
OpenWISP

version 22.05

OpenWISP Community

July 02, 2025

Contents

OpenWISP Documentation 1

Quick Start 1

1. Install the OpenWISP server application 1

2. Install openwisp-config on your devices 1

3. Install openwisp-monitoring on your devices 1

4. Watch video demonstrations 1

5. Look for help 1

Connect OpenWRT to OpenWISP 1

1. Install OpenWISP 2

2. Flash OpenWRT on a device 2

3. Install openwisp-config 2

Installation 2

Configuration 2

Compile your own OpenWRT image 3

Monitoring 4

Deploy instructions 4

Quick Start Guide 5

Install monitoring packages on the device 5

Make sure OpenWISP can reach your devices 5

1. Public internet deployment 5

2. LAN deployment 6

Find out more about OpenWISP Monitoring 6

OpenWISP Monitoring Python/Django module 6

OpenWISP Monitoring OpenWrt packages 6

Configuration Templates 6

Template ordering and override 7

Shared templates vs organization specific 7

Default Templates 8

Required Templates 9

Template tags 9

How to Use Configuration Variables 10

Predefined device variables 11

User defined device variables 11

Template default values 11

Global variables 12

System defined variables 12

Example usage of variables 12

OpenVPN tunnel Automation 13

Installing OpenVPN Server and importing the OpenVPN configuration 14

1. Install Ansible and required Ansible roles 14

2. Create hosts file and ansible playbook 14

3. Run the Playbook 15

4. Importing the CA and the Server Certificate 15

4. Creating VPN Server 15

Preparing the configuration template for VPN Clients 16

Create VPN Template 16

Auto Client Certificates 16

Default Templates 16

Wireguard and Wireguard over VXLAN tunnel automation 16

How to setup WireGuard tunnels 16

1. Create VPN server configuration for WireGuard 17

2. Deploy Wireguard VPN Server 18

3. Create VPN client template for WireGuard VPN Server 18

4. Apply Wireguard VPN template to devices 19

How to setup VXLAN over WireGuard tunnels 20

1. Create VPN server configuration for VXLAN over WireGuard 20

2. Deploy Wireguard VXLAN VPN Server 21

3. Create VPN client template for WireGuard VXLAN VPN Server 21

4. Apply Wireguard VXLAN VPN template to devices 22

How to Configure Push Updates 23

1. Generate SSH key 23

2. Save SSH private key in OpenWISP (access credentials) 23

3. Add the public key to your devices 24

4. Test it 24

Sending Commands to Devices 25

Default command options 25

How to define new options in the commands menu 25

Command Configuration 27

1. label 27

2. schema 27

3. callable 27

Subnet division rules 28

Enabling the subnet division rule app 28

Configuring the automatic provisioning of subnets and IPs 28

1. Create a Subnet and a Subnet Division Rule 28

Device Subnet Division Rule 29

VPN Subnet Division Rule 29

2. Create a VPN Server 29

3. Create a VPN Client Template 30

4. Apply VPN Client Template to Devices 30

Important notes for using Subnet Division 31

Limitations of Subnet Division 31

Size 31

Number of Subnets 31

Number of IPs 32

Firmware Upgrades 32

Deploy instructions 32

Quick Start Guide 32

1. Create a category 33

2. Create the build object 33

3. Upload images to the build 33

4. Perform a firmware upgrade to a specific device 34

5. Performing mass upgrades 34

Find out more about OpenWISP Firmware Upgrader 35

Network Topology 35

Deploy instructions 36

Quick Start Guide 36

Creating a topology 36

Sending data for topology with RECEIVE strategy 37

Find out more about OpenWISP Network Topology 37

RADIUS 38

Deploy instructions 38

Find out more about OpenWISP RADIUS 38

WiFi Login Pages 39

Screenshots 39

Overview 39

How to Edit Django Settings 39

Modules (a.k.a Django Apps) 39

Editing settings with the ansible role 40

Editing settings with docker-openwisp 40

Architecture, Modules, Technologies 40

Architecture Overview 40

OpenWISP Modules 41

Deployment 42

Server Side 42

Network Device Side 43

Website and Documentation 43

Main Technologies Used 43

Python 43

Django 43

Django REST Framework 43

Celery 43

OpenWrt 43

Lua 43

Node.js and React JS 44

Ansible 44

Docker 44

NetJSON 44

RADIUS 44

Freeradius 44

Mesh Networking 44

InfluxDB 44

Elasticsearch 45

Networkx 45

Relational Databases 45

Other notable dependencies 45

Values and Goals of OpenWISP 45

What is OpenWISP? 45

History 45

Core Values 46

1. Communication through electronic means is a human right 46

2. Net Neutrality 46

3. Privacy 46

4. Open Source, licenses and collaboration 46

5. Software reusability means long term sustainability 47

Goals 47

Help us to grow 47

Are you using OpenWISP for your organization? 48

How to help 48

1. Open new discussion threads 48

2. Send feedback 48

3. Stars on github 49

4. Documentation 49

5. Social media 49

6. Blogging 49

7. Conferences & Meetups 49

8. Participate 49

9. Contribute technically 50

10. Commercial support and funding development 50

Press 50

Presentations 50

OpenWISP: a Hackable Network Management System for the 21st Century 50

django-freeradius at PyCon Italia 2018 50

OpenWISP 2: the modular configuration manager for OpenWrt 50

Applying the Unix Philosophy to Django projects 51

Opening Proprietary Networks with OpenWISP 51

OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices 51

Do you really need to fork OpenWrt? 51

OpenWISP GARR Conference 2011 51

OpenWISP e Progetti WiFi Nazionali 51

Blog Posts 51

Google Summer of Code Blog Posts 52

2023 Contributors 52

2022 Contributors 52

2021 Students 52

2020 Students 52

2019 Students 52

2018 Students 52

2017 Students 52

Research and publications 53

Logos and Graphic material 53

Code of Conduct 54

1. Purpose 54

2. Open Source Citizenship 54

3. Expected Behavior 54

4. Unacceptable Behavior 55

5. Consequences of Unacceptable Behavior 55

6. Reporting Guidelines 55

7. Addressing Grievances 55

8. Scope 55

9. Contact info 56

10. License and attribution 56

Contributing guidelines 56

Introduce yourself 56

Look for open issues 56

Priorities for the next release 56

Setup 56

How to commit your changes properly 57

1. Branch naming guidelines 57

2. Commit message style guidelines 57

3. Pull-Request guidelines 58

4. Avoiding unnecessary changes 58

Coding Style Conventions 58

1. Python code conventions 58

2. Javascript code conventions 59

3. OpenWRT related conventions 59

Thank You 59

Useful Python & Django Tools for OpenWISP Development 59

Why Python? 60

Why Django? 60

Why Django REST Framework? 61

Useful Development Tools 61

IPython and ipdb 61

Django Extensions 61

Django Debug Toolbar 62

Using these Tools in OpenWISP 62

Google Summer of Code 63

How to run a successful Google Summer of Code 64

Traits we look for in applicants 64

How to become an OpenWISP star 65

Time to start hacking 66

Project ideas 66

GSoC Project Ideas 2021 66

General suggestions and warnings 67

Project Ideas 67

Improve resiliency and packaging of OpenWISP Monitoring on OpenWrt 67

New General Navigation Menu and UX improvements 68

OpenWISP REST API 69

Revamp Netengine and add its SNMP capability to OpenWISP Monitoring 70

Bring professional efficiency to OpenWISP WiFi Login Pages 71

Improve netjsongraph.js for its new release 72

Second release of OpenWISP Monitoring 73

GSoC Project Ideas 2022 74

General suggestions and warnings 74

Project Ideas 75

Adding support for automatic management of ZeroTier Tunnels 75

Prerequisites to work on this project 75

Expected outcomes 75

Improve netjsongraph.js for its new release 76

Prerequisites to work on this project 77

Expected outcomes 77

Add iperf bandwidth monitoring check to OpenWISP Monitoring 78

Prerequisites to work on this project 79

Expected outcomes 79

Improve UX of OpenWISP Monitoring 79

Prerequisites to work on this project 80

Expected outcomes 80

Add more timeseries database clients to OpenWISP Monitoring 80

Prerequisites to work on this project 81

Expected outcomes 81

Google Code-in 81

How to run a successful GCI 82

How to become an OpenWISP star 83

Evaluation criteria 83

Be patient 84

Progression of Skills 84

Quality over Quantity 84

Community 84

Help us to grow 84

Gradual Independence 84

Learn to use OpenWISP 85

Learn to use OpenWrt 85

Full stack knowledge 85

Time to start hacking 85

FAQs 86

Communication of sensitive issues 86

How can I apply as mentor? 86

Suspension of mentors 86

Hacktoberfest 87

How to get started 87

1. Read the contributing guidelines 87

2. Project Board 87

3. Announce you're working on something 88

4. Join the general chat 88

5. Help us to grow 88

Main Rules 88

1. Stay on topic 88

2. Spammy pull requests won't be accepted 88

3. Be constructive 88

OpenWISP Documentation

Contents:

Quick Start

Table of Contents:

Quick Start 1

1. Install the OpenWISP server application 1

2. Install openwisp-config on your devices 1

3. Install openwisp-monitoring on your devices 1

4. Watch video demonstrations 1

5. Look for help 1

1. Install the OpenWISP server application

If you want to find out how to deploy OpenWISP for production usage, follow the step by step ansible-openwisp2
tutorial.

Alternatively, there's also docker-openwisp (in alpha stage) which can be especially useful for testing purposes.

For testing purposes vagrant-openwisp2 can be used as well.

2. Install openwisp-config on your devices

Here's a guide on how to install openwisp-config on OpenWRT and connect it to OpenWISP.

If you don't have a physical OpenWRT-compatible device at hand, you can install OpenWRT in a VirtualBox VM,
that's also covered by the guide.

3. Install openwisp-monitoring on your devices

If you want to take advantage of the features offered by the monitoring module of OpenWISP, read the Monitoring
Quickstart Guide.

4. Watch video demonstrations

5. Look for help

See support channels.

Connect OpenWRT to OpenWISP

This page will guide you through the installation of openwisp-config on a device which supports OpenWRT.

If you don't have a physical device available but you still want to try out OpenWISP, you can use a Virtual
Machine.

OpenWISP Documentation

1

https://github.com/openwisp/ansible-openwisp2#usage-tutorial
https://github.com/openwisp/ansible-openwisp2#usage-tutorial
https://github.com/openwisp/docker-openwisp
https://github.com/openwisp/vagrant-openwisp2
http://openwisp.org/support.html
https://github.com/openwisp/openwisp-config
https://openwrt.org/

Table of Contents:

Connect OpenWRT to OpenWISP 1

1. Install OpenWISP 2

2. Flash OpenWRT on a device 2

3. Install openwisp-config 2

Installation 2

Configuration 2

Compile your own OpenWRT image 3

1. Install OpenWISP

Refer to the instructions described in Install the OpenWISP server application.

2. Flash OpenWRT on a device

If you have a physical OpenWRT compatible hardware, follow the instructions in the official OpenWRT flashing
guide.

If you don't have a physical device, you can install OpenWrt on a VirtualBox Virtual Machine.

Note

It's required to enable SSH access and connect the device or VM to the internet.

Note that when using Virtualbox, both Adapter1 and Adapter2 use "Adapter Type: Intel PRO/1000 MT Desktop".
Also, please do not use the same IP Address that you used for the local OpenWISP website you hosted before.
That suggested change applies only when you boot into the OpenWRT device as per the description of the above
link (for example, if you set 192.168.56.2 as the IP Address of your local OpenWISP website, please use another
IP such as 192.168.56.3 for the IP Address of the OpenWRT device).

3. Install openwisp-config

Installation

Install openwisp-config on your OpenWRT system. For this guide.

We recommend to install one of the latest stable builds from downloads.openwisp.io, copy the URL of the ipk file you
want to download in your clipboard and then run the following commands on your OpenWrt device:

opkg update
opkg install <URL-you-just-copied>

If you're running at least OpenWRT 19.07, you can install openwisp-config from the official OpenWRT packages:

opkg update
opkg install openwisp-config

Configuration

Once openwisp-config is installed, we need to configure it to connect to our OpenWISP2 controller. To do that, edit
the config file located at /etc/config/openwisp.

OpenWISP Documentation

2

https://openwrt.org/docs/guide-user/installation/generic.flashing
https://openwrt.org/docs/guide-user/installation/generic.flashing
https://openwrt.org/docs/guide-user/virtualization/virtualbox-vm
http://downloads.openwisp.io/?prefix=openwisp-config/

You will see the default config file, something like the following (if your instance lacks some of the lines in the
following, please add them):

For more information about the config options please see the README
or https://github.com/openwisp/openwisp-config#configuration-options

config controller 'http'
 #option url 'https://openwisp2.mynetwork.com'
 #option interval '120'
 #option verify_ssl '1'
 #option shared_secret ''
 #option consistent_key '1'
 #option mac_interface 'eth0'
 #option management_interface 'tun0'
 #option merge_config '1'
 #option test_config '1'
 #option test_script '/usr/sbin/mytest'
 #option hardware_id_script '/usr/sbin/read_hw_id'
 #option hardware_id_key '1'
 option uuid ''
 option key ''
 # curl options
 #option connect_timeout '15'
 #option max_time '30'
 #option capath '/etc/ssl/certs'
 #option cacert '/etc/ssl/certs/ca-certificates.crt'
 # hooks
 #option pre_reload_hook '/usr/sbin/my_pre_reload_hook'
 #option post_reload_hook '/usr/sbin/my_post_reload_hook'

Uncomment and change the following fields:

• url: the hostname of your OpenWISP2 controller (for example, if you are hosting your OpenWISP server
locally and you set the IP Address to "192.168.56.2", the URL would be https://192.168.56.2).

• verify_ssl: set to '0' if your controller's SSL certificate is self-signed; in production you will need a valid
SSL certificate to keep your instance secure

• shared_secret: you can retrieve this from OpenWISP2 admin panel, in the Organization settings. The list of
organizations is available at /admin/openwisp_users/organization/.

Note

When testing or developing using the Django development server directly from your computer, make sure the
server listens on all interfaces (./manage.py runserver 0.0.0.0:8000) and then just point openwisp to
use your local IP address (e.g. http://192.168.1.34:8000)

Save the file and start openwisp-config:

/etc/init.d/openwisp_config restart

Your OpenWRT instance should register itself to your openwisp2 controller. Check the devices menu on the admin
panel to make sure your OpenWRT instance is registered.

Compile your own OpenWRT image

You may want to compile a custom OpenWRT image to save time in configuring new devices. By compiling a custom
image, you can preinstall openwisp-config, including your configurations (e.g. url and shared_secret), so that
you won't have to go through the configuration process again.

OpenWISP Documentation

3

This will make you save a lot of time if you need to manage many devices!

A guide on how to compile a custom OpenWRT image available in the openwisp-config documentation.

Monitoring

OpenWISP Monitoring has been introduced in OpenWISP 22.05 and focuses on allowing users to know the status of
their devices at any given time.

Table of Contents:

Monitoring 4

Deploy instructions 4

Quick Start Guide 5

Install monitoring packages on the device 5

Make sure OpenWISP can reach your devices 5

Find out more about OpenWISP Monitoring 6

OpenWISP Monitoring Python/Django module 6

OpenWISP Monitoring OpenWrt packages 6

Deploy instructions 32

Quick Start Guide 32

Deploy instructions 36

Quick Start Guide 36

Deploy instructions 38

Deploy instructions

The monitoring module is enabled by default in the OpenWISP 22.05 ansible role.

It's also available in docker-openwisp although its usage is not recommended for production usage yet, unless the
reader is willing to invest effort in adapting the docker images and configurations to overcome any roadblocks
encountered.

Monitoring

4

https://github.com/openwisp/openwisp-config#compiling-a-custom-openwrt-image
https://github.com/openwisp/openwisp-monitoring/tree/docs/docs/monitoring-demo.gif
https://github.com/openwisp/openwisp-monitoring/tree/1.0
https://github.com/openwisp/ansible-openwisp2/tree/22.05
https://github.com/openwisp/docker-openwisp

Quick Start Guide

This guide assumes you have the OpenWISP Monitoring module enabled in your OpenWISP server application and
you have already followed the steps to install openwisp-config on your OpenWRT devices.

Install monitoring packages on the device

Install the openwrt-openwisp-monitoring packages on your device.

These packages collect and send the monitoring data from the device to OpenWISP Monitoring and are required to
collect metrics like interface traffic, WiFi clients, CPU load, memory usage, etc.

Make sure OpenWISP can reach your devices

In order to perform active checks and other actions like triggering the push of configuration changes, executing shell
commands or performing firmware upgrades, the OpenWISP server needs to be able to reach the network
devices.

There are mainly two deployment scenarios for OpenWISP:

1. the OpenWISP server is deployed on the public internet and the devices are geographically distributed across
different locations: in this case a management tunnel is needed

2. the OpenWISP server is deployed on a computer/server which is located in the same Layer 2 network (that is,
in the same LAN) where the devices are located. in this case a management tunnel is NOT needed

1. Public internet deployment

This is the most common scenario:

• the OpenWISP server is deployed to the public internet, hence the server has a public IPv4 (and IPv6) address
and usually a valid SSL certificate provided by Mozilla Letsencrypt or another SSL provider

• the network devices are geographically distributed across different locations (different cities, different regions,
different countries)

In this scenario, the OpenWISP application will not be able to reach the devices unless a management tunnel is
used, for that reason having a management VPN like OpenVPN, Wireguard or any other tunneling solution is
paramount, not only to allow OpenWISP to work properly, but also to be able to perform debugging and
troubleshooting when needed.

In this scenario, the following requirements are needed:

• a VPN server must be installed in a way that the OpenWISP server can reach the VPN peers, for more
information on how to do this via OpenWISP please refer to the following sections:

• OpenVPN tunnel automation

• Wireguard tunnel automation

If you prefer to use other tunneling solutions (L2TP, Softether, etc.) and know how to configure those solutions
on your own, that's totally fine as well.

If the OpenWISP server is connected to a network infrastructure which allows it to reach the devices via
preexisting tunneling or Intranet solutions (e.g.: MPLS, SD-WAN), then setting up a VPN server is not needed,
as long as there's a dedicated interface on OpenWrt which gets an IP address assigned to it and which is
reachable from the OpenWISP server.

• The devices must be configured to join the management tunnel automatically, either via a preexisting
configuration in the firmware or via an OpenWISP Template.

• The openwisp-config agent on the devices must be configured to specify the management_interface option,
the agent will communicate the IP of the management interface to the OpenWISP Server and OpenWISP will
use the management IP for reaching the device.

Monitoring

5

https://github.com/openwisp/openwisp-monitoring/tree/1.0
https://github.com/openwisp/openwrt-openwisp-monitoring/tree/0.1.0#install-pre-compiled-packages
https://github.com/openwisp/openwisp-monitoring/tree/1.0#openwisp_monitoring_metrics
https://github.com/openwisp/openwisp-monitoring/tree/1.0#available-checks
https://github.com/openwisp/openwisp-controller/tree/1.0#how-to-configure-push-updates
https://github.com/openwisp/openwisp-controller/tree/1.0#sending-commands-to-devices
https://github.com/openwisp/openwisp-controller/tree/1.0#sending-commands-to-devices
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#perform-a-firmware-upgrade-to-a-specific-device
https://openwisp.io/docs/user/vpn.html
https://github.com/openwisp/openwisp-controller/tree/1.0#how-to-setup-wireguard-tunnels
https://openwisp.io/docs/user/templates.html
https://github.com/openwisp/openwisp-config

For example, if the management interface is named tun0, the openwisp-config configuration should look like
the following example:

In /etc/config/openwisp on the device

config controller 'http'
 # ... other configuration directives ...
 option management_interface 'tun0'

2. LAN deployment

When the OpenWISP server and the network devices are deployed in the same L2 network (e.g.: an office LAN) and
the OpenWISP server is reachable on the LAN address, OpenWISP can then use the Last IP field of the devices to
reach them.

In this scenario it's necessary to set the "OPENWISP_MONITORING_MANAGEMENT_IP_ONLY" setting to False.

Find out more about OpenWISP Monitoring

For more information about the features offered by OpenWISP Monitoring and the related OpenWrt packages we
refer to the following sections of their respective READMEs.

OpenWISP Monitoring Python/Django module

• List of the available features

• Passive vs Active Metric Collection

• Device Health Status

• Default Metrics

• Available Checks

• Rest API

• Django Settings

OpenWISP Monitoring OpenWrt packages

• Configuration options

• Collecting vs Sending

• Compiling openwisp-monitoring

• Debugging

Configuration Templates

Templates are designed to store configuration that can be reused by some or all the devices in the system.

