by default on
high zoom levels.

• Map should respect zoom levels of tile providers: We shall limit the map zoom levels based on the tile provider.
We can make the supported zoom levels configurable and provide sensible defaults.

• Prevent overlapping of clusters: The clusters of different categories with the same location are overlapped.
Instead, we should find a way to prevent this behavior.

• Add resiliency for invalid data: The library should not crash if invalid data is provided, e.g. different nodes with
same ID. Instead, it should handle such cases gracefully and log the errors.

• Display additional data (connected clients) on nodes: It shall be possible to show connected clients on nodes.
This feature needs to be flexible, such that it can be used to show different kinds of data.

• Show node labels only after hitting a certain zoom level: At present, the node labels become cluttered and
unreadable when zoomed out excessively. To enhance readability, we need to add a feature in the library that
allows configuring the zoom level at which node labels should start appearing.

Each issue contains the details which the applicant needs to know in order to complete the project successfully.

At each step of code changing the test coverage must be maintained stable and the documentation in the README
must be kept up to date.

Improve UX and Flexibility of the Firmware Upgrader Module

Important

Languages and technologies used: Python, Django, OpenWrt.

Mentors: Federico Capoano (more mentors TBA).

Project size: 175 hours.

Difficulty rate: easy/medium.

The goal of this project is to improve the Firmware Upgrader module to make its mass upgrade operation feature
more versatile and to improve the user experience by showing progress in real time.

Prerequisites to work on this project

The applicant must demonstrate good understanding of Python, Django, Javascript and OpenWISP Controller.

They must demonstrate also a basic understanding of OpenWISP Firmware Upgrader, OpenWrt and UI
development.

Prior experience with OpenWrt is not extremely required but welcome.

Developer Resources

527

https://github.com/openwisp/netjsongraph.js/issues/189
https://github.com/openwisp/netjsongraph.js/issues/188
https://github.com/openwisp/netjsongraph.js/issues/171
https://github.com/openwisp/netjsongraph.js/issues/164
https://github.com/openwisp/netjsongraph.js/issues/153
https://github.com/openwisp/netjsongraph.js/issues/148
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-firmware-upgrader#openwisp-firmware-upgrader

Expected outcomes

The applicant must open pull-requests for the following issues which must be merged by the final closing date of the
program:

• [feature] REST API is missing endpoints for DeviceFirmware

• [feature:UI] Show upgrade progress in real time in the UI

• [feature] Allow to perform mass upgrade of devices by their group

• [feature] Allow to perform mass upgrade of devices by their location

Each issue contains the details which the applicant needs to know in order to complete the project successfully.

At each step of code changing the test coverage must be maintained stable and the documentation in the README
must be kept up to date.

Training Issues

The applicant may warm up in the application phase by working on the following issues:

• [bug] FileNotFoundError when trying to delete an image which links a non existing file

• [change] Improve endpoints to download firmware images

• [feature] Allow management of UpgradeOperation objects in the admin

Improve UX of the Notifications Module

Important

Languages and technologies used: Python, Django, JavaScript, HTML, CSS

Mentors: Gagan Deep (pandafy) (more mentors TBA).

Project size: 175 hours.

Difficulty rate: medium.

The goal of this project is to improve the user experience for managing of the notification module in regards to
managing notification preferences and batching of email notifications.

Developer Resources

528

https://github.com/openwisp/openwisp-firmware-upgrader/issues/208
https://github.com/openwisp/openwisp-firmware-upgrader/issues/224
https://github.com/openwisp/openwisp-firmware-upgrader/issues/213
https://github.com/openwisp/openwisp-firmware-upgrader/issues/225
https://github.com/openwisp/openwisp-firmware-upgrader/issues/140
https://github.com/openwisp/openwisp-firmware-upgrader/issues/69
https://github.com/openwisp/openwisp-firmware-upgrader/issues/145
https://github.com/pandafy

Prerequisites to work on this project

The applicant must demonstrate good understanding of OpenWISP Notifications, it's integration in OpenWISP
Controller and OpenWISP Monitoring.

The applicant must demonstrate at least basic UI/UX development skills and eagerness to learn more about this
subject.

Expected outcomes

The applicant must open pull-requests for the following issues which must be merged by the final closing date of the
program:

• [feature] Batch email notifications to prevent email flooding: this issue has priority because when this happens it
causes most users to want to disable email notifications.

• [feature] Allow to disable notifications for all organizations or keep everything disabled except notifications for
specific organizations.

• [feature] Add REST API to manage notification preferences of other users.

• [feature] Add a dedicated view for managing notification preferences.

• [feature] Add link to manage notification preferences to email notifications.

Each issue contains the details which the applicant needs to know in order to complete the project successfully.

At each step of code changing the test coverage must be maintained stable and the documentation in the README
must be kept up to date.

Applicants are expected to gain more understanding of the UI changes requested with the help of wireframes which
must be included in the application; experience in wireframing is considered an important factor, alternatively
mentors will guide applicants in learning more about the subject. Willingness and eagerness to learn more about this
subject, as well as UI/UX development are paramount.

Training Issues

The applicant may warm up in the application phase by working on the following issues:

• [feature] Add dedicated notification type for internal errors

• [change] Allow relative paths

Add more timeseries database clients to OpenWISP Monitoring

Important

Languages and technologies used: Python, Django, InfluxDB, Elasticsearch.

Developer Resources

529

https://github.com/openwisp/openwisp-notifications#openwisp-notifications
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://github.com/openwisp/openwisp-notifications/issues/132
https://github.com/openwisp/openwisp-notifications/issues/148
https://github.com/openwisp/openwisp-notifications/issues/148
https://github.com/openwisp/openwisp-notifications/issues/255
https://github.com/openwisp/openwisp-notifications/issues/110
https://github.com/openwisp/openwisp-notifications/issues/256
https://github.com/openwisp/openwisp-notifications/issues/254
https://github.com/openwisp/openwisp-notifications/issues/249

Mentors: Federico Capoano, Gagan Deep (more mentors TBA).

Project size: 175 hours.

Difficulty rate: medium.

The goal of this project is to add more Time Series DB options to OpenWISP while keeping good maintainability.

Prerequisites to work on this project

The applicant must demonstrate good understanding of OpenWISP Monitoring, and demonstrate basic knowledge of
NetJSON format, InfluxDB and Elasticsearch.

Expected outcomes

• Complete the support to Elasticsearch. Support to Elasticsearch was added in 2020 but was not completed.

• The old pull request has to be updated on the current code base

• The merge conflicts have to be resolved

• All the tests must pass, new tests for new charts and metrics added to InfluxDB must be added (see
[feature] Chart mobile (LTE/5G/UMTS/GSM) signal strength #270)

• The usage shall be documented, we must make sure there's at least one dedicated CI build for
Elasticsearch

• We must allow to install and use Elasticsearch instead of InfluxDB from ansible-openwisp2 and
docker-openwisp

• The requests to Elasticsearch shall be optimized as described in [timeseries] Optimize elasticsearch #168.

• Add support for InfluxDB 2.0 as a new timeseries backend, this way we can support both InfluxDB <= 1.8
and InfluxDB >= 2.0.

• All the automated tests for InfluxDB 1.8 must be replicated and must pass

• The usage and setup shall be documented

• We must make sure there's at least one dedicated CI build for Elasticsearch

• We must allow choosing between InfluxDB 1.8 and InfluxDB 2.0 from ansible-openwisp2 and
docker-openwisp.

Developer Resources

530

https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/elastic/elasticsearch
https://github.com/openwisp/openwisp-monitoring/pull/164
https://github.com/openwisp/openwisp-monitoring/pull/294
https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/docker-openwisp/
https://github.com/openwisp/openwisp-monitoring/issues/168
https://github.com/openwisp/openwisp-monitoring/issues/274
https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/docker-openwisp/

	OpenWISP Documentation
	First Steps
	Quick Start Guide
	Try the Demo
	Install OpenWISP
	Make Sure OpenWISP Can Reach Your Devices
	Configure Your OpenWrt Devices
	Learn More
	Seek Help

	Setting Up the Management Network
	Why OpenWISP Needs to Reach Your Devices
	Public Internet Deployment
	Private Network

	Configure Your OpenWrt Device
	Prerequisites
	Flash OpenWrt on Your Device
	Install the OpenWISP OpenWrt Agents
	Compiling Your Own OpenWrt Image

	How to Edit Django Settings
	What is an OpenWISP Module?
	Editing Settings with Ansible-OpenWISP2
	Editing Settings with Docker-OpenWISP
	OpenWISP Settings Reference

	Project Overview
	Architecture, Modules, Technologies
	OpenWISP Modules
	Deployment
	Server Side
	Network Device Side
	Website and Documentation

	Main Technologies Used
	Python
	Django
	Django REST Framework
	Celery
	OpenWrt
	Lua
	Node.js and React JS
	Ansible
	Docker
	NetJSON
	RADIUS
	FreeRADIUS
	Mesh Networking
	InfluxDB
	Elasticsearch
	Networkx
	Relational Databases
	Other Notable Dependencies

	Values and Goals of OpenWISP
	What is OpenWISP?
	History
	Core Values
	1. Communication through Electronic Means is a Human Right
	2. Net Neutrality
	3. Privacy
	4. Open Source, Licenses, and Collaboration
	5. Software Reusability for Long-Term Sustainability

	Goals

	Installers
	Ansible OpenWISP
	System Requirements
	Hardware Requirements (Recommended)
	Software
	Supported Operating Systems

	Deploying OpenWISP Using Ansible
	Introduction & Prerequisites
	Install Ansible
	Install This Role
	Choose a Working Directory
	Create Inventory File
	Create Playbook File
	Run the Playbook
	Upgrading OpenWISP
	Deploying the Development Version of OpenWISP

	Using Let's Encrypt SSL Certificate
	Enabling OpenWISP Modules
	Enabling the Monitoring Module
	Enabling the Firmware Upgrader Module
	Enabling the Network Topology Module
	Enabling the RADIUS Module

	Configuring FreeRADIUS for WPA Enterprise (EAP-TTLS-PAP)
	Using Let's Encrypt Certificate for WPA Enterprise (EAP-TTLS-PAP)

	Deploying Custom Static Content
	Configuring CORS Headers
	Install OpenWISP for Testing in a VirtualBox VM
	Using Vagrant
	Installing Debian 11 on VirtualBox
	VM Configuration
	Back to your local machine

	Troubleshooting
	SSL Certificate Gotchas

	Role Variables
	Developer Installation instructions
	Installing for Development
	How to Run Tests

	Docker OpenWISP
	Quick Start Guide
	Available Images
	Image Tags

	Auto Install Script
	Using Docker Compose

	Architecture
	Settings
	Essential
	DASHBOARD_DOMAIN
	API_DOMAIN
	VPN_DOMAIN
	TZ
	CERT_ADMIN_EMAIL
	SSL_CERT_MODE

	Security
	DJANGO_SECRET_KEY
	DJANGO_ALLOWED_HOSTS
	OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS

	OpenWISP
	EMAIL_HOST
	EMAIL_DJANGO_DEFAULT
	EMAIL_HOST_PORT
	EMAIL_HOST_USER
	EMAIL_HOST_PASSWORD
	EMAIL_HOST_TLS
	EMAIL_TIMEOUT
	EMAIL_BACKEND
	DJANGO_X509_DEFAULT_CERT_VALIDITY
	DJANGO_X509_DEFAULT_CA_VALIDITY
	DJANGO_CORS_HOSTS
	DJANGO_LANGUAGE_CODE
	DJANGO_SENTRY_DSN
	DJANGO_LEAFET_CENTER_X_AXIS
	DJANGO_LEAFET_CENTER_Y_AXIS
	DJANGO_LEAFET_ZOOM
	DJANGO_WEBSOCKET_HOST
	OPENWISP_GEOCODING_CHECK
	USE_OPENWISP_CELERY_TASK_ROUTES_DEFAULTS
	OPENWISP_CELERY_COMMAND_FLAGS
	USE_OPENWISP_CELERY_NETWORK
	OPENWISP_CELERY_NETWORK_COMMAND_FLAGS
	USE_OPENWISP_CELERY_FIRMWARE
	OPENWISP_CELERY_FIRMWARE_COMMAND_FLAGS
	USE_OPENWISP_CELERY_MONITORING
	OPENWISP_CELERY_MONITORING_COMMAND_FLAGS
	OPENWISP_CELERY_MONITORING_CHECKS_COMMAND_FLAGS
	OPENWISP_CUSTOM_OPENWRT_IMAGES
	METRIC_COLLECTION
	CRON_DELETE_OLD_RADACCT
	CRON_DELETE_OLD_POSTAUTH
	CRON_CLEANUP_STALE_RADACCT
	CRON_DELETE_OLD_RADIUSBATCH_USERS
	DEBUG_MODE
	DJANGO_LOG_LEVEL

	Enabled OpenWISP Modules
	USE_OPENWISP_TOPOLOGY
	USE_OPENWISP_RADIUS
	USE_OPENWISP_FIRMWARE
	USE_OPENWISP_MONITORING

	PostgreSQL Database
	DB_NAME
	DB_USER
	DB_PASS
	DB_HOST
	DB_PORT
	DB_SSLMODE
	DB_SSLCERT
	DB_SSLKEY
	DB_SSLROOTCERT
	DB_OPTIONS
	DB_ENGINE

	InfluxDB
	INFLUXDB_USER
	INFLUXDB_PASS
	INFLUXDB_NAME
	INFLUXDB_HOST
	INFLUXDB_PORT
	INFLUXDB_DEFAULT_RETENTION_POLICY

	Postfix
	POSTFIX_ALLOWED_SENDER_DOMAINS
	POSTFIX_MYHOSTNAME
	POSTFIX_DESTINATION
	POSTFIX_MESSAGE_SIZE_LIMIT
	POSTFIX_MYNETWORKS
	POSTFIX_RELAYHOST_TLS_LEVEL
	POSTFIX_RELAYHOST
	POSTFIX_RELAYHOST_USERNAME
	POSTFIX_RELAYHOST_PASSWORD
	POSTFIX_DEBUG_MYNETWORKS

	uWSGI
	UWSGI_PROCESSES
	UWSGI_THREADS
	UWSGI_LISTEN

	Nginx
	NGINX_HTTP2
	NGINX_CLIENT_BODY_SIZE
	NGINX_IP6_STRING
	NGINX_IP6_80_STRING
	NGINX_ADMIN_ALLOW_NETWORK
	NGINX_SERVER_NAME_HASH_BUCKET
	NGINX_SSL_CONFIG
	NGINX_80_CONFIG
	NGINX_GZIP_SWITCH
	NGINX_GZIP_LEVEL
	NGINX_GZIP_PROXIED
	NGINX_GZIP_MIN_LENGTH
	NGINX_GZIP_TYPES
	NGINX_HTTPS_ALLOWED_IPS
	NGINX_HTTP_ALLOW
	NGINX_CUSTOM_FILE
	NINGX_REAL_REMOTE_ADDR

	OpenVPN
	VPN_NAME
	VPN_CLIENT_NAME

	X509 Certificates
	X509_NAME_CA
	X509_NAME_CERT
	X509_COUNTRY_CODE
	X509_STATE
	X509_CITY
	X509_ORGANIZATION_NAME
	X509_ORGANIZATION_UNIT_NAME
	X509_EMAIL
	X509_COMMON_NAME

	Misc Services
	REDIS_HOST
	REDIS_PORT
	REDIS_PASS
	DASHBOARD_APP_SERVICE
	API_APP_SERVICE
	DASHBOARD_APP_PORT
	API_APP_PORT
	WEBSOCKET_APP_PORT
	DASHBOARD_INTERNAL
	API_INTERNAL

	NFS Server
	EXPORT_DIR
	EXPORT_OPTS

	Advanced Customization
	Creating the customization Directory
	Supplying Custom Django Settings
	Supplying Custom CSS and JavaScript Files
	Supplying Custom uWSGI configuration
	Supplying Custom Nginx Configurations
	Docker