Updating the configuration stored in a template allows to update the configuration of all the devices that have that
template assigned.

This means that configuration can be defined only once for multiple devices, and if the need to update a specific
piece of configuration arises, it can be easily achieved by updating the template.

Configuration Templates

6

https://github.com/openwisp/openwisp-monitoring/tree/1.0#openwisp-monitoring-management-ip-only
https://github.com/openwisp/openwisp-monitoring/tree/1.0#available-features
https://github.com/openwisp/openwisp-monitoring/tree/1.0#passive-vs-active-metric-collection
https://github.com/openwisp/openwisp-monitoring/tree/1.0#device-health-status
https://github.com/openwisp/openwisp-monitoring/tree/1.0#default-metrics
https://github.com/openwisp/openwisp-monitoring/tree/1.0#available-checks
https://github.com/openwisp/openwisp-monitoring/tree/1.0#rest-api
https://github.com/openwisp/openwisp-monitoring/tree/1.0#settings
https://github.com/openwisp/openwrt-openwisp-monitoring/tree/0.1.0#configuration-options
https://github.com/openwisp/openwrt-openwisp-monitoring/tree/0.1.0#collecting-vs-sending
https://github.com/openwisp/openwrt-openwisp-monitoring/tree/0.1.0#compiling-openwisp-monitoring
https://github.com/openwisp/openwrt-openwisp-monitoring/tree/0.1.0#debugging

Table of Contents:

Configuration Templates 6

Template ordering and override 7

Shared templates vs organization specific 7

Default Templates 8

Required Templates 9

Template tags 9

Default Templates 16

Template ordering and override

A device can use multiple templates, the order in which templates are assigned to each device matters:
templates assigned last can override templates assigned earlier, the order can be changed by drag and dropping the
template in the device configuration page as in the animated screenshot below.

The device configuration can also override what is defined in templates.

Overriding means redefining a specific configuration section in a way that overwrites the template.

Overriding involves some form of duplication of information, which is not great, it should be used as a last
resort. The recommended way to define parts of the configuration that are specific for each device is to use
Configuration variables.

Shared templates vs organization specific

Templates can be organization specific or shared (no organization specified).

Configuration Templates

7

Organization specific templates will be available and usable only within the same organization which they are
assigned to.

If no organization is specified when creating a template, a shared template will be created, shared templates are
available to any organization in the system.

Here are a few typical use cases of shared templates:

• Management VPN

• Authorized SSH keys belonging to network administrators

• Crontab with generic periodic management operations

Default Templates

When templates are flagged as "Enabled by default", they will be automatically assigned to new devices.

This is a very powerful feature: once default templates are correctly configured to implement the use case you
need, you will only have to register a device into OpenWISP for it to auto-configure itself.

Moreover, you can change the default templates any time you need, which is the reason this feature has replaced
the practice of storing default configuration in firmware images (which would need to be recompiled and
redistributed): with default templates, the default firmware image only needs to contain the bare minimum
configuration to connect to OpenWISP, once the device connects to OpenWISP it will download and apply the
default templates without the need of manual intervention from the network operators.

An organization specific template flagged as default will be automatically assigned to any new device which will be
created in the same organization.

A shared default template instead will be automatically assigned to all the new devices which will be created in the
system, regardless of organization.

Configuration Templates

8

Required Templates

Required templates are similar to Default templates but cannot be unassigned from a device configuration, they can
only be overridden.

They will be always assigned earlier than default templates, so they can be overridden if needed.

In the example above, the "SSID" template is flagged as "(required)" and its checkbox is always checked and
disabled.

Template tags

Default Templates are an incredibly useful tool, but they're limited: only one set of default templates can be
created.

In some cases, you may have multiple set of default settings to use, let's explain this with a practical example: you
may have 2 different device types in your network:

• Mesh routers: they connect to one another, forming a wireless mesh network

• Dumb access points: they connect to the mesh routers on the LAN port and offer internet access which is
routed via the mesh network by the routers

In this example case, the default configuration to use in each device type can greatly differ.

In such a setup, default templates would only contain configuration which is common to both device types, while
configuration which is specific for each type would be stored in specific templates which are then tagged with specific
keywords:

• mesh: tag to use for mesh configuration

• dumb-ap: tag to use for dumb AP configuration

The openwisp-config configuration of each device type must specify the correct tag before each device registers in
the system.

Here's the sample /etc/config/openwisp configuration for mesh devices:

config controller 'http'
 option url 'https://openwisp2.mynetwork.com'
 option shared_secret 'mySharedSecret123'
 option tags 'mesh'

Once devices with the above configuration will register into the system, any template tagged as mesh (as in the
screenshot below) will be assigned to them.

Configuration Templates

9

https://github.com/openwisp/openwisp-config/#configuration-options

The sample /etc/config/openwisp configuration for dumb access points is the following:

config controller 'http'
 option url 'https://openwisp2.mynetwork.com'
 option shared_secret 'mySharedSecret123'
 option tags 'dumb-ap'

Once devices with the above configuration will register into the system, any template tagged as dumb-ap (as in the
screenshot below) will be assigned to them.

How to Use Configuration Variables

Sometimes the configuration is not exactly equal on all the devices, some parameters are unique to each device or
need to be changed by the user.

In these cases it is possible to use configuration variables in conjunction with templates, this feature is also known as
configuration context, think of it like a dictionary which is passed to the function which renders the configuration, so
that it can fill variables according to the passed context.

The different ways in which variables are defined are described below.

How to Use Configuration Variables

10

Table of Contents:

How to Use Configuration Variables 10

Predefined device variables 11

User defined device variables 11

Template default values 11

Global variables 12

System defined variables 12

Example usage of variables 12

Predefined device variables

Each device gets the following attributes passed as configuration variables:

• id

• key

• name

• mac_address

User defined device variables

In the device configuration section you can find a section named "Configuration variables" where it is possible to
define the configuration variables and their values, as shown in the example below:

Template default values

It's possible to specify the default values of variables defined in a template.

This allows to achieve 2 goals:

1. pass schema validation without errors (otherwise it would not be possible to save the template in the first place)

2. provide good default values that are valid in most cases but can be overridden in the device if needed

These default values will be overridden by the User defined device variables.

The default values of variables can be manipulated from the section "configuration variables" in the edit template
page:

How to Use Configuration Variables

11

Global variables

Variables can also be defined globally using the OPENWISP_CONTROLLER_CONTEXT setting.

System defined variables

Predefined device variables, global variables and other variables that are automatically managed by the system
(e.g.: when using templates of type VPN-client) are displayed in the admin UI as System Defined Variables in
read-only mode.

Example usage of variables

Here's a typical use case, the WiFi SSID and WiFi password. You don't want to define this for every device, but you
may want to allow operators to easily change the SSID or WiFi password for a specific device without having to
re-define the whole wifi interface to avoid duplicating information.

How to Use Configuration Variables

12

https://github.com/openwisp/openwisp-controller#openwisp-controller-context

This would be the template:

{
 "interfaces": [
 {
 "type": "wireless",
 "name": "wlan0",
 "wireless": {
 "mode": "access_point",
 "radio": "radio0",
 "ssid": "{{wlan0_ssid}}",
 "encryption": {
 "protocol": "wpa2_personal",
 "key": "{{wlan0_password}}",
 "cipher": "auto"
 }
 }
 }
]
}

These would be the default values in the template:

{
 "wlan0_ssid": "SnakeOil PublicWiFi",
 "wlan0_password": "Snakeoil_pwd!321654"
}

The default values can then be overridden at device level if needed, e.g.:

{
 "wlan0_ssid": "Room 23 ACME Hotel",
 "wlan0_password": "room_23pwd!321654"
}

OpenVPN tunnel Automation

In this guide we will explore how to set up the automatic management of OpenVPN tunnels.

If you're interested in Wireguard tunnels see Wireguard and Wireguard over VXLAN tunnel automation.

Table of Contents:

Default Templates 8

OpenVPN tunnel Automation 13

Installing OpenVPN Server and importing the OpenVPN configuration 14

1. Install Ansible and required Ansible roles 14

2. Create hosts file and ansible playbook 14

3. Run the Playbook 15

4. Importing the CA and the Server Certificate 15

4. Creating VPN Server 15

Preparing the configuration template for VPN Clients 16

Create VPN Template 16

Auto Client Certificates 16

Default Templates 16

OpenVPN tunnel Automation

13

Installing OpenVPN Server and importing the OpenVPN configuration

We will be installing OpenVPN Server using this ansible role Stouts.openvpn and then import the VPN configuration
into OpenWISP. If you have already setup your VPN server or would like to install the VPN server via some other
way, you can skip to Step 4.

Note

This process is not automated yet.

1. Install Ansible and required Ansible roles

Install ansible (version 2.5 or higher) on your local machine (not on the server!) if you haven't done already.

To install ansible we suggest you follow the official ansible installation guide .

After having installed ansible, you need to install git (example for linux debian/ubuntu systems):

sudo apt-get install git

After having ansible and git installed, install the required roles:

ansible-galaxy install git+https://github.com/Stouts/Stouts.openvpn,3.0.0 nkakouros.easyrsa

2. Create hosts file and ansible playbook

Create an ansible inventory file named hosts on your local machine and not in the server with the following
contents:

[openvpn]
your_server_domain_or_ip

For e.g. if your server ip is 192.168.56.2:

[openvpn]
192.168.56.2

In the same directory where you created the host file, create a file named playbook.yml which contains the
following:

- hosts: openvpn
 vars:
 # EasyRSA
 easyrsa_generate_dh: true
 easyrsa_servers:
 - name: server
 easyrsa_clients: []
 easyrsa_pki_dir: /etc/easyrsa/pki

 # OpenVPN
 openvpn_keydir: "{{ easyrsa_pki_dir }}"
 openvpn_clients: []
 openvpn_use_pam: false
 roles:
 - role: nkakouros.easyrsa
 - role: Stouts.openvpn

OpenVPN tunnel Automation

14

https://github.com/Stouts/Stouts.openvpn
http://docs.ansible.com/ansible/latest/intro_installation.html

Hint

You can further customize the Configuration using the role variables. Get Info about other options in EasyRSA
and OpenVPN

3. Run the Playbook

Run the ansible playbook using:

ansible-playbook -i hosts playbook.yml -b -k -K --become-method=su

4. Importing the CA and the Server Certificate

To import the CA and Server Certificate, you need to access your server via ssh or any other method that suits you.

You need to change your directory to /etc/easyrsa/pki/

Note

If you face -bash: cd: /etc/easyrsa/pki: Permission denied you may need to login as root user.

Importing the CA:

On your openwisp dashboard go to /admin/pki/ca/add/

In Operation Type choose Import Existing

Get your CA Certificate from ca.crt file and Private Key from private/ca.key and then enter them in the
respective fields.

Importing the Server Certificate:

On your openwisp dashboard go to /admin/pki/cert/add/

In Operation Type choose Import Existing and in CA choose the CA you just created.

Get your Server Certificate from issued/server.crt file and Server Private Key from private/server.key
and then enter them in the respective fields.

4. Creating VPN Server

On your openwisp dashboard go to /admin/config/vpn/add/

In Host enter you Server IP, in Certification Authority select the CA you created and in X509 Certificate select the
certificate you created.

Now under Configuration, open Configuration Menu and deselect Property Files. For VPN1 Change Server
(Bridged) to the Type of your VPN Server. The VPN Server installed using the guide above is a Routed Server so
change the Type to Server (Routed). The Process to setup a Bridged Server is identical to that of Routed Server.

Change the rest of the Configuration of the VPN according to the configuration in /etc/openvpn/server.conf

Tip

You can check if your VPN Configuration is similar to the server.conf file using the Preview Configuration
option at the Top.

OpenVPN tunnel Automation

15

https://github.com/nkakouros-original/ansible-role-easyrsa
https://github.com/Stouts/Stouts.openvpn

Preparing the configuration template for VPN Clients

Create VPN Template

On your openwisp dashboard go to /admin/config/template/add/.

Change Type to VPN-client. For VPN select the VPN you created in the previous steps.

You can further toggle Enabled by default and Auto certificate options according to your needs.

Save the template. You can now tweak the Client VPN configuration. Now can add the template to your devices.

Auto Client Certificates

Option: Auto certificate

Default: True

Auto Client Certificates feature allows you to automatically generate generate client certificates for your Device.

Default Templates

Option: Enabled by default

Default: False

Default templates are automatically added to newly created devices of the organization of the template. If no
organization is specified, the template is added to all devices of all the organizations.

Wireguard and Wireguard over VXLAN tunnel automation

In this guide we will explore how to set up the automatic management of Wireguard or Wireguard over VXLAN
tunnels.

Table of Contents:

Wireguard and Wireguard over VXLAN tunnel automation 16

How to setup WireGuard tunnels 16

1. Create VPN server configuration for WireGuard 17

2. Deploy Wireguard VPN Server 18

3. Create VPN client template for WireGuard VPN Server 18

4. Apply Wireguard VPN template to devices 19

How to setup VXLAN over WireGuard tunnels 20

1. Create VPN server configuration for VXLAN over WireGuard 20

2. Deploy Wireguard VXLAN VPN Server 21

3. Create VPN client template for WireGuard VXLAN VPN Server 21

4. Apply Wireguard VXLAN VPN template to devices 22

How to setup WireGuard tunnels

Follow the procedure described below to setup WireGuard tunnels on your devices.

Wireguard and Wireguard over VXLAN tunnel automation

16

Note: This example uses Shared systemwide (no organization) option as the organization for VPN server and
VPN client template. You can use any organization as long as VPN server, VPN client template and Device has
same organization.

1. Create VPN server configuration for WireGuard

1. Visit /admin/config/vpn/add/ to add a new VPN server.

2. We will set Name of this VPN server Wireguard and Host as wireguard-server.mydomain.com (update
this to point to your WireGuard VPN server).

3. Select WireGuard from the dropdown as VPN Backend.

4. When using WireGuard, OpenWISP takes care of managing IP addresses (assigning an IP address to each
VPN peer). You can create a new subnet or select an existing one from the dropdown menu. You can also
assign an Internal IP to the WireGuard Server or leave it empty for OpenWISP to configure. This IP address
will be used by the WireGuard interface on server.

5. We have set the Webhook Endpoint as
https://wireguard-server.mydomain.com:8081/trigger-update for this example. You will need to
update this according to you VPN upgrader endpoint. Set Webhook AuthToken to any strong passphrase, this
will be used to ensure that configuration upgrades are requested from trusted sources.

Note

If you are following this tutorial for also setting up WireGuard VPN server, just substitute
wireguard-server.mydomain.com with hostname of your VPN server and follow the steps in next
section.

6. Under the configuration section, set the name of WireGuard tunnel 1 interface. We have used wg0 in this
example.

Wireguard and Wireguard over VXLAN tunnel automation

17

7. After clicking on Save and continue editing, you will see that OpenWISP has automatically created public and
private key for WireGuard server in System Defined Variables along with internal IP address information.

2. Deploy Wireguard VPN Server

If you haven't already setup WireGuard on your VPN server, this will be a good time do so.

We recommend using the ansible-wireguard-openwisp role for installing WireGuard since it also installs scripts that
allows OpenWISP to manage WireGuard VPN server.

Pay attention to the VPN server attributes used in your playbook. It should be same as VPN server configuration in
OpenWISP.

3. Create VPN client template for WireGuard VPN Server

1. Visit /admin/config/template/add/ to add a new template.

2. Set Wireguard Client as Name (you can set whatever you want) and select VPN-client as type from the
dropdown list.

3. The Backend field refers to the backend of the device this template can be applied to. For this example, we will
leave it to OpenWRT.

4. Select the correct VPN server from the dropdown for the VPN field. Here it is Wireguard.

Wireguard and Wireguard over VXLAN tunnel automation

18

https://github.com/openwisp/ansible-wireguard-openwisp

5. Ensure that Automatic tunnel provisioning is checked. This will make OpenWISP to automatically generate
public and private keys and provision IP address for each WireGuard VPN client.

6. After clicking on Save and continue editing button, you will see details of Wireguard VPN server in System
Defined Variables. The template configuration will be automatically generated which you can tweak
accordingly. We will use the automatically generated VPN client configuration for this example.

4. Apply Wireguard VPN template to devices

Note

This step assumes that you already have a device registered on OpenWISP. Register or create a device before
proceeding.

1. Open the Configuration tab of the concerned device.

2. Select the WireGuard Client template.

3. Upon clicking on Save and continue editing button, you will see some entries in System Defined Variables.
It will contain internal IP address, private and public key for the WireGuard client on the device along with
details of WireGuard VPN server.

Voila! You have successfully configured OpenWISP to manage WireGuard tunnels for your devices.

Wireguard and Wireguard over VXLAN tunnel automation

19

How to setup VXLAN over WireGuard tunnels

By following these steps, you will be able to setup layer 2 VXLAN tunnels encapsulated in WireGuard tunnels which
work on layer 3.

Note: This example uses Shared systemwide (no organization) option as the organization for VPN server and
VPN client template. You can use any organization as long as VPN server, VPN client template and Device has
same organization.

1. Create VPN server configuration for VXLAN over WireGuard

1. Visit /admin/config/vpn/add/ to add a new VPN server.

2. We will set Name of this VPN server Wireguard VXLAN and Host as
wireguard-vxlan-server.mydomain.com (update this to point to your WireGuard VXLAN VPN server).

3. Select VXLAN over WireGuard from the dropdown as VPN Backend.

4. When using VXLAN over WireGuard, OpenWISP takes care of managing IP addresses (assigning an IP
address to each VPN peer). You can create a new subnet or select an existing one from the dropdown menu.
You can also assign an Internal IP to the WireGuard Server or leave it empty for OpenWISP to configure. This
IP address will be used by the WireGuard interface on server.

5. We have set the Webhook Endpoint as
https://wireguard-vxlan-server.mydomain.com:8081/trigger-update for this example. You will
need to update this according to you VPN upgrader endpoint. Set Webhook AuthToken to any strong
passphrase, this will be used to ensure that configuration upgrades are requested from trusted sources.

Note

If you are following this tutorial for also setting up WireGuard VPN server, just substitute
wireguard-server.mydomain.com with hostname of your VPN server and follow the steps in next
section.

6. Under the configuration section, set the name of WireGuard tunnel 1 interface. We have used wg0 in this
example.

Wireguard and Wireguard over VXLAN tunnel automation

20

7. After clicking on Save and continue editing, you will see that OpenWISP has automatically created public and
private key for WireGuard server in System Defined Variables along with internal IP address information.

2. Deploy Wireguard VXLAN VPN Server

If you haven't already setup WireGuard on your VPN server, this will be a good time do so. We recommend using the
ansible-wireguard-openwisp role for installing WireGuard since it also installs scripts that allows OpenWISP to
manage WireGuard VPN server along with VXLAN tunnels.

Pay attention to the VPN server attributes used in your playbook. It should be same as VPN server configuration in
OpenWISP.

3. Create VPN client template for WireGuard VXLAN VPN Server

1. Visit /admin/config/template/add/ to add a new template.

2. Set Wireguard VXLAN Client as Name (you can set whatever you want) and select VPN-client as type
from the dropdown list.

3. The Backend field refers to the backend of the device this template can be applied to. For this example, we will
leave it to OpenWRT.

4. Select the correct VPN server from the dropdown for the VPN field. Here it is Wireguard VXLAN.

5. Ensure that Automatic tunnel provisioning is checked. This will make OpenWISP to automatically generate
public and private keys and provision IP address for each WireGuard VPN client along with VXLAN Network
Identifier (VNI).

Wireguard and Wireguard over VXLAN tunnel automation

21

https://github.com/openwisp/ansible-wireguard-openwisp

6. After clicking on Save and continue editing button, you will see details of Wireguard VXLAN VPN server in
System Defined Variables. The template configuration will be automatically generated which you can tweak
accordingly. We will use the automatically generated VPN client configuration for this example.

4. Apply Wireguard VXLAN VPN template to devices

Note

This step assumes that you already have a device registered on OpenWISP. Register or create a device before
proceeding.

1. Open the Configuration tab of the concerned device.

2. Select the WireGuard VXLAN Client template.

3. Upon clicking on Save and continue editing button, you will see some entries in System Defined Variables.
It will contain internal IP address, private and public key for the WireGuard client on the device and details of
WireGuard VPN server along with VXLAN Network Identifier (VNI) of this device.

Voila! You have successfully configured OpenWISP to manage VXLAN over WireGuard tunnels for your devices.

Wireguard and Wireguard over VXLAN tunnel automation

22

How to Configure Push Updates

Follow the procedure described below to enable secure SSH access from OpenWISP to your devices, this is
required to enable push updates (whenever the configuration is changed, OpenWISP will trigger the update in the
background) and/or firmware upgrades (via the additional module openwisp-firmware-upgrader).

Note

If you have installed OpenWISP with the ansible-openwisp2 role then you can skip the following steps. The
Ansible role automatically creates a default template to update authorized_keys on networking devices using
the default access credentials.

1. Generate SSH key

First of all, we need to generate the SSH key which will be used by OpenWISP to access the devices, to do so, you
can use the following command:

echo './sshkey' | ssh-keygen -t rsa -b 4096 -C "openwisp"

This will create two files in the current directory, one called sshkey (the private key) and one called sshkey.pub
(the public key).

Store the content of these files in a secure location.

2. Save SSH private key in OpenWISP (access credentials)

From the first page of OpenWISP click on "Access credentials", then click on the "ADD ACCESS CREDENTIALS"
button in the upper right corner (alternatively, go to the following URL:
/admin/connection/credentials/add/).

How to Configure Push Updates

23

https://github.com/openwisp/openwisp-firmware-upgrader
https://galaxy.ansible.com/openwisp/openwisp2

Select SSH as type, enable the Auto add checkbox, then at the field "Credentials type" select "SSH (private key)",
now type "root" in the username field, while in the key field you have to paste the contents of the private key just
created.

Now hit save.

The credentials just created will be automatically enabled for all the devices in the system (both existing devices and
devices which will be added in the future).

3. Add the public key to your devices

Now we need to instruct your devices to allow OpenWISP accessing via SSH, in order to do this we need to add the
contents of the public key file created in step 1 (sshkey.pub) in the file /etc/dropbear/authorized_keys on
the devices, the recommended way to do this is to create a configuration template in OpenWISP: from the first page
of OpenWISP, click on "Templates", then and click on the "ADD TEMPLATE" button in the upper right corner
(alternatively, go to the following URL: /admin/config/template/add/).

Check enabled by default, then scroll down the configuration section, click on "Configuration Menu", scroll down,
click on "Files" then close the menu by clicking again on "Configuration Menu". Now type
/etc/dropbear/authorized_keys in the path field of the file, then paste the contents of sshkey.pub in
contents.

Now hit save.

There's a catch: you will need to assign the template to any existing device.

4. Test it

Once you have performed the 3 steps above, you can test it as follows:

1. Ensure there's at least one device turned on and connected to OpenWISP, ensure this device has the "SSH
Authorized Keys" assigned to it.

2. Ensure the celery worker of OpenWISP Controller is running (e.g.: ps aux | grep celery)

3. SSH into the device and wait (maximum 2 minutes) until /etc/dropbear/authorized_keys appears as
specified in the template.

4. While connected via SSH to the device run the following command in the console: logread -f, now try
changing the device name in OpenWISP

5. Shortly after you change the name in OpenWISP, you should see some output in the SSH console indicating
another SSH access and the configuration update being performed.

How to Configure Push Updates

24

Sending Commands to Devices

Default command options

By default, there are three options in the Send Command dropdown:

1. Reboot

2. Change Password

3. Custom Command

While the first two options are self-explanatory, the custom command option allows you to execute any command
on the device as shown in the example below.

Note

In order for this feature to work, a device needs to have at least one Access Credential (see How to Configure
Push Updates).

The Send Command button will be hidden until the device has at least one Access Credential.

If you need to allow your users to quickly send specific commands that are used often in your network regardless of
your users' knowledge of Linux shell commands, you can add new commands by following instructions in "How to
define new options in the commands menu" section below.

If you are an advanced user and want to register commands programmatically, then refer to "Register / Unregistering
commands" section.

How to define new options in the commands menu

It is possible to define new custom commands which are added to the menu of available commands, this allows to
make it easy for users perform additional management actions without having to be Linux/Unix experts and know the
exact shell command syntax (because the system generates the command for them based on the input received via
the UI).

We can do so by using the OPENWISP_CONTROLLER_USER_COMMANDS django setting (see How to Edit Django
Settings).

Sending Commands to Devices

25

https://github.com/openwisp/openwisp-controller/tree/docs/docs/commands_demo.gif
https://github.com/openwisp/openwisp-controller/tree/1.0#registering--unregistering-commands
https://github.com/openwisp/openwisp-controller/tree/1.0#registering--unregistering-commands

The following example defines a simple command that can ping an input destination_address through a
network interface, interface_name.

In yourproject/settings.py

def ping_command_callable(destination_address, interface_name=None):
 command = f"ping -c 4 {destination_address}"
 if interface_name:
 command += f" -I {interface_name}"
 return command

OPENWISP_CONTROLLER_USER_COMMANDS = [
 (
 "ping",
 {
 "label": "Ping",
 "schema": {
 "title": "Ping",
 "type": "object",
 "required": ["destination_address"],
 "properties": {
 "destination_address": {
 "type": "string",
 "title": "Destination Address",
 },
 "interface_name": {
 "type": "string",
 "title": "Interface Name",
 },
 },
 "message": "Destination Address cannot be empty",
 "additionalProperties": False,
 },
 "callable": ping_command_callable,
 },
)
]

The above code will add the "Ping" command in the user interface as show in the GIF below:

Sending Commands to Devices

26

https://github.com/openwisp/openwisp-controller/tree/docs/docs/ping_command_example.gif

The OPENWISP_CONTROLLER_USER_COMMANDS setting takes a list of tuple each containing two elements. The
first element of the tuple should contain an identifier for the command and the second element should contain a
dict defining configuration of the command.

Command Configuration

The dict defining configuration for command should contain following keys:

1. label

A str defining label for the command used internally by Django.

2. schema

A dict defining JSONSchema for inputs of command. You can specify the inputs for your command, add rules for
performing validation and make inputs required or optional.

Here is a detailed explanation of the schema used in above example:

{
 # Name of the command displayed in *Send Command* widget
 "title": "Ping",
 # Use type *object* if the command needs to accept inputs
 # Use type *null* if the command does not accepts any input
 "type": "object",
 # Specify list of inputs that are required
 "required": ["destination_address"],
 # Define the inputs for the commands along with their properties
 "properties": {
 "destination_address": {
 # type of the input value
 "type": "string",
 # label used for displaying this input field
 "title": "Destination Address",
 },
 "interface_name": {
 "type": "string",
 "title": "Interface Name",
 },
 },
 # Error message to be shown if validation fails
 "message": "Destination Address cannot be empty",
 # Whether specifying addtionaly inputs is allowed from the input form
 "additionalProperties": False,
}

This example uses only handful of properties available in JSONSchema. You can experiment with other properties of
JSONSchema for schema of your command.

3. callable

A callable or str defining dotted path to a callable. It should return the command (str) to be executed on the
device. Inputs of the command are passed as arguments to this callable.

The example above includes a callable(ping_command_callable) for ping command.

Sending Commands to Devices

27

https://json-schema.org/

Subnet division rules

The subnet division rule is a feature introduced in OpenWISP 22.05 in the Controller module, this feature aims at
making it easy to provision an arbitrary number of subnets and IP addresses to each device, these provisioned
subnets and addresses are then added to the configuration variables (as system defined variables) of the device and
can be used in its configuration or even in configuration templates.

Table of Contents:

Subnet division rules 28

Enabling the subnet division rule app 28

Configuring the automatic provisioning of subnets and IPs 28

1. Create a Subnet and a Subnet Division Rule 28

2. Create a VPN Server 29

3. Create a VPN Client Template 30

4. Apply VPN Client Template to Devices 30

Important notes for using Subnet Division 31

Limitations of Subnet Division 31

Size 31

Number of Subnets 31

Number of IPs 32

Enabling the subnet division rule app

If you are using the official OpenWISP ansible role, this feature is not enabled by default, to enable it just set the
openwisp2_controller_subnet_division configuration variable to true in your playbook.

On docker-openwisp2 this feature is enabled by default.

Configuring the automatic provisioning of subnets and IPs

This guide will help you configure automatic provisioning of subnets and IPs for devices.

1. Create a Subnet and a Subnet Division Rule

Create a master subnet under which automatically generated subnets will be provisioned.

Tip

Choose the size of the subnet appropriately considering your use case.

Subnet division rules

28

https://github.com/openwisp/openwisp-controller/tree/1.0#subnet-division-app
https://github.com/openwisp/ansible-openwisp2/tree/22.05
https://github.com/openwisp/docker-openwisp

On the same page, add a subnet division rule that will be used to provision subnets under the master subnet.

The type of subnet division rule controls when subnets and IP addresses will be provisioned for a device.

The subnet division rule types currently implemented are described below.

Device Subnet Division Rule

This rule type is triggered whenever a device configuration (config.Config model) is created for the organization
specified in the rule.

Creating a new rule of "Device" type will also provision subnets and IP addresses for existing devices of the
organization automatically.

Important

Keep in mind that a device without a defined configuration object will not trigger this rule.

VPN Subnet Division Rule

This rule is triggered when a VPN client template is assigned to a device, provided the VPN server to which the VPN
client template relates to has the same subnet for which the subnet division rule is created.

Note: This rule will only work for WireGuard and VXLAN over WireGuard VPN servers.

In this example, VPN subnet division rule is used.

2. Create a VPN Server

Now create a VPN Server and choose the previously created master subnet as the subnet for this VPN Server.

Subnet division rules

29

3. Create a VPN Client Template

Create a template, setting the Type field to VPN Client and VPN field to use the previously created VPN Server.

Tip

You can also check the Enable by default field if you want to automatically apply this template to devices that
will register in future.

4. Apply VPN Client Template to Devices

With everything in place, you can now apply the VPN Client Template to devices.

Subnet division rules

30

After saving the device, you should see all provisioned Subnets and IPs for this device under System Defined
Variables.

Voila! You can now use these variables in configuration of the device. Refer to How to use configuration variables
section of this documentation to learn how to use configuration variables.

Important notes for using Subnet Division

• In the above example Subnet, VPN Server, and VPN Client Template belonged to the default organization.
You can use Systemwide Shared Subnet, VPN Server, or VPN Client Template too, but Subnet Division Rule
will be always related to an organization. The Subnet Division Rule will only be triggered when such VPN Client
Template will be applied to a Device having the same organization as Subnet Division Rule.

• You can also use the configuration variables for provisioned subnets and IPs in the Template. Each variable will
be resolved differently for different devices. E.g. OW_subnet1_ip1 will resolve to 10.0.0.1 for one device
and 10.0.0.55 for another. Every device gets its own set of subnets and IPs. But don't forget to provide the
default fall back values in the "default values" template field (used mainly for validation).

• The Subnet Division Rule will automatically create a reserved subnet, this subnet can be used to provision any
IP addresses that have to be created manually. The rest of the master subnet address space must not be
interfered with or the automation implemented in this module will not work.

• The above example used VPN subnet division rule. Similarly, device subnet division rule can be used, which
only requires creating a subnet and a subnet division rule.

Limitations of Subnet Division

In the current implementation, it is not possible to change "Size", "Number of Subnets" and "Number of IPs" fields of
an existing subnet division rule due to following reasons:

Size

Allowing to change size of provisioned subnets of an existing subnet division rule will require rebuilding of Subnets
and IP addresses which has possibility of breaking existing configurations.

Number of Subnets

Allowing to decrease number of subnets of an existing subnet division rule can create patches of unused subnets
dispersed everywhere in the master subnet. Allowing to increase number of subnets will break the continuous
allocation of subnets for every device. It can also break configuration of devices.

Subnet division rules

31

Number of IPs

Allowing to decrease number of IPs of an existing subnet division rule will lead to deletion of IP Addresses which can
break configuration of devices being used. It is allowed to increase number of IPs.

If you want to make changes to any of above fields, delete the existing rule and create a new one. The automation
will provision for all existing devices that meets the criteria for provisioning. WARNING: It is possible that devices get
different subnets and IPs from previous provisioning.

Firmware Upgrades

OpenWISP Firmware Upgrader has been introduced in OpenWISP 20 and focuses on allowing users to maintain the
firmware of their network devices up to date.

Table of Contents:

Deploy instructions 4

Quick Start Guide 5

Firmware Upgrades 32

Deploy instructions 32

Quick Start Guide 32

1. Create a category 33

2. Create the build object 33

3. Upload images to the build 33

4. Perform a firmware upgrade to a specific device 34

5. Performing mass upgrades 34

Find out more about OpenWISP Firmware Upgrader 35

Deploy instructions 36

Quick Start Guide 36

Deploy instructions 38

Deploy instructions

See Enabling the firmware upgrader module on the OpenWISP 22.05 ansible role documentation.

This module is also available in docker-openwisp although its usage is not recommended for production usage yet,
unless the reader is willing to invest effort in adapting the docker images and configurations to overcome any
roadblocks encountered.

Quick Start Guide

Requirements:

• Devices running at least OpenWRT 12.09 Attitude Adjustment, older versions of OpenWRT have not worked at
all in our tests

• Devices must have enough free RAM to be able to upload the new image to /tmp

Firmware Upgrades

32

https://github.com/openwisp/ansible-openwisp2/tree/22.05#enabling-the-firmware-upgrader-module
https://github.com/openwisp/docker-openwisp

1. Create a category

Create a category for your firmware images by going to Firmware management > Firmware categories > Add
firmware category, if you use only one firmware type in your network, you could simply name the category "default"
or "standard".

If you use multiple firmware images with different features, create one category for each firmware type, e.g.:

• WiFi

• SDN router

• LoRa Gateway

This is necessary in order to perform mass upgrades only on specific firmware categories when, for example, a new
LoRa Gateway firmware becomes available.

2. Create the build object

Create a build a build object by going to Firmware management > Firmware builds > Add firmware build, the build
object is related to a firmware category and is the collection of the different firmware images which have been
compiled for the different hardware models supported by the system.

The version field indicates the firmware version, the change log field is optional but we recommend filling it to help
operators know the differences between each version.

An important but optional field of the build model is OS identifier, this field should match the value of the Operating
System field which gets automatically filled during device registration, e.g.: OpenWrt
19.07-SNAPSHOT r11061-6ffd4d8a4d. It is used by the firmware-upgrader module to automatically create
DeviceFirmware objects for existing devices or when new devices register.

A DeviceFirmware object represent the relationship between a device and a firmware image, it basically tells us
which firmware image is installed on the device.

To find out the exact value to use, you should either do a test flash on a device and register it to the system or you
should inspect the firmware image by decompressing it and find the generated value in the firmware image.

If you're not sure about what OS identifier to use, just leave it empty, you can fill it later on when you find out.

Now save the build object to create it.

3. Upload images to the build

Now is time to add images to the build, we suggest adding one image at time. Alternatively the REST API can be
used to automate this step.

Firmware Upgrades

33

https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#rest-api

If you use a hardware model which is not listed in the image types, if the hardware model is officially supported by
OpenWRT, you can send us a pull-request to add it, otherwise you can use the setting
OPENWISP_CUSTOM_OPENWRT_IMAGES to add it.

4. Perform a firmware upgrade to a specific device

Once a new build is ready, has been created in the system and its image have been uploaded, it will be the time to
finally upgrade our devices.

To perform the upgrade of a single device, navigate to the device details, then go to the "Firmware" tab.

If you correctly filled OS identifier in step 2, you should have a situation similar to the one above: in this example,
the device is using version 1.0 and we want to upgrade it to version 2.0, once the new firmware image is selected
we just have to hit save, then a new tab will appear in the device page which allows us to see what's going on during
the upgrade.

Right now, the update of the upgrade information is not asynchronous yet, so you will have to reload the page
periodically to find new information.

This will be addressed in a future release.

5. Performing mass upgrades

First of all, please ensure the following preconditions are met:

• the system is configured correctly

• the new firmware images are working as expected

• you already tried the upgrade of single devices several times.

At this stage you can try a mass upgrade by doing the following:

• go to the build list page

• select the build which contains the latest firmware images you want the devices to be upgraded with

• click on "Mass-upgrade devices related to the selected build".

Firmware Upgrades

34

https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#openwisp_custom_openwrt_images
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#openwisp_custom_openwrt_images

At this point you should see a summary page which will inform you of which devices are going to be upgraded, you
can either confirm the operation or cancel.

Once the operation is confirmed you will be redirected to a page in which you can monitor the progress of the
upgrade operations.

Right now, the update of the upgrade information is not asynchronous yet, so you will have to reload the page
periodically to find new information.

This will be addressed in a future release.

Find out more about OpenWISP Firmware Upgrader

For more information about the features offered by OpenWISP Firmware Upgrader we refer to the following sections
of its documentation:

• List of the available features

• Automatic device firmware detection

• Writing Custom Firmware Upgrader Classes

• Rest API

• Django Settings

Network Topology

OpenWISP Network Topology is a network topology collector and visualizer web application and API, it allows to
collect network topology data from different networking software (dynamic mesh routing protocols, OpenVPN), store
it, visualize it, edit its details, it also provides hooks (a.k.a Django signals) to execute code when the status of a link
changes.

When used in conjunction with OpenWISP Controller and OpenWISP Monitoring, it makes the monitoring system
faster in detecting change to the network.

Network Topology

35

https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#openwisp-firmware-upgrader
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#automatic-device-firmware-detection
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#writing-custom-firmware-upgrader-classes
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#rest-api
https://github.com/openwisp/openwisp-firmware-upgrader/tree/1.0#settings
https://github.com/openwisp/openwisp-network-topology/tree/1.0
https://docs.djangoproject.com/en/4.0/topics/signals/
https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/openwisp-monitoring
https://github.com/openwisp/openwisp-network-topology/tree/1.0#integration-with-openwisp-controller-and-openwisp-monitoring
https://github.com/openwisp/openwisp-network-topology/tree/1.0#integration-with-openwisp-controller-and-openwisp-monitoring

Table of Contents:

Deploy instructions 4

Quick Start Guide 5

Deploy instructions 32

Quick Start Guide 32

Network Topology 35

Deploy instructions 36

Quick Start Guide 36

Creating a topology 36

Sending data for topology with RECEIVE strategy 37

Find out more about OpenWISP Network Topology 37

Deploy instructions 38

Deploy instructions

See Enabling the network topology module on the OpenWISP 22.05 ansible role documentation.

This module is also available in docker-openwisp although its usage is not recommended for production usage yet,
unless the reader is willing to invest effort in adapting the docker images and configurations to overcome any
roadblocks encountered.

Quick Start Guide

This module works by periodically collecting the network topology graph data of the supported networking software
or formats. The data has to be either fetched by the application or received in POST API requests, therefore after
deploying the application, additional steps are required to make the data collection and visualization work, read on to
find out how.

Creating a topology

1. Create a topology object by going to Network Topology > Topologies > Add topology.

2. Give an appropriate label to the topology.

3. Select the topology format from the dropdown menu. The topology format determines which parser should be
used to process topology data.

4. Select the Strategy for updating this topology.

• If you are using FETCH strategy, then enter the URL for fetching topology data in the Url field.

• If you are using RECEIVE strategy, you will get the URL for sending topology data. The RECEIVE strategy
provides an additional field expiration time. This can be used to add delay in marking missing links as
down.

Network Topology

36

https://github.com/openwisp/ansible-openwisp2/tree/22.05#enabling-the-network-topology-module
https://github.com/openwisp/docker-openwisp
https://github.com/openwisp/openwisp-network-topology/tree/1.0#available-features
https://github.com/openwisp/openwisp-network-topology/tree/1.0#available-features
https://github.com/openwisp/openwisp-network-topology/tree/1.0#fetch-strategy
https://github.com/openwisp/openwisp-network-topology/tree/1.0#receive-strategy

Sending data for topology with RECEIVE strategy

1. Copy the URL generated by OpenWISP for sending the topology data.

E.g., in our case the URL is http://127.0.0.1:8000/api/v1/network-topology/topology/d17e53
9a-1793-4be2-80a4-c305eca64fd8/receive/?key=cMGsvio8q0L0BGLd5twiFHQOqIEKI423.