	Supplying Custom Freeradius Configurations
	Docker

	Supplying Custom Python Source Code
	Disabling Services

	Docker OpenWISP FAQs
	1. Setup fails, it couldn't find the images on DockerHub?
	2. Makefile failed without any information, what's wrong?
	3. Can I run the containers as the root or docker

	Developer Docs
	Building and Running Images
	Running Tests
	Using Chromedriver
	Using Geckodriver
	Finish Setup and Run Tests

	Run Quality Assurance Checks
	Makefile Options

	Modules
	Users
	Users: Structure & Features
	User Management
	Multi-tenancy
	Permissions and Roles
	API Integration
	Admin Interface
	Extensible Authentication

	Basic Concepts
	Superusers
	Staff Users
	Permissions
	Default Permission Groups
	Administrator
	Operator

	Organizations & Multi-Tenancy
	Organization Membership and Roles
	Organization Manager
	Organization Members (End-Users)
	Organization Owners

	Shared Objects

	Management Commands
	export_users

	Settings
	OPENWISP_ORGANIZATION_USER_ADMIN
	OPENWISP_ORGANIZATION_OWNER_ADMIN
	OPENWISP_USERS_AUTH_API
	OPENWISP_USERS_AUTH_THROTTLE_RATE
	OPENWISP_USERS_AUTH_BACKEND_AUTO_PREFIXES
	OPENWISP_USERS_EXPORT_USERS_COMMAND_CONFIG
	OPENWISP_USERS_USER_PASSWORD_EXPIRATION
	OPENWISP_USERS_STAFF_USER_PASSWORD_EXPIRATION

	REST API
	Live Documentation
	Browsable Web Interface
	Obtain Authentication Token
	Authenticating with the User Token
	List of Endpoints
	Change User password
	List Groups
	Create New Group
	Get Group Detail
	Change Group Detail
	Patch Group Detail
	Delete Group
	List Email Addresses
	Add Email Address
	Get Email Address
	Change Email Address
	Patch Email Address
	Make/Unmake Email Address Primary
	Mark/Unmark Email Address as Verified
	Remove Email Address
	List Organizations
	Create new Organization
	Get Organization Detail
	Change Organization Detail
	Patch Organization Detail
	Delete Organization
	List Users
	Create User
	Get User Detail
	Change User Detail
	Patch User Detail
	Delete User

	Developer Docs
	Developer Installation Instructions
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Admin Utilities
	MultitenantAdminMixin
	MultitenantOrgFilter
	MultitenantRelatedOrgFilter

	Django REST Framework Utilities
	Authentication
	openwisp_users.api.authentication.BearerAuthentication
	openwisp_users.api.authentication.SesameAuthentication

	Permission Classes
	organization_field
	DjangoModelPermissions

	ProtectedAPIMixin
	Mixins for Multi-Tenancy
	Filtering Items by Organization
	Checking Parent Objects
	Multi-tenant Serializers for the Browsable Web UI
	Multi-tenant Filtering Capabilities for the Browsable Web UI

	Miscellaneous Utilities
	Organization Membership Helpers
	is_member(org)
	is_manager(org)
	is_owner(org)
	organizations_dict
	organizations_managed
	organizations_owned

	UsersAuthenticationBackend
	PasswordExpirationMiddleware
	PasswordReuseValidator

	Extending OpenWISP Users
	1. Initialize Your Custom Module
	2. Install OpenWISP Users
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig Class
	7. Create Your Custom Models
	8. Add Swapper Configurations
	9. Create Database Migrations
	10. Create the admin
	1. Monkey Patching
	usermodel_add_form
	usermodel_change_form
	usermodel_list_and_search

	2. Inheriting Admin Classes

	11. Create Root URL Configuration
	12. Import the Automated Tests
	Other Base Classes that can be Inherited and Extended
	Extending the API Views

	Controller
	Controller: Structure & Features
	Config App
	PKI App
	Connection App
	SSH
	SNMP

	Geo App
	Subnet Division App

	Configuration Templates
	What is a Template?
	Template Ordering and Override
	Shared Templates vs Organization Specific
	Default Templates
	Required Templates
	Device Group Templates
	Template Tags
	Implementation Details of Templates

	Configuration Variables
	Different Types of Variables
	1. User Defined Device Variables
	2. Predefined Device Variables
	3. Group Variables
	4. Organization Variables
	5. Global Variables
	6. Template Default Values
	7. System Defined Variables

	Example Usage of Variables
	Implementation Details of Variables

	Device Groups
	Group Templates
	Group Configuration Variables
	Group Metadata
	Variables vs Metadata

	Configuring Push Operations
	Introduction
	1. Generate SSH Key
	2. Save SSH Private Key in "Access Credentials"
	3. Add the Public Key to Your Devices
	4. Test It

	Sending Commands to Devices
	Default Commands
	Defining New Options in the Commands Menu
	Command Configuration
	1. label
	2. schema
	3. callable

	How to register or unregister commands

	Import/Export Device Data
	Importing
	Exporting

	Organization Limits
	Automating WireGuard Tunnels
	1. Create VPN Server Configuration for WireGuard
	2. Deploy WireGuard VPN Server
	3. Create VPN Client Template for WireGuard VPN Server
	4. Apply WireGuard VPN Template to Devices

	Automating VXLAN over WireGuard Tunnels
	1. Create VPN Server Configuration for VXLAN Over WireGuard
	2. Deploy Wireguard VXLAN VPN Server
	3. Create VPN Client Template for WireGuard VXLAN VPN Server
	4. Apply Wireguard VXLAN VPN Template to Devices

	Automating ZeroTier Tunnels
	1. Configure Self-Hosted ZeroTier Network Controller
	2. Create VPN Server Configuration for ZeroTier
	3. Create VPN Client Template for ZeroTier VPN Server
	4. Apply ZeroTier VPN Template to Devices

	Automating OpenVPN Tunnels
	Setting up the OpenVPN Server
	1. Install Ansible and Required Ansible Roles
	2. Create Inventory File and Playbook YAML
	3. Run the Playbook

	Import the CA and the Server Certificate in OpenWISP
	Import the CA
	Import the Server Certificate

	Create the VPN Server in OpenWISP
	Create the VPN-Client Template in OpenWISP

	Automating Subnet and IP Address Provisioning
	1. Create a Subnet and a Subnet Division Rule
	Device Subnet Division Rule
	VPN Subnet Division Rule

	2. Create a VPN Server
	3. Create a VPN Client Template
	4. Apply VPN Client Template to Devices
	Important notes for using Subnet Division
	Limitations of Subnet Division Rules
	Size
	Number of Subnets
	Number of IPs

	REST API Reference
	Live Documentation
	Browsable Web Interface
	Authentication
	Pagination
	List of Endpoints
	List Devices
	Create Device
	Get Device Detail
	Download Device Configuration
	Change Details of Device
	Patch Details of Device
	Delete Device
	List Device Connections
	Create Device Connection
	Get Device Connection Detail
	Change Device Connection Detail
	Patch Device Connection Detail
	Delete Device Connection
	List Credentials
	Create Credential
	Get Credential Detail
	Change Credential Detail
	Patch Credential Detail
	Delete Credential
	List Commands of a Device
	Execute a Command a Device
	Get Command Details
	List Device Groups
	Create Device Group
	Get Device Group Detail
	Change Device Group Detail
	Get Device Group from Certificate Common Name
	Get Device Location
	Create Device Location
	Change Details of Device Location
	Delete Device Location
	Get Device Coordinates
	Update Device Coordinates
	List Locations
	Create Location
	Get Location Details
	Change Location Details
	Delete Location
	List Devices in a Location
	List Locations with Devices Deployed (in GeoJSON Format)
	Floor Plan List
	Create Floor Plan
	Get Floor Plan Details
	Change Floor Plan Details
	Delete Floor Plan
	List Templates
	Create Template
	Get Template Detail
	Download Template Configuration
	Change Details of Template
	Patch Details of Template
	Delete Template
	List VPNs
	Create VPN
	Get VPN detail
	Download VPN Configuration
	Change Details of VPN
	Patch Details of VPN
	Delete VPN
	List CA
	Create New CA
	Import Existing CA
	Get CA Detail
	Change Details of CA
	Patch Details of CA
	Download CA(crl)
	Delete CA
	Renew CA
	List Cert
	Create New Cert
	Import Existing Cert
	Get Cert Detail
	Change Details of Cert
	Patch Details of Cert
	Delete Cert
	Renew Cert
	Revoke Cert