2. Create a script (e.g.: /opt/send-topology.sh) which sends the topology data using POST, in the example
script below we are sending the status log data of OpenVPN but the same code can be applied to other formats
by replacing cat /var/log/openvpn/tun0.stats with the actual command which returns the network
topology output:

#!/bin/bash

Get OpenVPN topology data from OpenVPN management interface
cat /var/log/openvpn/tun0.stats |
 # Upload the topology data to OpenWISP
 curl -s -X POST \
 --data-binary @- \
 --header "Content-Type: text/plain" \
 http://127.0.0.1:8000/api/v1/network-topology/topology/d17e539a-1793-4be2-80a4-c305eca64fd8/receive/?key=cMGsvio8q0L0BGLd5twiFHQOqIEKI423

3. Add the /opt/send-topology.sh script created in the previous step to the crontab, here's an example
which sends the topology data every 5 minutes:

flag script as executable
chmod +x /opt/send-topology.sh
open crontab
crontab -e

Add the following line and save

echo */5 * * * * /opt/send-topology.sh

4. Once the steps above are completed, you should see nodes and links being created automatically, you can see
the network topology graph from the admin page of the topology change page (you have to click on the View
topology graph button in the upper right part of the page) or, alternatively, a non-admin visualizer page is also
available at the URL /topology/topology/<TOPOLOGY-UUID>/.

Find out more about OpenWISP Network Topology

For more information about the features offered by OpenWISP Network Topology we refer to the following sections
of its documentation:

• List of the available features

• Collection Strategies

• Integration with OpenWISP Controller and OpenWISP Monitoring

• Rest API

• Django Settings

Network Topology

37

https://github.com/openwisp/openwisp-network-topology/tree/1.0#available-features
https://github.com/openwisp/openwisp-network-topology/tree/1.0#strategies
https://github.com/openwisp/openwisp-network-topology/tree/1.0#integration-with-openwisp-controller-and-openwisp-monitoring
https://github.com/openwisp/openwisp-network-topology/tree/1.0#rest-api
https://github.com/openwisp/openwisp-network-topology/tree/1.0#settings

RADIUS

OpenWISP RADIUS has been introduced in OpenWISP 22.05 and provides many features aimed at public WiFi
services.

Table of Contents:

Deploy instructions 4

Deploy instructions 32

Deploy instructions 36

RADIUS 38

Deploy instructions 38

Find out more about OpenWISP RADIUS 38

RADIUS 44

Deploy instructions

See Enabling the RADIUS module on the OpenWISP 22.05 ansible role documentation.

Alternatively you can set it up manually by following these guides:

• Freeradius Setup for Captive Portal authentication

• Freeradius Setup for WPA Enterprise (EAP-TTLS-PAP) authentication

This module is also available in docker-openwisp although its usage is not recommended for production usage yet,
unless the reader is willing to invest effort in adapting the docker images and configurations to overcome any
roadblocks encountered.

Find out more about OpenWISP RADIUS

For more information about the features offered by OpenWISP RADIUS, we refer to the its documentation:

• Registration of new users

• SMS verification

• Importing users

• Generating users

• Social Login

• Single Sign-On (SAML)

• Enforcing session limits

• REST API

• Django Settings

RADIUS

38

https://github.com/openwisp/ansible-openwisp2/tree/22.05#enabling-the-radius-module
https://openwisp-radius.readthedocs.io/en/stable/developer/freeradius.html
https://openwisp-radius.readthedocs.io/en/stable/developer/freeradius_wpa_enterprise.html
https://github.com/openwisp/docker-openwisp
https://openwisp-radius.readthedocs.io/en/stable/user/registration.html
https://openwisp-radius.readthedocs.io/en/stable/user/settings.html#openwisp-radius-sms-verification-enabled
https://openwisp-radius.readthedocs.io/en/stable/user/importing_users.html
https://openwisp-radius.readthedocs.io/en/stable/user/generating_users.html
https://openwisp-radius.readthedocs.io/en/stable/user/social_login.html
https://openwisp-radius.readthedocs.io/en/stable/user/saml.html
https://openwisp-radius.readthedocs.io/en/stable/user/enforcing_limits.html
https://openwisp-radius.readthedocs.io/en/stable/user/api.html
https://openwisp-radius.readthedocs.io/en/stable/user/settings.html

WiFi Login Pages

Screenshots

Overview

OpenWISP WiFi login pages provides unified and consistent user experience for public/private WiFi services.

In short, this app replaces the classic captive/login page of a WiFi service by integrating the OpenWISP Radius API
to provide the following features:

• Mobile first design (responsive UI)

• Sign up

• Optional support for mobile phone verification: verify phone number by inserting token sent via SMS, resend the
SMS token

• Login to the wifi service (by getting a radius user token from OpenWISP Radius and sending a POST to the
captive portal login URL behind the scenes)

• Session status information

• Logout from the wifi service (by sending a POST to the captive portal logout URL behind the scenes)

• Change password

• Reset password (password forgot)

• Support for Social Login and SAML

• Optional social login buttons (Facebook, Google, Twitter)

• Contact box allowing to show the support email and/or phone number, as well as additional links specified via
configuration

• Navigation menu (header and footer) with possibility of specifying if links should be shown to every user or only
authenticated or unauthenticated users

• Support for multiple organizations with possibility of customizing the theme via CSS for each organization

• Support for multiple languages

• Possibility to change any text used in the pages

• Configurable Terms of Services and Privacy Policy for each organization

• Possibility of recognizing users thanks to signed cookies, which saves them from having to re-authenticate

• Support for credit/debit card verification and paid subscription plans

For more information please see the OpenWISP WiFi Login Pages documentation.

How to Edit Django Settings

Modules (a.k.a Django Apps)

The OpenWISP server application is composed of a number of modules called Django apps, Django is the
underlying web framework on top of which OpenWISP is built.

Some of the Django apps used by OpenWISP are developed and maintained by OpenWISP, other apps are
developed and maintained by either Django or third party organizations, but most of these apps are configurable and
customizable in different shapes or forms.

The most common way to modify the behavior of a Django app is by editing the settings.py file, a file which holds all
the global configuration of the application.

WiFi Login Pages

39

https://openwisp-radius.readthedocs.io/
https://github.com/openwisp/openwisp-wifi-login-pages/tree/1.0#configuring-social-login
https://github.com/openwisp/openwisp-wifi-login-pages/tree/1.0#configuring-saml-login--logout
https://github.com/openwisp/openwisp-wifi-login-pages/tree/1.0#signup-with-payment-flow
https://github.com/openwisp/openwisp-wifi-login-pages/tree/1.0
https://docs.djangoproject.com/en/4.0/intro/reusable-apps/
https://docs.djangoproject.com/en/4.0/topics/settings/

The OpenWISP django modules are highly configurable and over time you may need to edit their settings, these
settings are documented in the respective README documentation files of each module, for a list of all the available
modules please see Architecture, Modules, Technologies.

Editing settings with the ansible role

The official ansible OpenWISP role provides many configuration variables which offer a convenient way to edit the
most widely used settings of OpenWISP.

However, not all the possible settings have a corresponding variable because doing so would be very costly to
maintain and make the code more complicated, for that reason the role provides a way to add any python instruction
to define and manipulate settings via the openwisp2_extra_django_settings_instructions variable, e.g.:

in the playbook variables add:
openwisp2_extra_django_settings_instructions:
 - |
 OPENWISP_NETWORK_TOPOLOGY_NODE_EXPIRATION = 14

 OPENWISP_MONITORING_METRICS = {
 'ping': {
 'alert_settings': {'tolerance': 60}
 },
 'config_applied': {
 'alert_settings': {'tolerance': 60}
 },
 'disk': {
 'alert_settings': {'tolerance': 60}
 },
 'memory': {
 'alert_settings': {'tolerance': 60}
 },
 'cpu': {
 'alert_settings': {
 'threshold': 95,
 'tolerance': 60
 }
 },
 }

This allows for great flexibility in configuring and extending OpenWISP, because additional custom modules can be
added and configured too.

Editing settings with docker-openwisp

Similarly to the ansible role, the dockerized version of OpenWISP provides mainly two ways of changing settings:

1. The most widely used setting have a dedicated environment variable.

2. For more advanced use cases, it's possible to provide an entirely custom django settings file.

Architecture, Modules, Technologies

Architecture Overview

The following SVG image summarizes the architecture of OpenWISP, the main technologies used, the structure of
the OpenWISP modules and their most important dependencies and the way they interact with one another.

Architecture, Modules, Technologies

40

https://github.com/openwisp/ansible-openwisp2#role-variables
https://github.com/openwisp/docker-openwisp/blob/master/docs/ENV.md
https://github.com/openwisp/docker-openwisp#custom-django-settings

Note

For the best experience it is recommended to open the image in a new tab of your browser, from there you can
also click on the different elements to open the README or website of each module or technology used.

The Inkscape source file of the architecture diagram is
also available for download.

Inkscape is an open source vector editing software which has been used to produce this diagram.

Architecture overview
Modules, dependencies and technologies used.
This SVG image contains clickable links.

Code Dependency

API Dependency

django-organizations
Organizations

django.contrib.auth
Users, Groups, Permissions

django-allauth
Sign up, social login,
email confirmation

User management, multi-tenancy, authentication backend, REST API multi-tenancy classes.

NetworkGraph

openwisp-network-topology

netdiff
Network topology parsing

controller & monitoring
integrationNetworkX

Network Analysis in Python

Network topology collector and visualizer. Collects network topology data
from dynamic mesh routing protocols or other popular networking software like OpenVPN,

allows to visualize the network graph and save daily snapshots that can be viewed in the future.

DeviceMonitoring

openwisp-monitoring
Monitors and tracks device information like uptime, packet loss, round trip time, traffic, WiFi clients,

memory, CPU load, flash space, ARP/neighbor information, DHCP leases, provides charts and configurable
alerts, allows to write custom checks or reconfigure tolerance thresholds and charts.

openwisp-wifi-login-pages
Configurable captive page for public/private WiFi services providing login, sign up, social login,

SMS verification, change password, reset password, change phone number and more.

openwisp-firmware-upgrader
Firmware upgrade solution for OpenWRT with possibility to add support for other embedded OSes.

Provides features like automatic retry for network failures, mass upgrades, REST API and more.
This module depends on

OpenWISP Controller and currently relies on SSH to perform upgrades.

netjsonconfig
Configuration engine

django-x509
Public Key Infrastructure

openwisp-ipam
IP address space management and automation

django-loci
Geographic mapping utilities

openwisp-controller

DeviceConfiguration

Configuration management and templating, automatic provisioning of VPN tunnels like OpenVPN,
Wireguard, Wireguard over VXLAN, shell commands, SSH connections, x509 PKI,

geographic maps and floorplans, programmable IP address management and subnet provisioning.

dj-rest-auth
REST API for django-all-auth

(signup, password reset, etc.)

django-sendsms
SMS backends for mobile phone verification

djangosaml2
Used for SAML login

openwisp-radius
OpenWISP RADIUS provides a web interface to a freeradius database, a rich REST HTTP API

and features like user self registration, SMS verification, import of users from CSV files,
generation of new users for events, Captive Portal Social Login, Captive Portal SAML login and more.

openwisp-notifications
Web and Email notifications

paramiko
SSH support

django-private-storage
Private file serving for
authenticated users

openwisp-utils
Common OpenWISP utilities,
REST API auto doc (swagger),

REST API utilities, admin theme.

Supported primary RDBMS

ansible-openwisp2
Deploys the OpenWISP Django

modules and their dependencies

ansible-wireguard-openwisp
Deploys the Wireguard integration

for OpenWISP Controller

ansible-openwisp-wifi-login-page s
Deploys the OpenWISP

WiFi Login Pages module

ansible-openwisp2-imagegenerator
Usedful for building many

OpenWrt based firmware images

docker-openwisp
Deploys the OpenWISP Django

modules and their dependencies

openwisp-config
OpenWrt package for

OpenWISP Controller integration

openwisp-monitoring
OpenWrt package for

OpenWISP Monitoring integration

OpenWISP Website
Repository of main website
openwisp.io / openwisp.org

openwisp2-docs
Repository of documentation site

openwisp.io/docs

OpenWISP Modules

Note

If you want to know more about the motivations and philosophy that have shaped the modular architecture of
OpenWISP, please see Applying the Unix Philosophy to Django projects: a report from the real world.

Architecture, Modules, Technologies

41

https://inkscape.org/
../_images/openwisp-architecture.svg
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world

Deployment

• Ansible OpenWISP2: Recommended way to deploy OpenWISP on virtual machines.

• Docker OpenWISP (alpha): allows to deploy OpenWISP on dockerized cloud infrastructure. It's still being
improved but the basic features of OpenWISP are working.

• Ansible OpenWISP WiFi Login Pages: ansible role that allows to deploy OpenWISP WiFi Login Pages.

• Ansible OpenWISP2 Image Generator: useful to generate many OpenWrt firmware images for different
organizations with the OpenWISP packages preinstalled.

• Ansible Wireguard OpenWISP.: ansible role that allows to deploy the Wireguard integration for OpenWISP
Controller.

Server Side

• OpenWISP Users: User management, multi-tenancy, authentication backend, REST API utilities and classes to
implement multi-tenancy.

• OpenWISP Controller: Configuration management, automatic provisioning of VPN tunnels like OpenVPN,
Wireguard, Wireguard over VXLAN, shell commands, SSH connections, x509 PKI management, geographic
maps and floor plans, programmable IP address management and subnet provisioning.

This module depends on several django apps or python libraries developed or maintained by OpenWISP:

• netjsonconfig: configuration generation, validation and parsing.

• django-x509: Public Key Infrastructure (management of certification authorities and x509 certificates).

• django-loci: Geographic and indoor mapping features.

• openwisp-ipam: IP and Subnet administration.

• django-rest-framework-gis: GIS utilities for Django REST Framework.

• OpenWISP Monitoring: Monitors and tracks device information like uptime, packet loss, round trip time, traffic,
WiFi clients,memory, CPU load, flash space, ARP/neighbor information, DHCP leases, provides charts and
configurable alerts, allows to write custom checks or reconfigure tolerance thresholds and charts.

• OpenWISP Network Topology: Network topology collector and visualizer. Collects network topology data from
dynamic mesh routing protocols or other popular networking software like OpenVPN, allows to visualize the
network graph and save daily snapshots that can be viewed in the future.

This module depends on a couple of libraries developed and maintained by OpenWISP:

• netdiff: network topology parsing.

• netjsongraph.js: Javascript library for network graph visualization.

• OpenWISP Firmware Upgrader: Firmware upgrade solution for OpenWRT with possibility to add support for
other embedded OSes. Provides features like automatic retry for network failures, mass upgrades, REST API
and more.

• OpenWISP RADIUS: provides a web interface to a freeradius database, a rich REST HTTP API and features
like user self registration, SMS verification, import of users from CSV files, generation of new users for events,
Captive Portal Social Login, Captive Portal SAML login and more.

• OpenWISP Notifications: provides email and web notifications to OpenWISP. Its main goal is to allow any
OpenWISP module to notify users about meaningful events that happen in their network.

• OpenWISP Utils: common utilities and classes shared by all the OpenWISP python modules, it includes a lot of
utilities for QA checks and automated testing which are heavily used in the continuous integration builds of most
if not all the OpenWISP github repositories.

• OpenWISP WiFi Login Pages: Configurable captive page for public/private WiFi services providing login, sign
up, social login, SMS verification, change password, reset password, change phone number and more. It is a
frontend of the OpenWISP RADIUS REST API and it's designed to be used by end users of a public WiFi
network.

Architecture, Modules, Technologies

42

https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/docker-openwisp
https://github.com/openwisp/ansible-openwisp-wifi-login-pages
https://github.com/openwisp/openwisp-wifi-login-pages
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/ansible-wireguard-openwisp
https://github.com/openwisp/openwisp-users
https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/netjsonconfig
https://github.com/openwisp/django-x509
https://github.com/openwisp/django-loci
https://github.com/openwisp/openwisp-ipam
https://github.com/openwisp/django-rest-framework-gis
https://github.com/openwisp/openwisp-monitoring
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/netdiff
https://github.com/openwisp/netjsongraph.js
https://github.com/openwisp/openwisp-firmware-upgrader
https://github.com/openwisp/openwisp-radius
https://github.com/openwisp/openwisp-notifications
https://github.com/openwisp/openwisp-utils
https://github.com/openwisp/openwisp-wifi-login-pages

Network Device Side

• OpenWISP Config: OpenWrt package which integrates with OpenWISP Controller.

• OpenWISP Monitoring: OpenWrt package which integrates with OpenWISP Monitoring.

Website and Documentation

• openwisp2-docs: repository for the documentation of OpenWISP, hosted on openwisp.io/docs.

• OpenWISP-Website: repository of the OpenWISP website, hosted on openwisp.org.

Main Technologies Used

Python

Python it's the main programming language used by the server side application (web admin, API, controller,
workers).

In the past OpenWISP was built in Ruby On Rails, but we later switched to Python because it's much more suited to
networking and it has a wider pool of potential contributors.

Find out more on why OpenWISP chose Python as its main language.

Django

Django is one of the most popular web frameworks for Python language.

It is used extensively in our modules. Django allows rapid development and has a very rich ecosystem.

It's the base framework used in most of the server side modules of OpenWISP.

Find out more on why OpenWISP chose Django as its main web framework.

Django REST Framework

Django REST framework is a powerful and flexible toolkit for building Web APIs based on Django and it's widely
used in most of the Django and web based based OpenWISP modules.

Find out more on why OpenWISP chose Django REST Framework to build its REST API.

Celery

Celery is a python implementation of a distributed task queue and is heavily used in OpenWISP to execute
background tasks, perform network operations like monitoring checks, configuration updates, firmware upgrades and
so on.

OpenWrt

OpenWrt is an linux distribution designed for embedded systems, routers and networking in general.

It has a very skilled community and it is used as a base by many hardware vendors (Technicolor, Ubiquiti Networks,
Linksys, Teltonika and many others).

Lua

Lua is a lightweight, multi-paradigm programming language designed primarily for embedded systems and clients.

Architecture, Modules, Technologies

43

https://github.com/openwisp/openwisp-config
https://github.com/openwisp/openwrt-openwisp-monitoring
https://github.com/openwisp/openwisp2-docs
https://openwisp.io/docs/
https://github.com/openwisp/OpenWISP-Website
https://openwisp.org/
https://www.python.org/
https://www.djangoproject.com/
https://www.django-rest-framework.org
https://docs.celeryq.dev/en/stable/index.html
https://openwrt.org/
https://www.lua.org/

Lua is cross-platform, since the interpreter is written in ANSI C, and has a relatively simple C API.

It is the official scripting language of OpenWRT and it's used heavily in the OpenWrt packages of OpenWISP:
openwisp-config and openwisp-monitoring.

Node.js and React JS

NodeJS is javascript runtime to build JS based applications.

In OpenWISP it's used as a base for frontend applications along with React, like openwisp-wifi-login-pages.

Ansible

Ansible is a very popular software automation tool written in python that is generally used for automating software
provisioning, configuration management and application deployment.

We use Ansible to provide automated procedures to deploy OpenWISP, to compile custom OpenWRT images for
different organizations, to deploy OpenWISP WiFi Login Pages and to deploy the Wireguard integration for
OpenWISP Controller.

Docker

We use docker in docker-openwisp, which aims to ease the deployment of OpenWISP in a containerized
infrastructure.

NetJSON

NetJSON is a data interchange format based on JSON designed to ease the development of software tools for
computer networks.

RADIUS

RADIUS (Remote Authentication Dial-In User Service) is a networking protocol that used for centralized
Authentication, Authorization, and Accounting management of network services.

Freeradius

Freeradius is the most popular open source implementation of the RADIUS protocol and is heavily relied on in
OpenWISP RADIUS.

Mesh Networking

A mesh nework is a local network topology in which the infrastructure nodes connect directly, dynamically and
non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data
from/to clients.

OpenWrt supports the standard mesh mode (802.11s) and OpenWISP supports this mode out of the box.

It is also possible to support other popular dynamic open source routing protocols available on OpenWrt like
OLSRd2, BATMAN-advanced, Babel, BMX, etc.

InfluxDB

InfluxDB is the default open source timeseries DB used in OpenWISP Monitoring.

Architecture, Modules, Technologies

44

https://github.com/openwisp/openwisp-config
https://github.com/openwisp/openwrt-openwisp-monitoring
https://nodejs.org/en/
https://reactjs.org/
https://github.com/openwisp/openwisp-wifi-login-pages/
https://www.ansible.com/
https://www.ansible.com/
https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/ansible-openwisp2-imagegenerator
https://github.com/openwisp/openwisp-wifi-login-pages
https://github.com/openwisp/ansible-wireguard-openwisp
https://github.com/openwisp/ansible-wireguard-openwisp
https://github.com/openwisp/docker-openwisp
http://netjson.org/
http://json.org/
https://en.wikipedia.org/wiki/RADIUS/
https://freeradius.org/
https://github.com/openwisp/openwisp-radius
https://en.wikipedia.org/wiki/Mesh_networking/
https://www.influxdata.com/

Elasticsearch

Elasticsearch is an alternative option which can be used in OpenWISP Monitoring as timeseries DB, although it was
designed with different purposes related to storing and retrieving data in a fast and efficient way.

Networkx

Networkx is a network graph analysis library written in Python and used under the hood by netdiff and the
OpenWISP Network Topology module.

Relational Databases

Django supports several Relational Database Management Systems.

The most notable ones are:

• PostgreSQL

• MySQL

• SQLite

For production usage we recommend PostgreSQL.

For development we recommend SQLite for it simplicity.

Other notable dependencies

• paramiko (used in OpenWISP Controller and Firmware Upgrader)

• django-allauth (used in OpenWISP Users)

• django-organizations (used in OpenWISP Users)

• django-swappable-models (used in all the major Django modules)

• django-private-storage (used in OpenWISP RADIUS and Firmware Upgrader)

• dj-rest-auth (used in OpenWISP RADIUS)

• django-sendsms (used in OpenWISP RADIUS)

• django-saml2 (used in OpenWISP RADIUS)

Values and Goals of OpenWISP

What is OpenWISP?

OpenWISP is a software platform designed to ease and automate the management of networks, with a special focus
on wireless networks, mainly used in public wifi, mesh networks, community networks and IoT scenarios.

OpenWISP 2, launched in December 2016, is the new generation of the software which is gradually replacing
OpenWISP 1 and aims to build an ecosystem of applications and tools that make it easy for developers to build
custom networking applications in order to bring innovation in the network infrastructure of communities that most
need it.

History

See the History page on our website.

Values and Goals of OpenWISP

45

https://www.elastic.co/
https://networkx.org/
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-network-topology
https://docs.djangoproject.com/en/4.0/ref/databases/
https://www.postgresql.org/
https://www.mysql.com/
https://www.sqlite.org/
https://www.paramiko.org/
https://github.com/pennersr/django-allauth
https://github.com/bennylope/django-organizations
https://github.com/openwisp/django-swappable-models
https://github.com/edoburu/django-private-storage
https://github.com/iMerica/dj-rest-auth
https://github.com/stefanfoulis/django-sendsms
https://github.com/IdentityPython/djangosaml2
http://openwisp.org/history.html

Core Values

1. Communication through electronic means is a human right

We believe that communication through electronic means is a FUNDAMENTAL human right.

According to Mozilla, 4 billion of people live without internet today.

Having seen the great progress the internet has brought to our society, we are deeply convinced that solving the
issue of internet connectivity will help to alleviate the economic disparity that at the beginning of the 21st century is
so evident in our world.

For these reasons, fighting digital divide, both primary (lack of infrastructure) and secondary (lack of know
how) is our utmost priority.

2. Net Neutrality

We believe Net Neutrality to be beneficial to the internet because it allows everyone to have a fair treatment (non
discrimination) to their private communications.

The very first public wifi networks that have been built with OpenWISP in Italy follow this principle very strictly: no
content filtering of any type is allowed on these network, no special privilege is given to any private network.

For this reason we are against including into our ecosystem and documentation any software tool or tutorial
that aims at implementing solutions that go against Net Neutrality.

3. Privacy

We believe that privacy is very important for a healthy and well functioning society.

The very first public wifi networks that have been built with OpenWISP in Italy follow this principle very strictly: traffic
logs are stored only for the period of time mandated by law and personal data is never sold to third parties.

For this reason we are against including into our ecosystem and documentation any software tool or tutorial
that aims at implementing solutions that aim to collect user data with the aim of selling it to third parties
without the explicit consent of the user.

4. Open Source, licenses and collaboration

We release all our software under Open Source licenses on github.com/openwisp.

We mainly use two type of licenses:

• GPLv3: we use this license for the software modules which we think have a potentially high commercial value
for ISPs and private companies, our aim in using this license is to avoid the inclusion of these tools and
modules in proprietary closed source solutions, which would result in private companies profiting from the work
of our community without contributing back to it

• BSD3 and MIT: we use these two very permissive licenses for experimental and innovative software modules
which are very useful but do not deliver that kind of value which can be monetized easily. Therefore we hope
that by allowing these modules to be included in proprietary solutions we will avoid having many organizations
reinventing the wheel and we hope that a small percentage of the companies and individuals using them will
contribute back even if not explicitly forced by the license

We believe in transparency and also work towards in making this very place as more of a Community than a Top
Down Organization by warmly welcoming any new participant, contributor and user.

We want our community to be supportive, friendly and highly collaborative, with the aim of making the software
useful to the broadest possible audience - as long as our core values are not distorted or ignored.

We encourage anyone who shares our values to get in touch with us via our support channels and contribute to the
project however they can, according to their means and available free time.

Values and Goals of OpenWISP

46

https://blog.mozilla.org/blog/2017/07/31/mozilla-releases-research-results-zero-rating-not-serving-ramp-internet/
https://en.wikipedia.org/wiki/Net_neutrality
https://github.com/openwisp
http://openwisp.org/support.html

5. Software reusability means long term sustainability

Long time contributors of OpenWISP experienced first hand the consequences of dealing with unflexible
monolithic applications which were hardly reusable outside of the narrow scope for which they were designed.

We have seen countless projects born with great promises, developing their code from scratch and then
fading into oblivion, only to notice the same vicious cycle begin again some time later in some other area of the
globe; think about it: what a waste of human effort, energy and resources!

For this reason, OpenWISP 2 has a strong focus on modularity and reusability and follows the best practices
developed in the Unix world as described in The Art of Unix Programming by Eric S. Raymond.

The core OpenWISP 2 modules are licensed and built in a way that makes it possible for developers not involved in
OpenWISP to include these modules in their own applications (according to their licenses).

This is leading to the creation of an ecosystem of modern networking software tools which is attracting developers
from all over the world.

The mutual interest of the people who use, modify, share, resell and contribute to these modules is our foundation for
long term sustainability.

Goals

• Help to solve the problem of lack of internet connectivity by making it easy to deploy and manage low cost
network infrastructure all over the world

• Bring innovation in the networking software world by emphasizing automation, modularity, reusability, flexibility,
extensibility and collaboration

• Create an ecosystem of software tools that can be used to create infinite OpenWISP derivatives that can be
used to make human communication through electronic means easier and more affordable

• Alleviate the problem of vendor lock-in by attempting to support multiple operating systems and hardware
vendors (although we now officially support only OpenWRT derivatives, but we do have 2 experimental
configuration backends for Raspbian and AirOS)

• Provide good documentation both for users and developers

• Create web interfaces that are easy to use even for people who have limited experience with computer
networking concepts

Help us to grow

You don't need necessarily to be a programmer in order to help out.

An apparently insignificant action can have a very positive impact on the project and in this page we'll explain why it's
in your interest to help the project grow.

Table of Contents:
Are you using OpenWISP for your organization? 48

How to help 48

1. Open new discussion threads 48

2. Send feedback 48

3. Stars on github 49

4. Documentation 49

5. Social media 49

6. Blogging 49

7. Conferences & Meetups 49

8. Participate 49

Help us to grow

47

http://www.catb.org/esr/writings/taoup/html/
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://github.com/openwisp/netjsonconfig/tree/raspbian
https://github.com/openwisp/netjsonconfig/tree/airos

9. Contribute technically 50

10. Commercial support and funding development 50

Are you using OpenWISP for your organization?

If you are using OpenWISP for your company or no profit organization, it's in your best interest to help the project to
grow, because the more we grow as a community, the more contributors we'll attract which in turn will help us to
improve the software, its documentation and keep alive the support channels.

Even small and apparently meaningless actions can make a big difference if performed by a sufficient
number of people.

Note

If you need commercial support for your business, see the paragraph about Commercial support and funding
development.

How to help

1. Open new discussion threads

The Github Discussions Forum and the Mailing List are excellent places to ask questions or share information
regarding OpenWISP.

Every question and its replies are archived and indexed by search engines, creating a repository of solved problems
that people can find over time.

For this reason, using these channels for support questions should be preferred over the chats.

Warning

Please be mindful that over 700 people read these channels and discussions are indexed forever. For these
reasons, you should:

• Keep the focus of the discussion technical.

• Avoid irrelevant comments.

• Be mindful about what you write.

• Keep the tone calm and constructive.

• Be respectful to the volunteers who reply in their free time.

• Avoid generating noise.

When subscribing to the mailing list, we suggest choosing one of these options:

• Receive all emails by creating a filter in your mailbox that moves the messages to a dedicated folder.

• Receive a periodic summary (abridged or digest).

2. Send feedback

When you use OpenWISP, you may find ideas about improvements, new features or you may incur in bugs.

Help us to grow

48

http://openwisp.org/support.html
http://openwisp.org/support.html

It's very helpful to us if you send us your feedback in some way. The preferred way to send feedback is to use the
mailing list, but you can send feedback in any way you want.

If you have found a bug we will likely ask you to open a bug report in a specific github repository, if you can follow up
with this activity it will be very helpful to us.

3. Stars on github

Unfortunately, when evaluating a project, a disproportionate amount of people look at the github stars as a method of
evaluation on how popular a project is and if they don't see many stars they discard the idea of using it.

OpenWISP is composed of many modules and for that reason we don't have a single super popular github repository
with thousands of stars, but when new users and developers look at our github organization page they may not get
this at first glance and they will start looking for the numbers of stars.

Yes, we know it sounds silly, but since it does not cost you anything, it would be really useful if you could take a look
at our projects on github and star the ones you find most interesting.

4. Documentation

If you find anything in this documentation that you think may be improved, please edit the document on github and
send us a pull request, alternatively you can file a bug report or write to the support channels.

5. Social media

If you are using OpenWISP, it's very useful to let the world know about it by sharing a public post on social media
using the #openwisp hashtag.

We also have a twitter account and a facebook page you can follow to help us share news about our community.

If more people talk about OpenWISP on social media, we increase the chance that those who have the will and
technical skills to contribute will hear about its existence.

6. Blogging

Write a blog post about how you are using OpenWISP!

It would be great if you could explain the reasons for which you chose OpenWISP, the traits you like about it and the
traits you don't like about it.

This is VERY helpful not only for the core developers but also for potential readers that may find your blog post and
read about your use case: maybe they have the same use case and they want to know if OpenWISP is a good fit for
them.

A concise, straight to the point blog post with some images and screenshots will go a long way in attracting new
people into the community.

7. Conferences & Meetups

If you like to share your knowledge at conferences and meetups, you may cite OpenWISP in one of your
presentations or lightning talks, you may also show some of its features, if relevant.

8. Participate

By participating actively in the support channels you can also help us a lot: the welcoming level of an open source
community is a key factor in attracting a good numbers of contributors.

Help us to grow

49

http://openwisp.org/support.html
https://github.com/openwisp
http://openwisp.org/support.html
https://twitter.com/openwisp
https://www.facebook.com/OpenWISP/
http://openwisp.org/support.html

9. Contribute technically

Are you skilled in one of the following areas?

• technical writing

• python

• networking

• graphic/web design

• frontend development

• OpenWrt

• Freeradius

• linux

• devops

If yes, you can help us greatly. Find out more about this subject in How to contribute to OpenWISP.

10. Commercial support and funding development

If your company uses OpenWISP for its business and needs professional support on custom setups,
development of new features or commercial support, you can hire a specialist which very active in the
community so they can help you achieve what you need.

Hiring a specialist is usually more effective than trying to figure it out alone: specialists know OpenWISP very
well, they can suggest what are the best ways to accomplish something with the least effort, with the highest quality
and in the least time at the least cost. Moreover, they will produce solutions that can also be shared with the rest of
the community and become part of the OpenWISP ecosystem.

Press

In this page we aim to collect the following:

• presentations, blog posts and academic publications in which OpenWISP is either the main subject or it's
mentioned

• logos and other design files

Presentations

OpenWISP: a Hackable Network Management System for the 21st Century

Presented by Federico Capoano at the IETF Meeting 103 Bangkok:

• slides

django-freeradius at PyCon Italia 2018

Presented by Fiorella De Luca at PyCon Italy 2018:

• video

• abstract

OpenWISP 2: the modular configuration manager for OpenWrt

Presented by Federico Capoano at OpenWrt Summit 2017 in Prague:

Press

50

https://www.ietf.org/how/meetings/103/
https://datatracker.ietf.org/meeting/103/materials/slides-103-gaia-openwisp-a-hackable-network-management-system-for-the-21st-centry-00
https://www.pycon.it/en/
https://www.youtube.com/watch?v=Yapdso_6EGA
https://www.pycon.it/conference/talks/django-freeradius
http://openwrtsummit.org

• video

• slides

Applying the Unix Philosophy to Django projects

Presented by ederico Capoano at PyCon Italy 2017:

• video

• slides

Opening Proprietary Networks with OpenWISP

Lightning talk by Federico Capoano at DjangoCon Europe 2017:

• slides

OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices

Talk by Federico Capoano at FOSDEM 2017 in Brussels:

• video

• abstract

Do you really need to fork OpenWrt?

Presented at OpenWrt Summit 2015 in Dublin:

• video

OpenWISP GARR Conference 2011

Interview for GARR Conference presented by Davide Guerri (in Italian):

• video

OpenWISP e Progetti WiFi Nazionali

Interview for GARRTV by Davide Guerri (in Italian):

• video

Blog Posts

• How Bottom-up Broadband will overcome the 'last mile' problem

• netjsonconfig: convert NetJSON to OpenWrt UCI

• Automate OpenWrt/LEDE firmware generation with Ansible

• django-x509: a reusable django app for PKI management

• Network Topology Visualizer: django-netjsongraph

• Marco and Alessia for an increasingly open network (in Italian)

• Fly with Uniurb and OpenWISP to the Google Summer of Code 2018 (in Italian)

• Uniurb at the Google Summer of Code with OpenWISP2 and Marco (in Italian)

Press

51

https://www.youtube.com/watch?v=n531yTtJimU
http://static.nemesisdesign.net/openwisp2-openwrt-summit-2017/
https://www.pycon.it/conference/talks/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://www.youtube.com/watch?v=tm7Opg3QyZk
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://2017.djangocon.eu/
https://www.slideshare.net/FedericoCapoano/opening-propietary-networks-with-openwisp
https://fosdem.org/
https://www.youtube.com/watch?v=lGiW-uA4Btk
https://archive.fosdem.org/2017/schedule/event/openwisp2
http://openwrtsummit.org
https://www.youtube.com/watch?v=2uioGZuITbA
https://www.garr.it/en/
https://www.youtube.com/watch?v=4mxiupJNPKo
https://www.garr.tv
https://www.youtube.com/watch?v=4AE7XSTPCT0
https://blog.p2pfoundation.net/how-bottom-up-broadband-will-overcome-the-last-mile-problem/2013/07/23
http://nemesisdesign.net/blog/coding/netjsonconfig-convert-netjson-to-openwrt-uci/
http://nemesisdesign.net/blog/coding/automate-openwrt-lede-firmware-generation-ansible/
http://nemesisdesign.net/blog/coding/django-x509-pki-pem/
http://nemesisdesign.net/blog/coding/network-topology-visualizer-django-netjsongraph/
https://uniamo.uniurb.it/openwisp/
https://uniamo.uniurb.it/google-summer-of-code-2018/
https://uniamo.uniurb.it/uniurb-google-summer-of-code-openwisp2/

• Post by the Metropolitan City of Rome (in Italian)

Google Summer of Code Blog Posts

2023 Contributors

• ZeroTier Tunnels Support for OpenWISP Controller by Aryaman (Aryamanz29).

2022 Contributors

• Iperf3 Check for OpenWISP Monitoring by Aryaman (Aryamanz29).

• Improve netjsongraph.js for its new release by Vaishnav Nair (totallynotvaishnav).

2021 Students

• OpenWISP REST API by Manish Kumar Shah (manishshah120).

• OpenWrt OpenWISP Monitoring by Kapil Bansal (devkapilbansal).

• OpenWISP WiFi Login Pages by Sankalp (codesankalp).

• Modern UI/UX by Nitesh Sinha (nitehsinha17).

• Revamp Netengine and add its SNMP capability to OpenWISP Monitoring by Purhan Kaushik (purhan).

2020 Students

• Introducing OpenWISP Monitoring: Project report by Hardik Jain (nepython).

• Merge django reusable-apps by Ajay Tripathi (atb00ker).

• OpenWISP Notifications Module by Gagan Deep (pandafy).

2019 Students

• Dockerization of OpenWISP by Ajay Tripathi (atb00ker).

• Project Report: NetJSONGraph.js Library of OpenWISP by KuTuGu.

2018 Students

• OpenWISP IPAM: IP Address Management tool for OpenWISP2 by Anurag Sharma.

2017 Students

• Adding AirOS support to netjsonconfig by Edoardo Putti.

• Building a Javascript Based Configuration UI for OpenWISP by Nkhoh Gaston Che.

• OpenWISP 2 Network Topology by Rohith A. S. R. K.

• Google Summer of Code 2017 Django-freeradius by Fiorella De Luca.

• Raspbian backend for OpenWISP 2 by Ritwick DSouza.

Press

52

http://www.cittametropolitanaroma.it/homepage/elenco-siti-tematici/wifimetropolitano/openwisp-la-soluzione-open-source-la-diffusione-servizi-wifi/
https://aryamanz29.medium.com/add-support-for-automatic-management-of-zerotier-tunnels-791be96903bf
https://aryamanz29.medium.com/iperf-check-to-openwisp-monitoring-gsoc22-project-report-2661eddd3f77
https://medium.com/@vaishnavnair365/improve-netjsongraph-js-for-its-new-release-project-report-b87002fcfe34
https://manishshah120.medium.com/openwisp-rest-api-gsoc21-project-report-f2c4e0a22673
https://dev.to/devkapilbansal/openwrt-openwisp-monitoring-2bmj
https://codesankalp.medium.com/openwisp-wifi-login-pages-project-report-fbc77ff6cc8b
https://medium.com/@niteshsinha1707/new-navigation-menu-and-ui-ux-improvements-project-report-a94c37514b7d
https://medium.com/@purhan/gsoc-2021-final-project-report-85dc49c59a87
https://medium.com/@nepython/openwisp-monitoring-gsoc-2020-project-report-332441961629
https://medium.com/@atb00ker/merge-openwisp-django-modules-project-report-e8959049d496
https://medium.com/@pandafy/openwisp-notifications-6c11ae577994
https://medium.com/@atb00ker/docker-openwisp-9b2040f03966
https://medium.com/@zhongliwang48/project-report-netjsongraph-js-library-of-openwisp-d05ef95757d8
https://gist.github.com/anurag-ks/75d033c9652c559b065f9cc6320ea707
https://edoput.github.io/openwispgsoc/
https://medium.com/@gastonche/building-a-javascript-based-configuration-ui-for-openwisp-5eab15088a55
https://medium.com/@rohithasrk/openwisp-2-network-topology-gsoc-17-4765008ccba
https://delucafiorella2602.wordpress.com/
https://medium.com/@ritwickdsouza/gsoc-openwisp-raspbian-backend-for-openwisp-2-61ff91843362

Research and publications

• Monitoring Community Networks: Report on Experimentations on Community Networks

• Network Infrastructure as Commons

• Bottom-up Broadband Initiatives in the Commons for Europe Project

• Free Europe WiFi by Justel Pizarro (in Spanish)
• Bottom-up Broadband: Free Software Philosophy Applied to Networking Initiatives

• Study of community organizations and the creation of a
collaborative environment for the initiative "Bottom up Broadband" (in Catalan)

• Control and management of WiFi networks (in Slovenian)

• IEEE publication: ProvinciaWiFi: A 1000 hotspot free, public, open source WiFi network

• OpenWISP, an original open source solution for the diffusion of wifi services (in
Italian)

Logos and Graphic material

OpenWISP Logo (Black Foreground)

OpenWISP Logo (White Foreground)

OpenWISP Logo (Black Foreground, with openwisp.org)

Press

53

https://ieeexplore.ieee.org/document/6381720

Code of Conduct

1. Purpose

OpenWISP aims to be a welcoming organization for contributors with the most varied and diverse backgrounds
possible. We are devoted towards providing a friendly, safe and welcoming environment for all, regardless of gender,
sexual orientation, ability, ethnicity, socioeconomic status, and religion.

This code of conduct outlines our expectations for all those who participate in our community, as well as the
consequences for unacceptable behavior.

We invite all those who participate in OpenWISP to help us create safe and positive experiences for everyone.