	Settings
	OPENWISP_SSH_AUTH_TIMEOUT
	OPENWISP_SSH_BANNER_TIMEOUT
	OPENWISP_SSH_COMMAND_TIMEOUT
	OPENWISP_SSH_CONNECTION_TIMEOUT
	OPENWISP_CONNECTORS
	OPENWISP_UPDATE_STRATEGIES
	OPENWISP_CONFIG_UPDATE_MAPPING
	OPENWISP_CONTROLLER_BACKENDS
	OPENWISP_CONTROLLER_VPN_BACKENDS
	OPENWISP_CONTROLLER_DEFAULT_BACKEND
	OPENWISP_CONTROLLER_DEFAULT_VPN_BACKEND
	OPENWISP_CONTROLLER_REGISTRATION_ENABLED
	OPENWISP_CONTROLLER_CONSISTENT_REGISTRATION
	OPENWISP_CONTROLLER_REGISTRATION_SELF_CREATION
	OPENWISP_CONTROLLER_CONTEXT
	OPENWISP_CONTROLLER_DEFAULT_AUTO_CERT
	OPENWISP_CONTROLLER_CERT_PATH
	OPENWISP_CONTROLLER_COMMON_NAME_FORMAT
	OPENWISP_CONTROLLER_MANAGEMENT_IP_DEVICE_LIST
	OPENWISP_CONTROLLER_CONFIG_BACKEND_FIELD_SHOWN
	OPENWISP_CONTROLLER_DEVICE_NAME_UNIQUE
	OPENWISP_CONTROLLER_HARDWARE_ID_ENABLED
	OPENWISP_CONTROLLER_HARDWARE_ID_OPTIONS
	OPENWISP_CONTROLLER_HARDWARE_ID_AS_NAME
	OPENWISP_CONTROLLER_DEVICE_VERBOSE_NAME
	OPENWISP_CONTROLLER_HIDE_AUTOMATICALLY_GENERATED_SUBNETS_AND_IPS
	OPENWISP_CONTROLLER_SUBNET_DIVISION_TYPES
	OPENWISP_CONTROLLER_API
	OPENWISP_CONTROLLER_API_HOST
	OPENWISP_CONTROLLER_USER_COMMANDS
	OPENWISP_CONTROLLER_ORGANIZATION_ENABLED_COMMANDS
	OPENWISP_CONTROLLER_DEVICE_GROUP_SCHEMA
	OPENWISP_CONTROLLER_SHARED_MANAGEMENT_IP_ADDRESS_SPACE
	OPENWISP_CONTROLLER_MANAGEMENT_IP_ONLY
	OPENWISP_CONTROLLER_DSA_OS_MAPPING
	OPENWISP_CONTROLLER_DSA_DEFAULT_FALLBACK
	OPENWISP_CONTROLLER_GROUP_PIE_CHART
	OPENWISP_CONTROLLER_API_TASK_RETRY_OPTIONS

	Developer Docs
	Developer Installation Instructions
	Dependencies
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Install and Run on Docker
	Troubleshooting Steps for Common Installation Issues
	Unable to Load SpatiaLite library Extension?
	Having Issues with Other Geospatial Libraries?

	Code Utilities
	Registering / Unregistering Commands
	register_command
	unregister_command

	Controller Notifications
	Registering Notification Types

	Signals
	config_modified
	Special cases in which config_modified is not emitted

	config_status_changed
	config_backend_changed
	checksum_requested
	config_download_requested
	is_working_changed
	management_ip_changed
	device_registered
	device_name_changed
	device_group_changed
	group_templates_changed
	subnet_provisioned
	vpn_server_modified
	vpn_peers_changed

	Extending OpenWISP Controller
	1. Initialize Your Project & Custom Apps
	2. Install openwisp-controller
	3. Add Your Apps to INSTALLED_APPS
	4. Add EXTENDED_APPS
	5. Add openwisp_utils.staticfiles.DependencyFinder
	6. Add openwisp_utils.loaders.DependencyLoader
	7. Initial Database Setup
	8. Django Channels Setup
	9. Other Settings
	10. Inherit the AppConfig Class
	11. Create Your Custom Models
	12. Add Swapper Configurations
	13. Create Database Migrations
	14. Create the Admin
	14.1. Monkey Patching
	sample_config
	sample_connection
	sample_geo
	sample_pki
	sample_subnet_division

	14.2. Inheriting admin classes
	sample_config
	sample_connection
	sample_geo
	sample_pki
	sample_subnet_division

	15. Create Root URL Configuration
	16. Import the Automated Tests
	Other Base Classes that Can Be Inherited and Extended
	1. Extending the Controller API Views
	2. Extending the Geo API Views

	Custom Subnet Division Rule Types
	More Utilities to Extend OpenWISP Controller

	Monitoring
	Monitoring: Features
	Quick Start Guide
	Install Monitoring Packages on the Device
	Make Sure OpenWISP can Reach your Devices

	Device Health Status
	UNKNOWN
	OK
	PROBLEM
	CRITICAL

	Metrics
	Device Status
	Ping
	Traffic
	WiFi Clients
	Memory Usage
	CPU Load
	Disk Usage
	Mobile Signal Strength
	Mobile Signal Quality
	Mobile Access Technology in Use
	Iperf3
	Passive vs Active Metric Collection

	Checks
	Ping
	Configuration Applied
	Iperf3

	Managing Device Checks & Alert Settings
	Configuring Iperf3 Check
	1. Make Sure Iperf3 is Installed on the Device
	2. Ensure SSH Access from OpenWISP is Enabled on your Devices
	3. Set Up and Configure Iperf3 Server Settings
	4. Run the Check
	Iperf3 Check Parameters
	Iperf3 Client Options
	Iperf3 Client's TCP Options
	Iperf3 Client's UDP Options

	Iperf3 Authentication
	Server Side
	1. Generate RSA Key Pair
	2. Create User Credentials
	3. Now Start the Iperf3 Server with Authentication Options

	Client Side (OpenWrt Device)
	1. Install iperf3-ssl
	2. Configure Iperf3 Check Authentication Parameters

	Dashboard Monitoring Charts
	Monitoring WiFi Sessions
	Scheduled Deletion of WiFi Sessions

	REST API Reference
	Live Documentation
	Browsable Web Interface
	List of Endpoints
	Retrieve General Monitoring Charts
	Retrieve Device Charts and Device Status Data
	List Device Monitoring Information
	Collect Device Metrics and Status
	List Nearby Devices
	List WiFi Session
	Get WiFi Session
	Pagination

	Settings
	TIMESERIES_DATABASE
	Timeseries Database Options

	OPENWISP_MONITORING_DEFAULT_RETENTION_POLICY
	OPENWISP_MONITORING_SHORT_RETENTION_POLICY
	OPENWISP_MONITORING_AUTO_PING
	OPENWISP_MONITORING_PING_CHECK_CONFIG
	OPENWISP_MONITORING_AUTO_DEVICE_CONFIG_CHECK
	OPENWISP_MONITORING_CONFIG_CHECK_INTERVAL
	OPENWISP_MONITORING_AUTO_IPERF3
	OPENWISP_MONITORING_IPERF3_CHECK_CONFIG
	OPENWISP_MONITORING_IPERF3_CHECK_DELETE_RSA_KEY
	OPENWISP_MONITORING_IPERF3_CHECK_LOCK_EXPIRE
	OPENWISP_MONITORING_AUTO_CHARTS
	OPENWISP_MONITORING_CRITICAL_DEVICE_METRICS
	OPENWISP_MONITORING_HEALTH_STATUS_LABELS
	OPENWISP_MONITORING_WIFI_SESSIONS_ENABLED
	OPENWISP_MONITORING_MANAGEMENT_IP_ONLY
	OPENWISP_MONITORING_DEVICE_RECOVERY_DETECTION
	OPENWISP_MONITORING_MAC_VENDOR_DETECTION
	OPENWISP_MONITORING_WRITE_RETRY_OPTIONS
	OPENWISP_MONITORING_TIMESERIES_RETRY_OPTIONS
	OPENWISP_MONITORING_TIMESERIES_RETRY_DELAY
	OPENWISP_MONITORING_DASHBOARD_MAP
	OPENWISP_MONITORING_DASHBOARD_TRAFFIC_CHART
	OPENWISP_MONITORING_METRICS
	OPENWISP_MONITORING_CHARTS
	Adaptive Size Charts