2. Open Source Citizenship

An additional purpose of this Code of Conduct is to boost open source citizenship by encouraging participants to
recognize and strengthen the relationships between our actions and their effects on our community.

Communities mirror the societies in which they exist and positive action is essential to prevent the many forms of
inequality and abuses of power that exist in society.

If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages
all participants to contribute to the fullest extent, we want to know.

3. Expected Behavior

The following behaviors are expected and requested of all community members:

• Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this
community.

• Exercise consideration and respect in your speech and actions.

• Attempt collaboration before conflict.

• Refrain from demeaning, discriminatory, or harassing behavior and speech.

• Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a
dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem
inconsequential.

Code of Conduct

54

• Remember that community event venues may be shared with members of the public; please be respectful to all
patrons of these locations.

4. Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

• Violence, threats of violence or violent language directed against another person.

• Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

• Posting or displaying sexually explicit or violent material.

• Posting or threatening to post other people’s personally identifying information ("doxing").

• Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

• Inappropriate photography or recording.

• Inappropriate physical contact. You should have someone’s consent before touching them.

• Unwelcome sexual attention. This includes, sexual comments or jokes; inappropriate touching, groping, and
unwelcome sexual advances.

• Deliberate intimidation, stalking or following (online or in person).

• Advocating for, or encouraging, any of the above behavior.

• Sustained disruption of community events, including talks and presentations.

5. Consequences of Unacceptable Behavior

We do not tolerate harassment of the participants in any form. Unacceptable behavior from any community member,
including sponsors and those with decision-making authority, will not be tolerated.

Anyone asked to stop unacceptable behavior is expected to comply immediately.

If a community member engages in unacceptable behavior, the community organizers may take any action they
deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning
(and without refund in the case of a paid event).

6. Reporting Guidelines

If you are being harassed, noticed that someone else is being harassed, or have any other concerns, please contact
community organizers immediately.

Additionally, community organizers are available to aid community members to engage with local law enforcement or
to otherwise help those experiencing unacceptable behavior feel safe. In the situation of in-person events, organizers
will also provide escorts as desired by the person experiencing distress.

7. Addressing Grievances

If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should get in touch with
the OpenWISP community managers by sending a short explanation of your grievance.

Your grievance will be handled in accordance with our existing governing policies.

8. Scope

All community participants (contributors, paid or otherwise; sponsors; and other guests) must abide by this Code of
Conduct in all forms of communications within the community such as venues, online and in-person as well as in all
one-on-one communications pertaining to community business.

Code of Conduct

55

This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of
community activities when such behavior has the potential to adversely affect the safety and well-being of community
members.

9. Contact info

E-mail:

10. License and attribution

This Code of Conduct is distributed under a Creative Commons Attribution-ShareAlike License.

Portions of text derived from the Django Under The Hood.

Contributing guidelines

We are glad and thankful that you want to contribute to OpenWISP.

Please read these guidelines carefully, it will help you and us to save precious time later.

Introduce yourself

It won't hurt to join our main communication channel and introduce yourself, although to coordinate with one another
on technical matters we use the development channel. Use these two channels share feedback, share your
OpenWISP derivative work, ask questions or announce your intentions.

Look for open issues

Check out these two kanban boards:

• OpenWISP Contributor's Board: lists issues that are suited to newcomers.

• OpenWISP Priorities for next releases, lists issues that are more urgently needed by the community and is
frequently used and reviewed by more seasoned contributors.

If there's anything you don't understand regarding the board or a specific github issue, don't hesitate to ask questions
in our general chat.

You don't need to wait for the issue to be assigned to you. Just check if there is anyone else actively working on
it (e.g.: an open pull request with recent activity). If nobody else is actively working on it, just announce your
intention to work on it by leaving a comment in the issue.

Priorities for the next release

When we are close to releasing a new major version of OpenWISP, we will encourage all contributors to focus on the
To Do column of the OpenWISP Priorities for next releases board and filter the issues according to their expertise:

• Newcomer: filter by Good first issue or Hacktoberfest.

• Expert: filter by Important.

Setup

Once you have chosen an issue to work on, read the README of the repository of the module you want to contribute
to, follow the setup instructions, each module has its own specific instructions which we highly advise to read
carefully.

Contributing guidelines

56

http://creativecommons.org/licenses/by-sa/3.0/
https://www.djangounderthehood.com/coc/
https://matrix.to/#/#openwisp_general:gitter.im
https://matrix.to/#/#openwisp_development:gitter.im
https://github.com/orgs/openwisp/projects/42/views/1
https://github.com/orgs/openwisp/projects/37/views/1
https://matrix.to/#/#openwisp_general:gitter.im
https://github.com/orgs/openwisp/projects/37/views/1
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=good+first+issue
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=hacktoberfest
https://github.com/orgs/openwisp/projects/37/views/1?sliceBy%5BcolumnId%5D=Labels&sliceBy%5Bvalue%5D=important

How to commit your changes properly

Our main development branch is master, it's our central development branch.

You should open a pull request on github. The pull request will be merged only once the CI build completes
successfully (automated tests, code coverage check, QA checks, etc.) and after project maintainers have reviewed
and tested it.

You can run QA checks locally by running ./run-qa-checks in the top level directory of the repository you're
working on. Every OpenWISP module should have this script (if a module does not have it, please open an issue on
github).

1. Branch naming guidelines

Create a new branch for your patch, use a self-descriptive name, e.g.:

git pull origin master
if there's an issue your patch addresses
git checkout -b issues/48-issue-title-shortened

if there is no issue for your branch, (we suggest creating one anyway)
use a descriptive name
git checkout -b autoregistration

2. Commit message style guidelines

Please follow our commit message style conventions.

If the issue is present on Github, use following commit style:

[module/file/feature] Short description #<issue-number>

Long description here.
Fixes #<issue-number>

Here's a real world commit message example from one of our modules:

[admin] Fixed VPN context in preview #57

Fortunately it was just a frontend JS issue.
The preview instance was getting the UUID of the Device
object instead of the Config object, and that prevented
the system from finding the associated VPN and fill the
context VPN keys correctly.

Fixes #57

Moreover, keep in mind the following guidelines:

• commits should be descriptive in nature, the message should explain the nature of the change

• make sure to follow the code style used in the module you are contributing to

• before committing and pushing the changes, test the code both manually and automatically with the automated
test suite if applicable

• after pushing your branch code, make a pull-request of that corresponding change of yours which should
contain a descriptive message and mention the issue number as suggested in the example above

• make sure to send one pull request for each feature. Whenever changes are requested during reviews, please
send new commits (do not amend previous commits), if multiple commits are present in a single pull request,
they will be squashed in a single commit by the maintainers before merging

• in case of big features in which multiple related features/changes needs to be implemented, multiple commits
(one commit per feature) in a single PR are acceptable.

Contributing guidelines

57

https://github.com/openwisp/django-netjsonconfig/commit/7a5dad9f97e708b89149c2765f8298c5a94b652b

3. Pull-Request guidelines

After pushing your changes to your fork, prepare a new Pull Request (from now on we will shorten it often to just PR):

• from your forked repository of the project select your branch and click "New Pull Request"

• check the changes tab and review the changes again to ensure everything is correct

• write a concise description of the PR, if an issue exists for

• after submitting your PR, check back again whether your PR has passed our required tests and style checks

• if the tests fail for some reason, try to fix them and if you get stuck seek our help on our communication
channels

• if the tests pass, maintainers will review the PR and may ask you to improve details or changes, please be
patient: creating a good quality open source project takes a bit of sweat and effort; ensure to follow up with this
type of operations

• once everything is fine with us we'll merge your PR

4. Avoiding unnecessary changes

Keep your contribution focused and change the least amount of lines of code as possible needed to reach the goal
you're working on.

Avoid changes unrelated to the feature/fix/change you're working on.

Avoid changes related to white-space (spaces, tabs, blank lines) by setting your editor as follows:

• always add a blank line at the end of the file

• clear empty lines containing only spaces or tabs

• show white space (this will help you to spot unnecessary white space)

Coding Style Conventions

1. Python code conventions

OpenWISP follows PEP 8 -- Style Guide for Python Code and several other style conventions which can be enforced
by using the following tools:

• openwisp-qa-format: this command is shipped in openwisp-utils, a dependency used in every OpenWISP
python module, it formats the Python code according to the OpenWISP style conventions, it's based on popular
tools like: isort and black (please do not run black directly but always call openwisp-qa-format)

• ./run-qa-checks: it's a script present in the top level directory of each OpenWISP module and performs all
the QA checks that are specific to each module. It mainly calls the openwisp-qa-check command, which
performs several common QA checks used across all OpenWISP modules to ensure consistency (including
flake8), for more info consult the documentation of openwisp-qa-check

Keep in mind that the QA checks defined in the run-qa-checks script are also executed in the CI builds, which will
fail if any QA check fails.

To fix QA check failures, run openwisp-qa-format and apply manual fixes if needed until ./run-qa-checks
runs without errors.

Note

If you want to learn more about our usage of python and django, we suggest reading Hacking OpenWISP:
Python and Django

Contributing guidelines

58

http://openwisp.org/support.html
http://openwisp.org/support.html
https://www.python.org/dev/peps/pep-0008/
https://github.com/openwisp/openwisp-utils#openwisp-qa-format
http://isort.readthedocs.io/en/latest/
https://black.readthedocs.io/en/stable/
http://flake8.pycqa.org/en/latest/
https://github.com/openwisp/openwisp-utils#openwisp-qa-format

2. Javascript code conventions

• OpenWISP follows standard JavaScript coding style conventions that are generally accepted or the ones that
are specified in .jslintrc files; find out more about JSlint here

• please follow this JavaScript Style Guide and Coding Conventions link for proper explanation and wonderful
examples

3. OpenWRT related conventions

OpenWISP follows the standard OpenWRT coding style conventions of OpenWRT:

• Working with Patches

• Naming patches

• Adding new files.

Thank You

If you follow these guidelines closely your contribution will have a very positive impact on the OpenWISP project.

Thanks a lot for your patience.

Useful Python & Django Tools for OpenWISP Development

In this page we aim to help users and contributors who want to work on the internal code of OpenWISP in the
following ways:

1. By explaining why OpenWISP uses Python and Django as its main technologies for the backend application

2. By introducing some Python tools and Django extensions which are extremely useful during development
and debugging.

Table of Contents:
Why Python? 60

Why Django? 60

Why Django REST Framework? 61

Useful Development Tools 61

Useful Python & Django Tools for OpenWISP Development

59

https://github.com/openwisp/django-freeradius/blob/master/.jslintrc
https://www.jslint.com/help.html
https://www.w3schools.com/js/js_conventions.asp
https://wiki.openwrt.org/doc/devel/patches
https://wiki.openwrt.org/doc/devel/patches#naming_patches
https://wiki.openwrt.org/doc/devel/patches#naming_patches

IPython and ipdb 61

Django Extensions 61

Django Debug Toolbar 62

Using these Tools in OpenWISP 62

Why Python?

Note

The first version of OpenWISP was written in Ruby.

OpenWISP 2 was rewritten in Python because Ruby developers were becoming scarce, which led to stagnation.
The widespread use of Python in the networking world also played a significant role in this decision.

Python is an interpreted, high-level programming language designed for general-purpose programming, emphasizing
productivity, fast prototyping, and high readability.

Python is widely used today, with major organizations like Google, Mozilla, and Dropbox extensively employing it in
their systems.

Here are the main reasons why OpenWISP is written in Python:

• It is widely used in the networking and configuration management world. Famous libraries such as networkx,
ansible, salt, paramiko, and fabric are written in Python. This allows our users to work with a familiar
programming language.

• Finding developers who know Python is not a hard task, which helps the community grow and contributes to the
improvement of the OpenWISP software ecosystem over time.

• Python allows great flexibility and extensibility, making OpenWISP hackable and highly customizable. This
aligns with our emphasis on software reusability, which is one of the core values of our project.

Resources for learning Python:

• LearnPython.org.

• SoloLearn (a detailed beginner course).

Why Django?

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design.

In OpenWISP we chose Django mainly for these reasons:

• It has a rich ecosystem and pluggable apps that allow us to accomplish a lot very quickly.

• It has been battle-tested over many years by a large number of users and high-profile companies.

• Security vulnerabilities are usually privately disclosed to the developers and quickly fixed.

• Being popular, it's easy to find Python developers with experience in Django who can quickly start contributing
to OpenWISP.

• Django projects are easily customizable by editing a settings.py file. This allows OpenWISP to design its
modules so they can be imported into larger, more complex, and customized applications, enabling the creation
of tailored network management solutions. This makes OpenWISP similar to a framework: users can use the
default installation, but if they need a more tailored solution, they can use it as a base, avoiding the need to
redevelop a lot of code from scratch.

Resources for learning Django:

• Official Basic Django Tutorial

Useful Python & Django Tools for OpenWISP Development

60

https://www.python.org
https://networkx.org/
https://www.ansible.com
https://docs.saltstack.com/en/latest/topics/
http://www.paramiko.org
http://www.fabfile.org
https://www.learnpython.org
https://www.sololearn.com
https://www.djangoproject.com/start/
https://www.djangoproject.com/start/

• DjangoGirls Tutorial (excellent for absolute beginners!)

PS: If you are wondering why the second tutorial mentions the word "Girls," we suggest taking a look at
djangogirls.org.

Why Django REST Framework?

Django REST framework is a powerful and flexible toolkit for building Web APIs, used and trusted by internationally
recognized companies including Mozilla, Red Hat, Heroku, and Eventbrite.

Here are some reasons why OpenWISP uses Django REST framework:

• Simplicity, flexibility, quality, and extensive test coverage of the source code.

• Powerful serialization engine compatible with both ORM and non-ORM data sources.

• Clean, simple views for resources, using Django's class-based views.

• Efficient HTTP response handling and content type negotiation using HTTP Accept headers.

• Easy publishing of metadata along with querysets.

Resources for learning Django REST Framework:

• Django REST Framework Official Tutorial

Useful Development Tools

IPython and ipdb

IPython (Interactive Python) is a command shell for interactive computing in multiple programming languages,
originally developed for Python. It offers introspection, rich media, shell syntax, tab completion, and history.

It provides:

• A powerful interactive shell with syntax highlighting

• A browser-based notebook interface with support for code, text, mathematical expressions, inline plots, and
other media

• Support for interactive data visualization and use of GUI toolkits

• Flexible, embeddable interpreters to load into one's own projects

• Tools for parallel computing

More details, including installation and updates, can be found on the official website.

As for ipdb, it allows the use of the ipython shell when using the Python debugger (pdb).

Try adding this line in a Django project (or an OpenWISP module), for example in a settings.py file:

import ipdb

ipdb.set_trace()

Now load the Django development server and have fun while learning how to debug Python code!

Django Extensions

Django Extensions is a collection of extensions for the Django framework. These include management commands,
additional database fields, admin extensions, and much more. We will focus on three of them for now: shell_plus,
runserver_plus, and show_urls.

Django Extensions can be installed with:

pip install django-extensions

Useful Python & Django Tools for OpenWISP Development

61

https://tutorial.djangogirls.org/en/
https://djangogirls.org/
https://www.django-rest-framework.org
http://www.django-rest-framework.org/tutorial/quickstart/
https://ipython.org
https://ipython.org
https://github.com/gotcha/ipdb
https://django-extensions.readthedocs.io/

shell_plus: Django shell which automatically imports the project settings and the django models defined in the
settings.

runserver_plus: the typical runserver with the Werkzeug debugger baked in.

show_urls: displays the registered URLs of a Django project.

Django Debug Toolbar

The Django Debug Toolbar is a configurable set of panels that display various debug information about the current
HTTP request/response and, when clicked, provide more details about the panel's content.

It can be installed with:

pip install django-debug-toolbar

More information can be found in the django-debug-toolbar documentation.

Using these Tools in OpenWISP

These tools can be added to an OpenWISP development environment to significantly improve the efficiency and
experience of development. Here's a guide on how to use them in OpenWISP Controller.

In the tests/ folder, local_settings.example.py should be copied and renamed to local_settings.py
for customization. This technique can be used in other OpenWISP development environments too.

cd tests/
cp local_settings_example.py local_settings.py

Follow the installation steps of the OpenWISP Controller module. Run the command pipenv install --dev,
then run pipenv run ./manage.py migrate and pipenv run ./manage.py createsuperuser. Ensure
SPATIALITE_LIBRARY_PATH is specified in the local_settings.py file.

To start the development server with more debugging information, run:

python manage.py runserver_plus

For an interactive shell, use ipython alongside shell_plus by running:

./manage.py shell_plus --ipython

To debug the code, use ipdb. For example:

ipdb mymodule.py

This command will provide a list of lines where errors have been found or lines that can be further optimized.

To use django-debug-toolbar for displaying information about processes occurring on the website, some
configuration is required. Add the following lines to your local_settings.py:

from django.conf import settings

settings.INSTALLED_APPS += ["debug_toolbar", "django_extensions"]
settings.MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"]
INTERNAL_IPS = ["127.0.0.1"]

This ensures that the Django Debug Toolbar is displayed. Note that django_extensions is already included in
settings.py.

Finally, add the Debug Toolbar's URL to the URLconf of openwisp-controller as shown in the installation
tutorial, though this should already be present in the last lines of urls.py:

from django.conf import settings

if settings.DEBUG and "debug_toolbar" in settings.INSTALLED_APPS:
 import debug_toolbar

Useful Python & Django Tools for OpenWISP Development

62

https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://django-extensions.readthedocs.io/en/latest/runserver_plus.html
https://django-debug-toolbar.readthedocs.io/
https://django-debug-toolbar.readthedocs.io/en/latest/
https://django-debug-toolbar.readthedocs.io/en/latest/installation.html
https://django-debug-toolbar.readthedocs.io/en/latest/installation.html

 urlpatterns.append(url(r"^__debug__/", include(debug_toolbar.urls)))

When you open http://127.0.0.1:8000 in the browser and log in with the credentials created earlier, you
should see something like this:

Now that you know the basics, you can experiment and apply these techniques to other OpenWISP modules.

Google Summer of Code

Note

OpenWISP is a mentoring organization for the Google Summer of Code 2022.

If you are reading this page you are probably considering OpenWISP as a possible mentoring organization for the
Google Summer of Code, that's great!

If you are looking for a friendly community where your contribution will have a very tangible positive effect
from the first day of your participation and where you can grow your tech skills at 360°, then
CONGRATULATIONS! OpenWISP is the right organization for you.

Google Summer of Code

63

https://summerofcode.withgoogle.com/archive/2020/organizations/4717183558483968
https://summerofcode.withgoogle.com/

How to run a successful Google Summer of Code

First of all: PLEASE, PLEASE, read all the information contained in this page (including links!) because this
will save everybody involved a lot of time. We would rather spend our time coding than repeating the same stuff over
and over.

Have you read the Student manual yet? If not, please do because it's a MUST if you want to be successful!

Communication with the rest of the community is vital for a successful Google Summer of Code, please join our
communication channels, join our mailing list (we have a dedicated mailing list for GSoC, receive all emails please,
and filter them in your mail box so they are moved to an "OpenWISP" folder), present yourself in our general chat, tell
us who you are, what your values are, what is attracting to OpenWISP and don't be cold like a robot! Stay human :-).

Traits we look for in applicants

We participate in GSoC because we believe it's a great opportunity for us to give back to Open Source by helping
newcomers to get trained and thrive in this industry, but we also do it because we want to grow the pool of
maintainers of our project so we can help a greater number of users to use OpenWISP successfully.

Contributors who also become maintainers and start working professionally with OpenWISP are rare, but over time
we found out the traits that are good leading indicators for contributors who are likely to become core members of our
project, here are the traits we look for in GSoC applicants which give a higher chance of getting selected:

• Genuinely interested in networking: we look for people who are genuinely attracted in the topics we cover
because we believe they are the ones who most likely will benefit from a long term contribution to our project.

• Participate actively: they become active participants of the community, not just by submitting pull requests, but
also by helping new users or reviewing patches of other less experienced contributors.

• Put effort in understanding: they put effort in understanding the problem they need to solve and the outcomes
that is expected from them, which means actively researching the problem, expand the project idea with more
details, create a prototype, note down a list of questions regarding points that are not clear.

• Value the time of mentors: they read carefully the description of issues and put effort in understanding what
they have to do, when something is not clear they do not hesitate to explain the problem carefully via email or
on github.

Google Summer of Code

64

https://developers.google.com/open-source/gsoc/resources/guide#student_guide
https://openwisp.org/support.html
https://openwisp.org/support.html
https://groups.google.com/g/openwisp-gsoc
https://gitter.im/openwisp/general

• Parallelize tasks when waiting for a reply: while they wait for mentors to review or answer their questions,
they start tackling other issues for which they have enough information to get started, in order to avoid staying
idle.

• Value quality: they ensure their work is of the highest quality and does not break existing features of the
system thanks to thorough testing before flagging a patch as ready to be merged.

How to become an OpenWISP star

Here's a few quick tricks you can use to become a star in our community:

• read the founding values and goals of OpenWISP, are you on our side?

• study and follow closely the contributing guidelines

• be patient in the interaction with your mentors, we are all volunteers, we are taking our time to mentor you from
our free time which we usually spend family and loved ones

• we know our documentation is incomplete and fragmented, we are working hard to fix it; if you find a passage
that is not clear or you have an idea about how to improve it, please let us know!

• start using OpenWISP 2: install it, run it, play with it; understand its structure

• start contributing (e.g.: fix easy bugs, write documentation, improve tests); look for open issues in our most
used repositories on github.com/openwisp (ask in our support channels before starting to code please! we have
many legacy repositories that are not under active development anymore)

• if we ask you to open an issue in one of our github repository, please take at least 5 minutes of time to write a
proper bug report

• watch the OpenWISP 2 presentation at the recent OpenWRT Summit 2017 and read the slides of this more
technical OpenWISP 2 talk

• try using OpenWISP in real use case scenarios (find out if there's a free wifi community near your area), spend
time reading its code, ask questions

Google Summer of Code

65

https://github.com/openwisp
https://www.youtube.com/watch?v=n531yTtJimU
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world

• try to participate in the community, if a fellow member is in need of help and you know how to help him, please
do so, we will reward you

Time to start hacking

If you are not familiar with the following concepts yet, take the time to read these resources, it will help you to speed
up your raise to the top!

Programming languages and frameworks:

• Python (book)

• Django (official documentation)

• Lua (video tutorial)

• Shell

(video tutorial)

• Javascript (tutorial)

Networking concepts:

• Introduction to networking terminology

Configuration management:

• Introduction to configuration management

• Writing Ansible playbooks

• Creating Ansible roles from scratch

Project ideas

• Project Ideas 2022

GSoC Project Ideas 2021

Tip

Do you want to apply with us?

We have a page that describes how to increase your chances of success. Please read it carefully.

Read our Google Summer of Code guidelines.

GSoC Project Ideas 2021

66

https://runestone.academy/ns/books/published/pythonds/index.html
https://docs.djangoproject.com/
https://www.youtube.com/watch?v=iMacxZQMPXs/
https://www.youtube.com/watch?v=hwrnmQumtPw/
https://www.tutorialspoint.com/javascript/
https://goo.gl/YG3RLd
https://goo.gl/3YTQgg
https://goo.gl/R2XptC
https://goo.gl/KMXcmr

Table of Contents:

Project ideas 66

GSoC Project Ideas 2021 66

General suggestions and warnings 67

Project Ideas 67

Improve resiliency and packaging of OpenWISP Monitoring on OpenWrt 67

New General Navigation Menu and UX improvements 68

OpenWISP REST API 69

Revamp Netengine and add its SNMP capability to OpenWISP Monitoring 70

Bring professional efficiency to OpenWISP WiFi Login Pages 71

Improve netjsongraph.js for its new release 72

Second release of OpenWISP Monitoring 73

General suggestions and warnings 74

Project Ideas 75

Improve netjsongraph.js for its new release 76

General suggestions and warnings

• Project ideas describe the goals we want to achieve but may miss details that have to be defined during
the project: we expect students to do their own research, propose solutions and be ready to deal with
uncertainty and solve challenges that will come up during the project

• Code and prototypes are preferred over detailed documents and unreliable estimates: rather than using
your time to write a very long application document, we suggest to invest in writing a prototype (which means
the code may be thrown out entirely) which will help you understand the challenges of the project you want to
work on; your application should refer to the prototype or other Github contributions you made to OpenWISP
that show you have the capability to succeed in the project idea you are applying for.

• Students who have either shown to have or have shown to be fast learners for the required hard and
soft skills by contributing to OpenWISP have a lot more chances of being accepted: in order to get
started contributing refer to the OpenWISP Contributing Guidelines

• Get trained in the projects you want to apply for: once applicants have completed some basic training by
contributing to OpenWISP we highly suggest to start working on some aspects of the project they are interested
in applying: all projects listed this year are improvements of existing modules so these modules already have a
list of open issues which can be solved as part of your advanced training. It will also be possible to complete
some of the tasks listed in the project idea right now before GSoC starts. We will list some easy tasks in the
project idea for this purpose.

Project Ideas

Improve resiliency and packaging of OpenWISP Monitoring on OpenWrt

Important

Languages and technologies used: Mostly Lua, OpenWrt, Makefile but also a bit of Python and Django.

Mentors: Federico Capoano.

GSoC Project Ideas 2021

67

OpenWISP Monitoring depends on specific lua code to be deployed on the OpenWrt devices, this code collects
monitoring information and sends it to the OpenWISP server in NetJSON format (see Monitoring Scripts).

At the moment, this code is deployed using a configuration template which is created with a database migration
when the monitoring module is installed, but we need to convert this existing code in a new OpenWrt package, well
tested, documented and with a key improvement regarding its resiliency.

Prerequisites to work on this project:

The student should be familiar with OpenWISP Templates, OpenWrt, OpenWISP Monitoring and should have a
basic knowledge of NetJSON format.

Measurable outcomes:

• Convert lua-monitoring into two OpenWrt packages:

1. One package for the netjson-monitoring utility, which aims to simply return NetJSON
DeviceMonitoring output

2. One package which provides the OpenWISP Monitoring daemon, which depends on
netjson-monitoring and openwisp-config (it takes the server information from the openwisp config file)

• The netjson-monitoring.lua file is becoming too big, we have to split it over multiple files

• Each lua function used in the package shall be unit tested, the main cases should be covered, mocks should be
used to simulate the different cases

• Achieve at least 93% test coverage

• The daemon shall ran by default every 5 minutes, but this interval shall be configurable

• If for some reason the daemon cannot communicate with the server (e.g.: internet connection is down), the
daemon shall:

• check if there's enough RAM available, if not, stop, otherwise continue to the next point

• save the data in a new file stored in a subdirectory of /tmp/ (which is stored in memory), the file
should contain the date/time and the data (e.g.: the filename could be the datetime and its contents
the data)

• When the daemon sends data to the server, if the HTTP request is successful, it shall check if any stored data
is present, if any stored data is present, it shall send it to the server (including the datetime when the
measurement was taken) and if the request is successful it shall delete the stored file and proceed with the next
file, until every stored data file is sent and deleted

• Write a README like the one of openwisp-config which explains the features of the module, how to install
it/compile it

• The OpenWISP Monitoring module needs to be patched to allow the device metrics API to receive
measurements that were taken while a device was offline. By default the server will keep assuming implicitly
that the datetime of new measurements is the current time, but it will allow the datetime to be passed explicitly

New General Navigation Menu and UX improvements

Important

Languages and technologies used: Mostly HTML, CSS and Javascript, but also a bit of Python and Django.

Mentors: Ajay Tripathi, Federico Capoano.

The OpenWISP Admin site has become the most important web interface of OpenWISP, but its usability has not
improved much in the last versions, in this project we aim to fix this.

Prerequisites to work on this project:

GSoC Project Ideas 2021

68

https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/openwisp/openwisp-monitoring#monitoring-scripts
https://github.com/openwisp/openwisp-monitoring/blob/ee2271be25649c4c262e8eaf76b6fdc5d5d002ca/openwisp_monitoring/device/migrations/0002_create_template.py
https://openwrt.org
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/openwisp/lua-monitoring
https://github.com/openwisp/openwisp-config
https://github.com/openwisp/openwisp-config
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring

The student should have installed a full OpenWISP instance running different modules (controller, monitoring and
radius) and should be familiar with openwisp-utils.

Measurable outcomes:

• Create a navigation menu with one level nesting which allows to navigate the whole OpenWISP administration
site easily and quickly:

• the menu should look good on major browsers and mobile devices (Chrome/Chromium, Firefox,
Microsoft Edge, Safari, Android default browser, IOS default browser)

• the menu should be responsive and look good on mobile phones

• on wide screens, the menu will be always visible and on the left side

• on narrow screens, the menu will appear only when the menu button is clicked, the second levels will
also be expanded

• Add the possibility to register menu groups, as well as to specify the order at which the level should be added
and an optional icon (needs also tests and documentation)

• Add the possibility to register menu items in levels/groups and specify their order (needs also tests and
documentation)

• Ensure the old register_menu_items function keeps working in a backward compatible way: we could add all
the items on their own level and log a warning message in the python code which encourages developers to
upgrade

• Register the menu items of all the django modules of OpenWISP, by opening a pull request in each respective
module:

• Controller

• Monitoring

• RADIUS

• Network Topology

• Firmware Upgrader

• IPAM

• Improve the general theme of the OpenWISP application to be more similar to openwisp.org, we should use a
lighter color for, the header, a bigger font, more spacing between elements and we should use bigger buttons
and more similar in style to the ones used in the website

• Restyle filters in the django admin list pages: on wide screens, find a way to show filters on top instead of
showing them in the lateral sidebars

• Add basic frontend tests with selenium:

• Log in to the admin and ensure the menu is visible

• Click on an element of the menu

• Go to a list page and check the filters

OpenWISP REST API

Important

Languages and technologies used: Python, Django, Django REST Framework.

Mentors: Ajay Tripahi, Noumbissi Valere, Federico Capoano.

GSoC Project Ideas 2021

69

https://github.com/openwisp/openwisp-utils
https://github.com/openwisp/openwisp-utils#openwisp-utils-utils-register-menu-items
https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/openwisp-monitoring
https://github.com/openwisp/openwisp-radius
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-firmware-upgrader
https://github.com/openwisp/openwisp-ipam
https://openwisp.org

The goal of this project is to add the much needed missing REST API endpoints for some of the django models of the
oldest OpenWISP modules which do not ship a complete REST API.

Prerequisites to work on this project:

The student should have installed a full OpenWISP instance running different modules (controller, network topology)
and should be familiar with openwisp-controller, openwisp-users and openwisp-network-topology.

Measurable outcomes:

• Create API endpoints for openwisp-controller:

• REST API for main controller features

• pki app models CRUD operations

• geo app models CRUD operations

• connection app models CRUD operations

• Create API endpoints for openwisp-users:

• users (include possibility of changing/updating permissions, groups, organization-users)

• endpoint to manage email addresses (e.g.: add/remove/change email address, make/unmake primary)

• organizations CRUD

• Create API endpoints for network-topology: CRUD of all models (Topology, Node, Link)

• Each list endpoint shall be paginated

• Each endpoint should be available only to authenticated users who must either be organization managers
and/or superusers, please read the entire Django REST Framework Permission Classes section and its
subsections Mixins in the openwisp-users documentation

• Each endpoint which is writable and generates a form in the Django REST Framework browsable API shall
respect multi-tenancy when showing objects that are related to organizations, please see Multi-tenant
serializers for the browsable web UI in the openwisp-users documentation

• Include basic tests for each endpoint, test coverage must not decrease

• Add a basic REST API documentation like the one we have in firmware-upgrader

• Ensure the package DRF YASG is included in the test project of each module touched in this project, as in the
Firmware Upgrader and RADIUS modules

Revamp Netengine and add its SNMP capability to OpenWISP Monitoring

Important

Languages and technologies used: Python, Django.

Mentors: Gagan Deep, Federico Capoano.

The goal of this project is to add support for SNMP (Simple Network Management Protocol) to OpenWISP Monitoring
by using netengine a python library which aims to make easy to access monitoring information via different protocols.

We do not need to maintain backward compatibility at this stage, we have the freedom to change the library how we
think is best.

Prerequisites to work on this project:

The student should be familiar with OpenWISP Monitoring and should have a basic knowledge of NetJSON format
and SNMP.

Measurable outcomes:

• Revamp the OpenWrt backend of netengine, making it compliant with NetJSON DeviceMonitoring specification

GSoC Project Ideas 2021

70

https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/openwisp-users
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-controller/issues/379
https://github.com/openwisp/openwisp-users#django-rest-framework-permission-classes
https://github.com/openwisp/openwisp-users#multi-tenant-serializers-for-the-browsable-web-ui
https://github.com/openwisp/openwisp-users#multi-tenant-serializers-for-the-browsable-web-ui
https://github.com/openwisp/openwisp-firmware-upgrader#rest-api
https://github.com/openwisp/openwisp-firmware-upgrader
https://github.com/openwisp/openwisp-radius
https://github.com/openwisp/netengine
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/openwisp/netengine
https://netjson.org/rfc.html#rfc.section.6

• Revamp the backend for Ubiquiti making it compliant with NetJSON DeviceMonitoring as well (we will either
buy one hardware model for the student or leave one connected to a VPN)

• Update the unit tests to reflect the changes, ensure all tests pass

• Change tests to use mocks (unittest.mock): the tests right now require the physical devices to be run, this is
bad: we need to create mocks that allow us to run the tests without the physical devices

• Port code to python >= 3.7

• Create a test build on github actions

• Update docs to reflect the changes introduced in this project

• Remove any code not being used anymore by the new implementation

• Ensure the test coverage stays above 95%

• Modify OpenWISP Controller to allow setting the management IP from the web UI
• Add an SNMP check in OpenWISP Monitoring that pulls the monitoring information and creates the device

status and charts

Bring professional efficiency to OpenWISP WiFi Login Pages

Important

Languages and technologies used: Javascript, React JS, NodeJS, HTML, CSS.

Mentors: Noumbissi Valere, Federico Capoano.

The goal of this project is to improve OpenWISP WiFi Login Pages by reducing boilerplate code, reduce the amount
of configuration lines in the configuration files, improve test coverage and make the code more robust.

Prerequisites to work on this project:

The student should be familiar with OpenWISP WiFi Login Pages, OpenWISP RADIUS and should be proficient with
Javascript, React JS, NodeJS, HTML and CSS.

Measurable outcomes:

• Implement gettext like translations: right now translations have to be defined in the configuration file of each
organization, repeating the same text over and over, we should avoid this and store the translations in a central
place;

However, being able to customize the text for each organization is a great feature and should still be possible if
needed

• Avoid having to repeat the whole configuration options: right now the configuration of each organization
contains a lot of boilerplate. We shall introduce default configurations and ensure the application works also
when the configuration file of a specific organization misses a piece of configuration.

When the ability of removing specific sections or fields is needed, right now we resorted to deleting the specific
part of the configuration, but once we introduce this change we will have to ensure the configuration options that
would have been removed can be set to null to obtain the same result

• Rename the directory org-configurations to config, rename {slug}-configuration.yml to
{slug}.yml, ensure backward compatibility is maintained

• Implement server side logging with a standard logger

• Implement reusable token validation logic

• Increase test coverage to 95%

• Implement basic browser testing with selenium for the following features:

GSoC Project Ideas 2021

71

https://github.com/openwisp/openwisp-controller
https://github.com/openwisp/openwisp-monitoring
https://github.com/openwisp/openwisp-wifi-login-pages
https://github.com/openwisp/openwisp-wifi-login-pages
https://github.com/openwisp/openwisp-radius
https://github.com/openwisp/openwisp-wifi-login-pages/issues/82
https://github.com/openwisp/openwisp-wifi-login-pages/issues/100

• sign up success

• sign up failure (validation error)

• login success

• login failure

• status

Improve netjsongraph.js for its new release

Important

Languages and technologies used: Javascript, NodeJS, HTML, CSS

Mentors: Federico Capoano.

The goal of this project is to improve the new version of the netjsongraph.js visualization library, which is has not
been released yet and is available in the gsoc2019 branch of netjsongraph.js on github.

Prerequisites to work on this project:

The student should be familiar with OpenWISP Network Topology and should be proficient with Javascript, React JS,
NodeJS, HTML and CSS.

Measurable outcomes:

• We want to make the geographic map feature and the logical map feature more similar to MeshViewer, see the
screenshots below for reference, you can find a demo of this application in the repository just linked.

GSoC Project Ideas 2021

72

https://github.com/openwisp/netjsongraph.js/tree/gsoc2019
https://github.com/openwisp/openwisp-network-topology
https://github.com/ffrgb/meshviewer

• Fix zoom animation: when the map is zoomed, there's a delay between the zoom of the map and the
repositioning of the elements which looks pretty weird

• Add a clustering feature to the geographic map: when there are multiple overlapping elements group them as
one cluster:

• the cluster shall expand when it's hovered with the mouse

• the cluster shall expand when the map zoom increases

• the cluster may behave differently if the nodes have links to other nodes, a solution which works well
aesthetically should be found

• Test the library on narrow screens and ensure quirks are fixed

• Add support for loading map data using GeoJSON

• Allow loading more than 1000 devices by using pagination, load max 10K points by default (e.g.:
maxPointsFetched), make this max value configurable

• When more points are present than the configured maxPointsFetched value, if the map is zoomed more than
a specific level (which shall also be configurable and have a good default), load more data from the API by
specifying geographic extent, implement a mocking server for this feature on the server side

• Update OpenWISP Network Topology to use the new version of this library

• Modify OpenWISP Network Topology to provide real time updates

• Change the code of OpenWISP Monitoring so that the map dashboard is implemented using this library instead
of using its own custom implementation

Keep in mind the underlying visualization library can be changed if needed.

Second release of OpenWISP Monitoring

Important

Languages and technologies used: Python, Django.

Mentors: Gagan Deep, Federico Capoano.

The goal of this project is to improve OpenWISP Monitoring by working on features and changes that have been
noted down during the last year of usage of this module.

Prerequisites to work on this project:

GSoC Project Ideas 2021

73

https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/netjsongraph.js/tree/gsoc2019#realtime-update
https://github.com/openwisp/openwisp-monitoring

The student should be familiar with OpenWISP Templates, OpenWrt, OpenWISP Monitoring and should have a
basic knowledge of NetJSON format.

Measurable outcomes:

See the OpenWISP Monitoring 0.2 Release Milestone on Github.

GSoC Project Ideas 2022

Tip

Do you want to apply with us?

We have a page that describes how to increase your chances of success. Please read it carefully.

Read our Google Summer of Code guidelines.

Table of Contents:

Project ideas 66

General suggestions and warnings 67

Project Ideas 67

Improve netjsongraph.js for its new release 72

GSoC Project Ideas 2022 74

General suggestions and warnings 74

Project Ideas 75

Adding support for automatic management of ZeroTier Tunnels 75

Improve netjsongraph.js for its new release 76

Add iperf bandwidth monitoring check to OpenWISP Monitoring 78

Improve UX of OpenWISP Monitoring 79

Add more timeseries database clients to OpenWISP Monitoring 80

General suggestions and warnings

• Project ideas describe the goals we want to achieve but may miss details that have to be defined during
the project: we expect students to do their own research, propose solutions and be ready to deal with
uncertainty and solve challenges that will come up during the project

• Code and prototypes are preferred over detailed documents and unreliable estimates: rather than using
your time to write a very long application document, we suggest to invest in writing a prototype (which means
the code may be thrown out entirely) which will help you understand the challenges of the project you want to
work on; your application should refer to the prototype or other Github contributions you made to OpenWISP
that show you have the capability to succeed in the project idea you are applying for.

• Students who have either shown to have or have shown to be fast learners for the required hard and
soft skills by contributing to OpenWISP have a lot more chances of being accepted: in order to get
started contributing refer to the OpenWISP Contributing Guidelines

• Get trained in the projects you want to apply for: once applicants have completed some basic training by
contributing to OpenWISP we highly suggest to start working on some aspects of the project they are interested
in applying: all projects listed this year are improvements of existing modules so these modules

GSoC Project Ideas 2022

74

https://openwrt.org
https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/openwisp/openwisp-monitoring/milestone/2

already have a list of open issues which can be solved as part of your advanced training. It will also be possible
to complete some of the tasks listed in the project idea right now before GSoC starts. We will list some easy
tasks in the project idea for this purpose.

Project Ideas

Adding support for automatic management of ZeroTier Tunnels

Important

Languages and technologies used: Mostly OpenWrt, Python, Django, ZeroTier.

Mentors: Gagan Deep (pandafy), Federico Capoano.

Project size: 350 hours.

Difficulty rate: hard.

OpenWISP Controller already supports configuring OpenVPN, WireGuard and VXLAN over WireGuard tunnels.
The goal of this project is to add support for another VPN backend: ZeroTier.

Prerequisites to work on this project

The contributor must demonstrate good understanding of the following OpenWISP modules:

• netjsonconfig

• OpenWISP Controller

• OpenWISP Network Topology

Any merged patches on any of those modules is considered an important plus point.