	OPENWISP_MONITORING_DEFAULT_CHART_TIME
	OPENWISP_MONITORING_AUTO_CLEAR_MANAGEMENT_IP
	OPENWISP_MONITORING_API_URLCONF
	OPENWISP_MONITORING_API_BASEURL
	OPENWISP_MONITORING_CACHE_TIMEOUT

	Management Commands
	run_checks
	migrate_timeseries

	Developer Docs
	Developer Installation Instructions
	Dependencies
	Installing for Development
	Alternative Sources
	PyPI
	Github

	Install and Run on Docker

	Code Utilities
	Registering / Unregistering Metric Configuration
	register_metric
	unregister_metric

	Registering / Unregistering Chart Configuration
	register_chart
	unregister_chart

	Monitoring Notifications
	Registering Notification Types

	Signals
	device_metrics_received
	health_status_changed
	threshold_crossed
	pre_metric_write
	post_metric_write

	Exceptions
	TimeseriesWriteException
	InvalidMetricConfigException
	InvalidChartConfigException

	Extending OpenWISP Monitoring
	1. Initialize your Custom Module
	2. Install openwisp-monitoring
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig Class
	7. Create your Custom Models
	8. Add Swapper Configurations
	9. Create Database Migrations
	10. Create your Custom Admin
	1. Monkey Patching
	2. Inheriting Admin Classes

	11. Create Root URL Configuration
	12. Create celery.py
	13. Import Celery Tasks
	14. Create the Custom Command run_checks
	15. Import the Automated Tests
	Other Base Classes that can be Inherited and Extended
	DeviceMetricView

	Network Topology
	Network Topology: Features
	Quick Start Guide
	Creating a Topology
	Sending Data for Topology with RECEIVE Strategy
	Sending Data for ZeroTier Topology with RECEIVE Strategy
	1. Create Topology for ZeroTier
	2. Create a Script for Sending ZeroTier Topology Data

	Topology Collection Strategies
	FETCH Strategy
	RECEIVE Strategy

	Integrations with other OpenWISP modules
	Rest API
	Live Documentation
	Browsable Web Interface
	List of Endpoints
	List Topologies
	Create Topology
	Detail of a Topology
	Change Topology Detail
	Patch Topology Detail
	Delete Topology
	View Topology History
	Send Topology Data
	List Links
	Create Link
	Get Link Detail
	Change Link Detail
	Patch Link Detail
	Delete Link
	List Nodes
	Create Node
	Get Node Detail
	Change Node Detail
	Patch Node Detail
	Delete Node

	Settings
	OPENWISP_NETWORK_TOPOLOGY_PARSERS
	OPENWISP_NETWORK_TOPOLOGY_SIGNALS
	OPENWISP_NETWORK_TOPOLOGY_TIMEOUT
	OPENWISP_NETWORK_TOPOLOGY_LINK_EXPIRATION
	OPENWISP_NETWORK_TOPOLOGY_NODE_EXPIRATION
	OPENWISP_NETWORK_TOPOLOGY_VISUALIZER_CSS
	OPENWISP_NETWORK_TOPOLOGY_API_URLCONF
	OPENWISP_NETWORK_TOPOLOGY_API_BASEURL
	OPENWISP_NETWORK_TOPOLOGY_API_AUTH_REQUIRED
	OPENWISP_NETWORK_TOPOLOGY_WIFI_MESH_INTEGRATION

	Management Commands
	update_topology
	Logging

	save_snapshot
	upgrade_from_django_netjsongraph
	create_device_nodes

	Developer Docs
	Installation Instructions
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Overriding Visualizer Templates
	Example: Overriding the Tag

	Extending OpenWISP Network Topology
	1. Initialize your Custom Module
	2. Install openwisp-network-topology
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig Class
	7. Create your Custom Models
	8. Add Swapper Configurations
	9. Create Database Migrations
	10. Create the Admin
	1. Monkey Patching
	2. Inheriting Admin Classes

	11. Create Root URL Configuration
	12. Setup API URLs
	13. Extending Management Commands
	14. Import the Automated Tests
	Other Base Classes that can be Inherited and Extended
	1. Extending API Views
	2. Extending the Visualizer Views

	Firmware Upgrader
	Firmware Upgrader: Features
	Quick Start Guide
	Requirements
	1. Create a Category
	2. Create the Build Object
	3. Upload Images to the Build
	4. Perform a Firmware Upgrade to a Specific Device
	5. Performing Mass Upgrades

	Automatic Device Firmware Detection
	Writing Custom Firmware Upgrader Classes
	REST API Reference
	Live Documentation
	Browsable Web Interface
	Authentication
	Pagination
	Filtering by Organization Slug
	List of Endpoints
	List Mass Upgrade Operations
	Get Mass Upgrade Operation Detail
	List Firmware Builds
	Create Firmware Build
	Get Firmware Build Details
	Change Details of Firmware Build
	Patch Details of Firmware Build
	Delete Firmware Build
	Get List of Images of a Firmware Build
	Upload New Firmware Image to the Build
	Get Firmware Image Details
	Delete Firmware Image
	Download Firmware Image
	Perform Batch Upgrade
	Dry-run Batch Upgrade
	List Firmware Categories
	Create New Firmware Category
	Get Firmware Category Details
	Change the Details of a Firmware Category
	Patch the Details of a Firmware Category
	Delete a Firmware Category
	List Upgrade Operations
	Get Upgrade Operation Details
	List Device Upgrade Operations
	Create Device Firmware
	Get Device Firmware Details
	Change Details of Device Firmware
	Patch Details of Device Firmware
	Delete Device Firmware

	Settings
	OPENWISP_FIRMWARE_UPGRADER_RETRY_OPTIONS
	OPENWISP_FIRMWARE_UPGRADER_TASK_TIMEOUT
	OPENWISP_CUSTOM_OPENWRT_IMAGES
	OPENWISP_FIRMWARE_UPGRADER_MAX_FILE_SIZE
	OPENWISP_FIRMWARE_UPGRADER_API
	OPENWISP_FIRMWARE_UPGRADER_OPENWRT_SETTINGS
	OPENWISP_FIRMWARE_API_BASEURL
	OPENWISP_FIRMWARE_UPGRADERS_MAP
	OPENWISP_FIRMWARE_PRIVATE_STORAGE_INSTANCE

	Developer Docs
	Developer Installation Instructions
	Requirements
	Install Dependencies
	Installing for Development

	Extending OpenWISP Firmware Upgrader
	1. Initialize your Custom Module
	2. Install openwisp-firmware-upgrader
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig Class
	7. Create your Custom Models
	8. Add Swapper Configurations
	9. Create Database Migrations
	10. Create the Admin
	1. Monkey Patching
	2. Inheriting Admin Classes

	11. Create Root URL Configuration
	12. Create celery.py
	13. Import the Automated Tests
	Other Base Classes That Can be Inherited and Extended
	FirmwareImageDownloadView

	API Views

	RADIUS
	RADIUS: Features
	Registration of new users
	Generating users
	Using the admin interface
	Management command: prefix_add_users
	REST API: Batch user creation

	Importing users
	CSV Format
	Imported users with hashed passwords
	Importing users with clear-text passwords
	Auto-generation of usernames and passwords

	Using the admin interface
	Management command: batch_add_users
	REST API: Batch user creation

	Social Login
	Setup
	Configure the social account application
	Captive page button example
	Settings

	Single Sign-On (SAML)
	Setup
	Configure the djangosaml2 settings
	Captive page button example
	Logout
	Settings
	FAQs
	Preventing change in username of a registered user

	Enforcing Session Limits
	Default Groups
	How Limits are Enforced: Counters
	DailyCounter
	DailyTrafficCounter
	MonthlyTrafficCounter
	MonthlySubscriptionTrafficCounter
	Database Support
	Django Settings
	Writing Custom Counter Classes

	Change of Authorization (CoA)
	Management commands
	delete_old_radacct
	delete_old_postauth
	cleanup_stale_radacct
	deactivate_expired_users
	delete_old_radiusbatch_users
	delete_unverified_users
	upgrade_from_django_freeradius
	convert_called_station_id

	REST API Reference
	Live documentation
	Browsable web interface
	FreeRADIUS API Endpoints
	FreeRADIUS API Authentication
	Radius User Token
	Bearer token
	Querystring
	Organization UUID & RADIUS API Token

	API Throttling
	List of Endpoints
	Authorize
	Post Auth
	Accounting
	GET
	POST
	Pagination
	Filters

	User API Endpoints
	List of Endpoints
	User Registration
	Registering to Multiple Organizations

	Reset password
	Confirm reset password
	Change password
	Login (Obtain User Auth Token)
	Validate user auth token
	User Radius Sessions
	User Radius Usage
	Create SMS token
	Get active SMS token status
	Verify/Validate SMS token
	Change phone number
	Batch user creation
	Batch CSV Download

	Settings
	Admin related settings
	OPENWISP_RADIUS_EDITABLE_ACCOUNTING
	OPENWISP_RADIUS_EDITABLE_POSTAUTH
	OPENWISP_RADIUS_GROUPCHECK_ADMIN
	OPENWISP_RADIUS_GROUPREPLY_ADMIN
	OPENWISP_RADIUS_USERGROUP_ADMIN
	OPENWISP_RADIUS_USER_ADMIN_RADIUSTOKEN_INLINE

	Model related settings
	OPENWISP_RADIUS_DEFAULT_SECRET_FORMAT
	OPENWISP_RADIUS_DISABLED_SECRET_FORMATS
	OPENWISP_RADIUS_BATCH_DEFAULT_PASSWORD_LENGTH
	OPENWISP_RADIUS_BATCH_DELETE_EXPIRED
	OPENWISP_RADIUS_BATCH_PDF_TEMPLATE
	OPENWISP_RADIUS_EXTRA_NAS_TYPES
	OPENWISP_RADIUS_FREERADIUS_ALLOWED_HOSTS
	OPENWISP_RADIUS_COA_ENABLED
	RADCLIENT_ATTRIBUTE_DICTIONARIES
	OPENWISP_RADIUS_MAX_CSV_FILE_SIZE
	OPENWISP_RADIUS_PRIVATE_STORAGE_INSTANCE
	OPENWISP_RADIUS_CALLED_STATION_IDS
	OPENWISP_RADIUS_CONVERT_CALLED_STATION_ON_CREATE
	OPENWISP_RADIUS_OPENVPN_DATETIME_FORMAT
	OPENWISP_RADIUS_UNVERIFY_INACTIVE_USERS
	OPENWISP_RADIUS_DELETE_INACTIVE_USERS

	API and user token related settings
	OPENWISP_RADIUS_API_URLCONF
	OPENWISP_RADIUS_API_BASEURL
	OPENWISP_RADIUS_API
	OPENWISP_RADIUS_DISPOSABLE_RADIUS_USER_TOKEN
	OPENWISP_RADIUS_API_AUTHORIZE_REJECT
	OPENWISP_RADIUS_API_ACCOUNTING_AUTO_GROUP
	OPENWISP_RADIUS_ALLOWED_MOBILE_PREFIXES
	OPENWISP_RADIUS_ALLOW_FIXED_LINE_OR_MOBILE
	OPENWISP_RADIUS_OPTIONAL_REGISTRATION_FIELDS
	OPENWISP_RADIUS_PASSWORD_RESET_URLS
	OPENWISP_RADIUS_REGISTRATION_API_ENABLED
	OPENWISP_RADIUS_SMS_VERIFICATION_ENABLED
	OPENWISP_RADIUS_MAC_ADDR_ROAMING_ENABLED
	OPENWISP_RADIUS_NEEDS_IDENTITY_VERIFICATION
	Adding support for more registration/verification methods

	Email related settings
	OPENWISP_RADIUS_BATCH_MAIL_SUBJECT
	OPENWISP_RADIUS_BATCH_MAIL_MESSAGE
	OPENWISP_RADIUS_BATCH_MAIL_SENDER

	Counter related settings
	OPENWISP_RADIUS_COUNTERS
	OPENWISP_RADIUS_TRAFFIC_COUNTER_CHECK_NAME
	OPENWISP_RADIUS_TRAFFIC_COUNTER_REPLY_NAME
	OPENWISP_RADIUS_RADIUS_ATTRIBUTES_TYPE_MAP

	Social Login related settings
	OPENWISP_RADIUS_SOCIAL_REGISTRATION_ENABLED

	SAML related settings
	OPENWISP_RADIUS_SAML_REGISTRATION_ENABLED
	OPENWISP_RADIUS_SAML_REGISTRATION_METHOD_LABEL
	OPENWISP_RADIUS_SAML_IS_VERIFIED
	OPENWISP_RADIUS_SAML_UPDATES_PRE_EXISTING_USERNAME

	SMS token related settings
	SENDSMS_BACKEND
	OPENWISP_RADIUS_SMS_TOKEN_DEFAULT_VALIDITY
	OPENWISP_RADIUS_SMS_TOKEN_LENGTH
	OPENWISP_RADIUS_SMS_TOKEN_HASH_ALGORITHM
	OPENWISP_RADIUS_SMS_COOLDOWN
	OPENWISP_RADIUS_SMS_TOKEN_MAX_ATTEMPTS
	OPENWISP_RADIUS_SMS_TOKEN_MAX_USER_DAILY
	OPENWISP_RADIUS_SMS_TOKEN_MAX_IP_DAILY
	OPENWISP_RADIUS_SMS_MESSAGE_TEMPLATE

	Developer Docs
	Developer Installation Instructions
	Dependencies
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Migrating an existing freeradius database
	Troubleshooting Steps for Common Installation Issues

	Code Utilities
	Signals
	radius_accounting_success

	Captive portal mock views
	Captive Portal Login Mock View
	Captive Portal Logout Mock View

	Extending OpenWISP RADIUS
	1. Initialize your custom module
	2. Install openwisp-radius
	3. Add your App to INSTALLED_APPS
	4. Add EXTENDED_APPS
	5. Add openwisp_utils.staticfiles.DependencyFinder
	6. Add openwisp_utils.loaders.DependencyLoader
	7. Inherit the AppConfig class
	8. Create your custom models
	9. Add swapper configurations
	10. Create database migrations
	11. Create the admin
	1. Monkey patching
	2. Inheriting admin classes

	12. Setup Freeradius API Allowed Hosts
	13. Setup Periodic tasks
	14. Create root URL configuration
	15. Import the automated tests
	Other base classes that can be inherited and extended
	1. Extending the API Views
	2. Extending the Social Views
	3. Extending the SAML Views

	Deploy instructions
	Freeradius Setup for Captive Portal authentication
	How to install freeradius 3
	Configuring Freeradius 3
	Enable the configured modules
	Configure the REST module
	Configure the SQL module
	Configure the site
	Restart freeradius to make the configuration effective
	Reconfigure the development environment using PostgreSQL

	Using Radius Checks for Authorization Information
	Configuration

	Debugging & Troubleshooting
	Start freeradius in debug mode
	Testing authentication and authorization
	Testing accounting

	Customizing your configuration

	Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication
	Prerequisites
	Freeradius configuration
	Configure the sites
	Main sites
	Inner tunnels

	Configure the EAP modules

	Repeating the steps for more organizations
	Final steps
	Implementing other EAP scenarios

	WiFi Login Pages
	WiFi Login Pages: Features
	Screenshots

	Setup
	Add Organization configuration
	Removing Sections of Configuration

	Variants of the Same Configuration
	Variant with Different Organization Slug / UUID / Secret
	Support for Old Browsers
	Configuring Sentry for Proxy Server
	Supporting Realms (RADIUS Proxy)

	Allowing Users to Manage Account from the Internet
	Translations
	Defining Available Languages
	Add Translations
	Update Translations
	Customizing Translations for a Specific Language
	Customizing Translations for a Specific Organization and Language

	Handling Captive Portal / RADIUS Errors
	Loading Extra JavaScript Files
	1. Loading Extra JavaScript Files for Whole Application (All Organizations)
	2. Loading Extra JavaScript Files for a Specific Organization

	Settings
	Captive Portal Settings
	captive_portal_login_form
	captive_portal_logout_form

	Menu Items
	User Fields in Registration Form
	Username Field in Login Form
	Configuring Social Login
	Custom CSS Files
	Custom HTML
	Second Logo

	Sticky Message
	Login Page
	Contact Box
	Footer

	Configuring SAML Login & Logout
	TOS & Privacy Policy
	Configuring Logging
	Mocking Captive Portal Login and Logout
	Sign Up with Payment Flow

	Developer Docs
	Developer Installation Instructions
	Dependencies
	Prerequisites
	OpenWISP RADIUS

	Installing for Development
	Running Automated Browser Tests

	Usage
	Yarn Commands
	Using Custom Ports
	Running webpack-bundle-analyzer

	IPAM
	IPAM: Features
	Exporting and Importing Subnet
	Exporting
	From Management Command
	From Admin Interface

	Importing
	From Management Command
	From Admin Interface

	CSV File Format
	REST API
	Live Documentation
	Browsable Web Interface
	Authentication
	API Throttling
	Pagination
	List of Endpoints
	Get Next Available IP
	GET

	Request IP
	POST
	Response

	Subnet IP Address List/Create
	GET
	POST

	Subnet List/Create
	GET
	POST

	Subnet Detail
	GET
	DELETE
	PUT

	IP Address Detail
	GET
	DELETE
	PUT

	Export Subnet
	POST

	Import Subnet
	POST

	Developer Docs
	Developer Installation Instructions
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Extending OpenWISP IPAM
	1. Initialize your Custom Module
	2. Install openwisp-ipam
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig Class
	7. Create your Custom Models
	8. Add Swapper Configurations
	9. Create Database Migrations
	10. Create the Admin
	1. Monkey Patching
	2. Inheriting Admin Classes

	11. Create Root URL Configuration
	12. Import the Automated Tests
	Other Base Classes That Can be Inherited and Extended
	1. Extending the API Views

	Notifications
	Notifications: Features
	Notification Types
	generic_message
	Properties of Notification Types
	Defining message_template

	Sending Notifications
	The notify signal
	Passing Extra Data to Notifications

	Web & Email Notifications
	Web Notifications
	Notification Widget
	Notification Toasts

	Email Notifications

	Notification Preferences
	Silencing Notifications for Specific Objects

	Scheduled Deletion of Notifications
	REST API
	Live Documentation
	Browsable Web Interface
	Authentication
	Pagination
	List of Endpoints
	List User's Notifications
	Mark All User's Notifications as Read
	Get Notification Details
	Mark a Notification Read
	Delete a Notification
	List User's Notification Setting
	Get Notification Setting Details
	Update Notification Setting Details
	List User's Object Notification Setting
	Get Object Notification Setting Details
	Create Object Notification Setting
	Delete Object Notification Setting

	Settings
	OPENWISP_NOTIFICATIONS_HOST
	OPENWISP_NOTIFICATIONS_SOUND
	OPENWISP_NOTIFICATIONS_CACHE_TIMEOUT
	OPENWISP_NOTIFICATIONS_IGNORE_ENABLED_ADMIN
	OPENWISP_NOTIFICATIONS_POPULATE_PREFERENCES_ON_MIGRATE
	OPENWISP_NOTIFICATIONS_NOTIFICATION_STORM_PREVENTION

	Management Commands
	populate_notification_preferences
	create_notification

	Developer Docs
	Developer Installation Instructions
	Installing for Development
	Alternative Sources
	Pypi
	Github

	Code Utilities
	Registering / Unregistering Notification Types
	register_notification_type
	unregister_notification_type
	Exceptions
	NotificationRenderException

	Notification Cache
	Cache Invalidation

	Extending openwisp-notifications
	1. Initialize your custom module
	2. Install openwisp-notifications
	3. Add EXTENDED_APPS
	4. Add openwisp_utils.staticfiles.DependencyFinder
	5. Add openwisp_utils.loaders.DependencyLoader
	6. Inherit the AppConfig class
	7. Create your custom models
	8. Add swapper configurations
	9. Create database migrations
	10. Create your custom admin
	1. Monkey patching
	2. Inheriting admin classes

	11. Create root URL configuration
	12. Create root routing configuration
	13. Create celery.py
	14. Import Celery Tasks
	15. Register Template Tags
	16. Register Notification Types
	17. Import the automated tests
	Other base classes that can be inherited and extended
	API views
	Web Socket Consumers

	Utils
	Collection of Usage Metrics
	Opting Out from Metric Collection

	Admin Filters
	Settings
	OPENWISP_ADMIN_SITE_CLASS
	OPENWISP_ADMIN_SITE_TITLE
	OPENWISP_ADMIN_SITE_HEADER
	OPENWISP_ADMIN_INDEX_TITLE
	OPENWISP_ADMIN_DASHBOARD_ENABLED
	OPENWISP_ADMIN_THEME_LINKS
	OPENWISP_ADMIN_THEME_JS
	OPENWISP_ADMIN_SHOW_USERLINKS_BLOCK
	OPENWISP_API_DOCS
	OPENWISP_API_INFO
	OPENWISP_SLOW_TEST_THRESHOLD
	OPENWISP_STATICFILES_VERSIONED_EXCLUDE
	OPENWISP_HTML_EMAIL
	OPENWISP_EMAIL_TEMPLATE
	OPENWISP_EMAIL_LOGO
	OPENWISP_CELERY_SOFT_TIME_LIMIT
	OPENWISP_CELERY_HARD_TIME_LIMIT
	OPENWISP_AUTOCOMPLETE_FILTER_VIEW

	Developer Docs
	Developer Installation Instructions
	Installing for Development
	Alternative Sources
	Pypi
	Github

	OpenWISP Dashboard
	register_dashboard_template
	unregister_dashboard_template
	register_dashboard_chart
	Dashboard Chart query_params
	Dashboard chart quick_link

	unregister_dashboard_chart

	Main Navigation Menu
	Context Processor
	The register_menu_group function
	Adding a Custom Link
	Adding a Model Link
	Adding a Menu Group

	The register_menu_subitem function
	How to Use Custom Icons in the Menu

	Using the admin_theme
	Using DependencyLoader and DependencyFinder
	DependencyFinder
	DependencyLoader

	Supplying Custom CSS and JS for the Admin Theme
	Extend Admin Theme Programmatically
	openwisp_utils.admin_theme.theme.register_theme_link
	openwisp_utils.admin_theme.theme.unregister_theme_link
	openwisp_utils.admin_theme.theme.register_theme_js
	openwisp_utils.admin_theme.theme.unregister_theme_js

	Sending emails
	openwisp_utils.admin_theme.email.send_email

	Database Backends
	openwisp_utils.db.backends.spatialite

	Quality Assurance Checks
	openwisp-qa-format
	openwisp-qa-check
	checkmigrations
	checkcommit
	checkendline
	checkpendingmigrations
	checkrst

	Custom Fields
	openwisp_utils.fields.KeyField
	openwisp_utils.fields.FallbackBooleanChoiceField
	openwisp_utils.fields.FallbackCharChoiceField
	openwisp_utils.fields.FallbackCharField
	openwisp_utils.fields.FallbackURLField
	openwisp_utils.fields.FallbackTextField
	openwisp_utils.fields.FallbackPositiveIntegerField
	openwisp_utils.fields.FallbackDecimalField

	Admin Utilities
	openwisp_utils.admin.TimeReadonlyAdminMixin
	openwisp_utils.admin.ReadOnlyAdmin
	openwisp_utils.admin.AlwaysHasChangedMixin
	openwisp_utils.admin.CopyableFieldsAdmin
	openwisp_utils.admin.UUIDAdmin
	openwisp_utils.admin.ReceiveUrlAdmin
	openwisp_utils.admin.HelpTextStackedInline
	openwisp_utils.admin_theme.filters.InputFilter
	openwisp_utils.admin_theme.filters.SimpleInputFilter
	openwisp_utils.admin_theme.filters.AutocompleteFilter
	Customizing the Submit Row in OpenWISP Admin

	Test Utilities
	openwisp_utils.tests.catch_signal
	openwisp_utils.tests.TimeLoggingTestRunner
	openwisp_utils.tests.capture_stdout
	openwisp_utils.tests.capture_stderr
	openwisp_utils.tests.capture_any_output
	openwisp_utils.tests.AssertNumQueriesSubTestMixin
	openwisp_utils.test_selenium_mixins.SeleniumTestMixin

	Other Utilities
	Model Utilities
	openwisp_utils.base.UUIDModel
	openwisp_utils.base.TimeStampedEditableModel

	REST API Utilities
	openwisp_utils.api.serializers.ValidatedModelSerializer
	openwisp_utils.api.apps.ApiAppConfig

	Storage Utilities
	openwisp_utils.storage.CompressStaticFilesStorage

	Other Utilities
	openwisp_utils.utils.get_random_key
	openwisp_utils.utils.deep_merge_dicts
	openwisp_utils.utils.default_or_test
	openwisp_utils.utils.print_color
	openwisp_utils.utils.SorrtedOrderedDict
	openwisp_utils.tasks.OpenwispCeleryTask
	openwisp_utils.utils.retryable_request

	OpenWrt Agents
	OpenWISP Config Agent
	OpenWISP Config: Features
	Quick Start Guide
	Settings
	Configuration Options
	Merge Configuration
	Configuration Test
	Disable Testing
	Define Custom Tests

	Hardware ID
	Boot Up Delay
	Hooks
	pre-reload-hook
	post-reload-hook
	post-registration-hook

	Unmanaged Configurations

	Automatic registration
	Consistent Key Generation

	Hotplug Events
	Compiling a Custom OpenWrt Image
	Automate Compilation for Different Organizations

	Debugging
	Developer Documentation
	Compiling openwisp-config
	Quality Assurance Checks
	Run tests

	OpenWISP Monitoring Agent
	Quick Start Guide
	Settings
	Configuration Options
	Collecting vs. Sending
	Collect Mode
	Send Mode

	Boot-Up Delay

	Debugging
	Developer Documentation
	Compiling the Monitoring Agent
	Quality Assurance Checks
	Run tests

	Tutorials
	OpenWISP Demo
	Accessing the demo system
	Firmware instructions (flashing OpenWISP Firmware)
	1. Downloading the firmware
	2. Flashing the firmware

	Alternative firmware instructions
	Connecting your device to OpenWISP
	DHCP client mode
	Static address mode
	Registration

	Monitoring charts and status
	Health status
	Device Status
	Charts

	Get help

	How to Set Up WiFi Access Point SSIDs
	Introduction & Prerequisites
	Set Up an Open Access Point SSID on a Device
	Set Up a WPA Encrypted Access Point SSID on a Device
	Set Up the Same SSID and Password on Multiple Devices
	Multiple SSIDs, multiple radios
	Roaming (802.11r: Fast BSS Transition)
	Monitoring WiFi Clients

	WiFi Hotspot & Captive Portal
	Introduction & Prerequisites
	Enable Captive Portal Template
	Accessing the Public WiFI Hotspot
	Logging Out
	Session Limits
	Automatic Captive Portal Login
	Sign Up
	Social Login
	Paid WiFi Hotspot Subscription Plans

	How to Set Up WPA Enterprise (EAP-TTLS-PAP) Authentication
	Introduction & Prerequisites
	Enable OpenWISP RADIUS
	VPN Tunnel
	Firmware Requirements
	One Radio Available

	Configuring FreeRADIUS for WPA Enterprise
	Self-Signed Certificates
	Public Certificates

	Creating the Template
	Enable the WPA Enterprise Template on the Devices
	Connecting to the WiFi with WPA2 Enterprise
	Verifying and Debugging

	How to Set Up a Wireless Mesh Network
	Introduction & Prerequisites
	Firmware Requirements
	General Assumptions
	At Least 2 Devices
	One Radio Available
	Existing DHCP server on the LAN

	Creating the Template
	Why we use a pre-reload-hook script

	Enable the Mesh Template on the Devices
	Verifying and Debugging

	Monitoring the Mesh Nodes
	Mesh Topology Collection and Visualization
	Changing the Default 802.11s Routing Protocol

	Community Resources
	Help us to grow
	Are you using OpenWISP for your organization?
	How to help
	1. Open new discussion threads
	2. Send feedback
	3. Stars on github
	4. Documentation
	5. Social media
	6. Blogging
	7. Conferences & Meetups
	8. Participate
	9. Contribute technically
	10. Commercial support and funding development

	Press
	Presentations
	OpenWISP: a Hackable Network Management System for the 21st Century
	django-freeradius at PyCon Italia 2018
	OpenWISP 2: the modular configuration manager for OpenWrt
	Applying the Unix Philosophy to Django projects
	Opening Proprietary Networks with OpenWISP
	OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices
	Do you really need to fork OpenWrt?
	OpenWISP GARR Conference 2011
	OpenWISP e Progetti WiFi Nazionali

	Blog Posts
	Google Summer of Code Blog Posts
	2023 Contributors
	2022 Contributors
	2021 Students
	2020 Students
	2019 Students
	2018 Students
	2017 Students

	Research and publications
	Logos and Graphic material

	Code of Conduct
	1. Purpose
	2. Open Source Citizenship
	3. Expected Behavior
	4. Unacceptable Behavior
	5. Consequences of Unacceptable Behavior
	6. Reporting Guidelines
	7. Addressing Grievances
	8. Scope
	9. Contact info
	10. License and attribution

	Developer Resources
	Contributing guidelines
	Introduce yourself
	Look for open issues
	Priorities for the next release
	Setup
	How to commit your changes properly
	1. Branch naming guidelines
	2. Commit message style guidelines
	3. Pull-Request guidelines
	4. Avoiding unnecessary changes

	Coding Style Conventions
	1. Python code conventions
	2. Javascript code conventions
	3. OpenWrt related conventions

	Thank You

	Useful Python & Django Tools for OpenWISP Development
	Why Python?
	Why Django?
	Why Django REST Framework?
	Useful Development Tools
	IPython and ipdb
	Django Extensions
	Django Debug Toolbar
	Using these Tools in OpenWISP

	Google Summer of Code
	How to run a successful Google Summer of Code
	Traits we look for in applicants
	How to become an OpenWISP star
	Time to start hacking
	Project ideas
	Application Template
	1. Your Details
	2. Tell Us About Yourself
	3. Your GSoC Project
	4. After GSoC

	GSoC Project Ideas 2024
	General suggestions and warnings
	Project Ideas
	Improve OpenWISP General Map: Indoor, Mobile, Linkable URLs
	Prerequisites to work on this project
	Expected outcomes

	Improve netjsongraph.js resiliency and visualization
	Prerequisites to work on this project
	Expected outcomes

	Improve UX and Flexibility of the Firmware Upgrader Module
	Prerequisites to work on this project
	Expected outcomes
	Training Issues

	Improve UX of the Notifications Module
	Prerequisites to work on this project
	Expected outcomes
	Training Issues

	Add more timeseries database clients to OpenWISP Monitoring
	Prerequisites to work on this project
	Expected outcomes