The contributor must also demonstrate familiarity with ZeroTier, and OpenWrt, moreover, they should be willing to
increase their experience with these technologies and show enthusiasm toward learning and implementing IT
network automation.

Expected outcomes

• Add support for ZeroTier in netjsonconfig:

• Add capability for generating ZeroTier configuration in OpenWrt backend.

• Add a ZeroTier backend that generates network configuration accepted by REST API endpoints of the
ZeroTier Controller.

• Write documentation for generating configuration for OpenWrt and ZeroTier Controller using netjsonconfig.

GSoC Project Ideas 2022

75

https://github.com/pandafy
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://www.zerotier.com
https://netjsonconfig.openwisp.org/en/latest/
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://github.com/openwisp/openwisp-network-topology#openwisp-network-topology
https://www.zerotier.com/
https://openwrt.org
https://netjsonconfig.openwisp.org/en/latest/

• GitHub Issues:

• netjsonconfig #207: [feature] Add support for ZeroTier tunnels to OpenWrt backend

• netjsonconfig #208: [feature] Add ZeroTier backend
• Add ZeroTier as a VPN backend in OpenWISP Controller.

• Add automatic generation of templates for ZeroTier VPN backend similar to OpenVPN and WireGuard
VPN backends.

• Integrate ZeroTier Controller APIs in OpenWISP Controller to allow managing networks directly from
OpenWISP.

• Write a step by step documentation which explains how to set up and use the new ZeroTier VPN backend
with a device.

• GitHub Issues:

• openwisp-controller #604 : [feature] Add support for ZeroTier VPN backend

• openwisp-controller #606 : [feature] Authorize member in ZeroTier network when a new device is
added

• openwisp-controller #605 : [feature] Allow managing ZeroTier networks from OpenWISP
• Add a parser in OpenWISP Network Topology that can parse ZeroTier peer information.

• Write documentation for using this parser to generate topology from data received from multiple devices.

• GitHub Issues:

• openwisp-network-topology #135: [feature] Add a parser for ZeroTier
• Achieve at least 99% test coverage for the code added for this feature.

Improve netjsongraph.js for its new release

Important

Languages and technologies used: Javascript, NodeJS, HTML, CSS

Mentors: Federico Capoano (more mentors TBA).

Project size: 350 hours.

Difficulty rate: medium/hard.

GSoC Project Ideas 2022

76

https://github.com/openwisp/netjsonconfig/issues/207
https://github.com/openwisp/netjsonconfig/issues/208
https://github.com/openwisp/openwisp-controller#openwisp-controller
https://docs.zerotier.com/central/v1
https://github.com/openwisp/openwisp-controller/issues/604
https://github.com/openwisp/openwisp-controller/issues/606
https://github.com/openwisp/openwisp-controller/issues/606
https://github.com/openwisp/openwisp-controller/issues/605
https://github.com/openwisp/openwisp-network-topology#openwisp-network-topology
https://github.com/openwisp/openwisp-network-topology/issues/135

The goal of this project is to improve the new version of the netjsongraph.js visualization library, which is has not
been released yet and is available in the gsoc2019 branch of netjsongraph.js on github.

Prerequisites to work on this project

The contributor should have a proven track record and experience with Javascript, React JS, NodeJS, HTML and
CSS.

Familiarity with OpenWISP Network Topology and OpenWISP Monitoring is a plus.

Expected outcomes

• We want to make the geographic map feature and the logical map feature more similar to MeshViewer, see the
screenshots below for reference, you can find a demo of this application in the repository just linked.

• Fix zoom animation: when the map is zoomed, there's a delay between the zoom of the map and the
repositioning of the elements which looks pretty weird

• Add a clustering feature to the geographic map: when there are multiple overlapping elements group them as
one cluster:

• the cluster shall expand when it's hovered with the mouse

• the cluster shall expand when the map zoom increases

• the cluster may behave differently if the nodes have links to other nodes, a solution which works well
aesthetically should be found

GSoC Project Ideas 2022

77

https://github.com/openwisp/netjsongraph.js/tree/gsoc2019
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-monitoring
https://github.com/ffrgb/meshviewer

• Test the library on narrow screens and ensure quirks are fixed

• Add support for loading map data using GeoJSON

• Allow loading more than 1000 devices by using pagination, load max 10K points by default (e.g.:
maxPointsFetched), make this max value configurable

• When more points are present than the configured maxPointsFetched value, if the map is zoomed more than
a specific level (which shall also be configurable and have a good default), load more data from the API by
specifying geographic extent, implement a mocking server for this feature on the server side

• Update OpenWISP Network Topology to use the new version of this library

• Modify OpenWISP Network Topology to provide real time updates

• Change the code of OpenWISP Monitoring so that the map dashboard is implemented using this library instead
of using its own custom implementation

Keep in mind the underlying visualization library can be changed if needed.

Add iperf bandwidth monitoring check to OpenWISP Monitoring

Important

Languages and technologies used: Python, Django, iperf3.

Mentors: Federico Capoano, Gagan Deep (more mentors TBA).

Project size: 175 hours.

Difficulty rate: easy/medium.

The goal of this project is to add a bandwidth test using iperf3, using the active check mechanism of OpenWISP
Monitoring.

The use case is to perform periodic bandwidth test to measure the max bandwidth available (TCP test) and jitter
(UDP).

On a macro level, the check would work this way:

1. OpenWISP connects to the device (only 1 check per device at time) via SSH and launches iperf3 as a client,
first in TCP mode, then in UDP mode, iperf is launched with the -j flag to obtain json output

GSoC Project Ideas 2022

78

https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/openwisp-network-topology
https://github.com/openwisp/netjsongraph.js/tree/gsoc2019#realtime-update
https://github.com/openwisp/openwisp-monitoring
https://github.com/openwisp/openwisp-monitoring/
https://github.com/openwisp/openwisp-monitoring/

2. The collected data is parsed and stored as a metric (bandwidth information and jitter)

3. SSH connection is closed

Prerequisites to work on this project

The student must demonstrate good understanding of OpenWISP Monitoring, and familiarity with Linux and iperf3.

Expected outcomes

The outcomes we expect from this project are the following:

• Create iperf check class, the check must use the connection module of openwisp-controller to connect to
devices using SSH

• If a device has no active Connection the check will be skipped and a warning logged

• This check should be optional and disabled by default

• We can run it by default every night

• Allow configuring the iperf server globally and by organization with a setting, e.g.:

OPENWISP_MONITORING_IPERF_SERVERS = {
 "": ["<DEFAULT_IPERF_SERVER_HERE>"],
 "<org-pk>": ["<ORG_IPERF_SERVER>"],
}

• It shall be possible to specify a list of iperf servers, this is important because on larger systems 1 server will not
be enough

• We have to implement a lock to allow only 1 iperf check per server at time that is: for every server available,
only 1 check can be performed at any one time, so the lock has to take this account when calculating the
cache-key

• SSH into device, launch iperf TCP client, repeat for UDP, collect data of both tests in a data structure

• Handle failures, if server is down, we can store 0, which would trigger an alert (investigate the alert settings
functionality)

• Implement logic which creates the metric, chart and alert settings objects

• Save data (tcp max bandwidth, UDP jitter)

• Document how this check works

• Document how to set up and use the check step by step (explain also how to set up a new iperf server)

• Achieve at least 99% test coverage for the code added for this feature.

Github issue: [monitoring/checks] Add iperf check.

Improve UX of OpenWISP Monitoring

GSoC Project Ideas 2022

79

https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://docs.celeryproject.org/en/latest/tutorials/task-cookbook.html#ensuring-a-task-is-only-executed-one-at-a-time
https://github.com/openwisp/openwisp-monitoring/issues/120

Important

Languages and technologies used: Python, Django.

Mentors: Ajay Tripathi, Federico Capoano.

Project size: 175 hours.

Difficulty rate: easy.

The goal of this project is to improve OpenWISP Monitoring by working on features and changes that have been
noted down during the last 2 years of usage of this module and have the aim of improving the user experience in
analyzing the collected monitoring data, as well as the developer user experience in extracting data from the system.

Prerequisites to work on this project

The student must demonstrate good understanding of OpenWISP Monitoring, and should have a basic knowledge of
NetJSON format.

Expected outcomes

• [change] Reachable bar chart: show different color for barely reachable #301

• [feature] Charts: allow specifying range of dates #26

• [ux] Show size in (KB, MB or GB) adaptively in charts #87

• [feature] Zooming graphs: reload data in order to provide a detailed view #27

• [feature] Add REST API endpoints for device which include monitoring info #290

• [docs] Add quick start tutorial to README #285

• [feature] Add possibility to connect to *InfluxDB* on unix domain socket #312

Add more timeseries database clients to OpenWISP Monitoring

Important

Languages and technologies used: Python, Django, InfluxDB, Elasticsearch.

Mentors: Federico Capoano, Gagan Deep (more mentors TBA).

Project size: 175 hours.

Difficulty rate: medium.

GSoC Project Ideas 2022

80

https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/openwisp/openwisp-monitoring/issues/301
https://github.com/openwisp/openwisp-monitoring/issues/26
https://github.com/openwisp/openwisp-monitoring/issues/87
https://github.com/openwisp/openwisp-monitoring/issues/27
https://github.com/openwisp/openwisp-monitoring/issues/290
https://github.com/openwisp/openwisp-monitoring/issues/285
https://github.com/openwisp/openwisp-monitoring/issues/312

The goal of this project is to add more Time Series DB options to OpenWISP while keeping good maintainability.

Prerequisites to work on this project

The student must demonstrate good understanding of OpenWISP Monitoring, and demonstrate basic knowledge of
NetJSON format, InfluxDB and Elasticsearch.

Expected outcomes

• Complete the support to Elasticsearch. Support to Elasticsearch was added in 2020 but was not completed.

• The old pull request has to be updated on the current code base

• The merge conflicts have to be resolved

• All the tests must pass, new tests for new charts and metrics added to InfluxDB must be added (see
[feature] Chart mobile (LTE/5G/UMTS/GSM) signal strength #270)

• The usage shall be documented, we must make sure there's at least one dedicated CI build for
Elasticsearch

• We must allow to install and use Elasticsearch instead of InfluxDB from ansible-openwisp2 and
docker-openwisp

• The requests to Elasticsearch shall be optimized as described in [timeseries] Optimize elasticsearch #168.

• Add support for InfluxDB 2.0 as a new timeseries backend, this way we can support both InfluxDB <= 1.8
and InfluxDB >= 2.0.

• All the automated tests for InfluxDB 1.8 must be replicated and must pass

• The usage and setup shall be documented

• We must make sure there's at least one dedicated CI build for Elasticsearch

• We must allow choosing between InfluxDB 1.8 and InfluxDB 2.0 from ansible-openwisp2 and
docker-openwisp.

Google Code-in

Note

Google Code-in was a contest that introduced preuniversity students (ages 13-17) to open source software
development. OpenWISP has been a mentoring organization in this program for 3 years:

• 2017

• 2018

• 2019

The program was discontinued by Google in early 2020. This page is kept for archiving reasons.

Google Code-in

81

https://github.com/openwisp/openwisp-monitoring#openwisp-monitoring
https://netjson.org/
https://github.com/elastic/elasticsearch
https://github.com/openwisp/openwisp-monitoring/pull/164
https://github.com/openwisp/openwisp-monitoring/pull/294
https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/docker-openwisp/
https://github.com/openwisp/openwisp-monitoring/issues/168
https://github.com/openwisp/openwisp-monitoring/issues/274
https://github.com/openwisp/ansible-openwisp2
https://github.com/openwisp/docker-openwisp/
https://codein.withgoogle.com/archive/2017/organization/5760586365272064/
https://codein.withgoogle.com/archive/2018/organization/6193692746448896/
https://codein.withgoogle.com/archive/2019/organization/6304121049579520/

If you are reading this page you are probably considering OpenWISP as a possible mentoring organization for the
Google Code-In, that's great!

If you are looking for a friendly community where your contribution will have a very tangible positive effect
from the first day of your participation and where you can grow your tech skills at 360°, then
CONGRATULATIONS! OpenWISP is the right organization for you.

How to run a successful GCI

Have you read the contest rules yet? If not, please do!

!DANGER!

Students: please do not share your personal information (full name, age, location) during the program for safety
reasons. This is also a new rule established since 2018.

The most important thing to keep in mind is that you may claim only one task at time and if you decide you don't want
to work on it anymore is totally fine but please communicate it to your mentors and remove yourself from the task on
the Google Code-In dashboard so that someone else will be able to work on it.

Communication with the rest of the community is vital for a successful Google Code-In, please join our
communication channels, presenting yourself on the mailing list and on chat, tell us who you are, what your values
are, what is attracting to OpenWISP and don't be cold like a robot! Stay human :-).

Google Code-in

82

https://developers.google.com/open-source/gci/
https://developers.google.com/open-source/gci/resources/contest-rules
http://openwisp.org/support.html
http://openwisp.org/support.html

How to become an OpenWISP star

Here's a few quick tricks you can use to become a star in our community:

• read the founding values and goals of OpenWISP, are you on our side?

• study and follow closely the contributing guidelines

• be patient in the interaction with your mentors, we are all volunteers, we are taking our time to mentor you from
our free time which we usually spend with family and loved ones

• we know our documentation is incomplete and fragmented, we are working hard to improve it; if you find a
passage that is not clear or you have an idea about how to improve it, please let us know!

• the same happens with the software, if you see something which looks like a bug, reach out, even if it's not a
bug your feedback will help us to improve

• if we ask you to open an issue in one of our github repository, please take at least 5 minutes of time to write a
proper bug report

• watch the OpenWISP 2 presentation at the OpenWrt Summit 2017 and read the slides of this more technical
OpenWISP 2 talk

• try using OpenWISP in real use case scenarios (find out if there's a free wifi community near your area), spend
time reading its code, ask questions

• try to participate in the community, if a fellow member is in need of help and you know how to help him, please
do so, we will reward you

Evaluation criteria

These are the evaluation criteria we will use to select our finalists and vote for the winners.

Google Code-in

83

https://github.com/openwisp/openwisp2-docs
https://www.youtube.com/watch?v=n531yTtJimU
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world
https://www.slideshare.net/FedericoCapoano/applying-the-unix-philosophy-to-django-projects-a-report-from-the-real-world

Be patient

Mentors are volunteers and they have their own obligations to attend.

Avoid asking them continuously to review your task. You are in a queue and you need to wait at least 24 hours as
indicated in the GCI guidelines

Hint: optimize your time!

1. ensure the work you submit is of high quality before submitting it

2. if it takes some time for your task to be reviewed, don't sit idle, read our documentation, try OpenWISP, start
working on other tasks which allow multiple instances

Progression of Skills

Students should start with simple tasks and gradually progress to more difficult tasks.

Hint: push yourself gradually to harder tasks once you become confident. Leave easy tasks for beginners.

Quality over Quantity

We care more about the quality and impact of your work rather than the quantity of completed tasks.

How we define quality?

Strict adherence to our contributing guidelines, clean readable code, simplicity, elegance, good commit messages.

How we define impact?

Adding a new feature that was highly requested by the community, improving the UX, improve the documentation to
help newcomers, anything that facilitates the life of our users has a positive impact on the community.

Hint: find out where the highest impact can be made. Some tasks are more important than others.

Community

Open source is not only about producing code, being active in the community (mailing list, chat, github), helping out
fellow students and helping out new users who ask beginner questions is also very important to maintain a healthy
community.

Hint: fully embrace the open source community, be helpful to one another. This is the true spirit of open source
development.

Help us to grow

Caring for the community also means helping it to grow.

Growing is important because it will allow us to have more mentors in the future so we will able to help out more
students.

Hint: try to do some of the easiest actions described in Help us to grow.

Gradual Independence

Over time we expect you to improve and need less micro-managing from mentors, we expect you to become more
independent and learn to solve problems on your own.

Hint: do your own research before asking obvious questions; search in the mailing list, in the documentation, on
github, on google. Send tasks for review only when you consider your work of good quality. You don't need to rush,
keep in mind we value more quality and impact rather than number of completed tasks.

Google Code-in

84

Learn to use OpenWISP

The best contributors are those who actively use the software; students may not have a specific need to use
OpenWISP but they can simulate it in order to learn.

Hint: we will appreciate students who will demonstrate good knowledge of how OpenWISP can be used and will help
us to write more documentation and tutorials on how to use it.

Learn to use OpenWrt

OpenWrt is one of the most important technologies in OpenWISP, therefore we consider important that students
learn the basics of how it works and how OpenWISP can control it.

Hint: start with using a virtual instance of OpenWrt in virtualbox, then when you feel ready get a cheap OpenWrt
compatible device that you can use for testing and development. A full list of the OpenWrt compatible hardware is
available in the official OpenWrt Website.

Full stack knowledge

OpenWISP is really a full-stack software project, there's everything: python, django, javascript, openwrt, lua, shell
scripting, openvpn, freeradius, ansible.

The best contributors are not afraid to learn new technologies and contribute on different fronts.

Hint: we will appreciate students who will spend effort in improving their skills on multiple fronts, rather than focusing
exclusively on one specific technology or programming language.

Time to start hacking

If you are not familiar with the following concepts and technologies yet, take the time to read these resources, it will
help you to speed up and raise to the top!

Programming languages and frameworks:

• Python (book)

• Django (official documentation)

• Lua (video tutorial)

• Shell (video tutorial)

• Javascript (tutorial)

Networking concepts:

• Introduction to networking terminology

Configuration management:

• Introduction to configuration management

• Writing Ansible playbooks

• Creating Ansible roles from scratch

Google Code-in

85

https://forum.openwrt.org/t/cheap-openwrt-hardware-to-move-first-steps-with-openwrt/23569
https://forum.openwrt.org/t/cheap-openwrt-hardware-to-move-first-steps-with-openwrt/23569
https://openwrt.org/toh/start
https://runestone.academy/runestone/static/pythonds/index.html
https://docs.djangoproject.com/
https://www.youtube.com/watch?v=iMacxZQMPXs/
https://www.youtube.com/watch?v=hwrnmQumtPw/
https://www.tutorialspoint.com/javascript/
https://goo.gl/YG3RLd
https://goo.gl/3YTQgg
https://goo.gl/R2XptC
https://goo.gl/KMXcmr

FAQs

Please refer to the Google Code-in FAQs before participating.

Note

You can ask for help whenever needed, but please don't copy someone else's work. Google Code-in has zero
tolerance policy regarding cheating and plagiarism. There are some tasks which require a creative mind like
designing logos and T-shirts, which you need to do by yourself. Remember, learning is more important than
winning.

Communication of sensitive issues

If you noticed something that you think is not right, for example: a student cheating, a mentor behaving
inappropriately or any other issue you don't feel comfortable discussing in public, please get in touch with an
organization administrator, the organization admins for the 2019 edition are:

• 2stacks

• hispanico

• atb00ker

• cappe87

• nemesisdesign

How can I apply as mentor?

Thank you a lot for wanting to be a GCI mentor!

OpenWISP Mentors need to be able to guide students, hence they need to have at least a basic knowledge of how
OpenWISP works and having contributed actively to the codebase is highly recommended.

If you want to apply, introduce yourself in our general chat, let us know how you are using OpenWISP and how you
contributed to it.

If you haven't contributed yet, we highly suggest you to get started now.

Suspension of mentors

Once a mentor has been accepted we assume that the mentor will contribute, according to their available free time,
until the conclusion of the program.

The contribution shall be in good faith, always prioritizing the interests of the students and the goals of our
organization.

A mentor account may be revoked if these general principles are not followed, more specifically:

• if the mentor disappears without justification for more than 2 weeks; in this case the account can be resumed
once the mentor comes back into activity

• if it's felt the participation of the mentor is not in good faith and or not helpful for the students (for example, it's
ascertained that the mentors are not putting effort in reviewing and sending feedback to the students, preferring
to accept tasks with very shallow or non-existent reviews, just with the goal of scoring mentored tasks)

Google Code-in

86

https://developers.google.com/open-source/gci/faq
https://gitter.im/openwisp/general

Hacktoberfest

Note

OpenWISP participates in Hacktoberfest 2021!

If you are reading this page you are probably considering OpenWISP as a possible organization to contribute for
Hacktoberfest, welcome!

If you are looking for a friendly community where your contribution will have a very tangible positive effect
from the first day of your participation and where you can grow your tech skills at 360°, then
CONGRATULATIONS! OpenWISP is the right organization for you.

How to get started

1. Read the contributing guidelines

Avoid common pitfalls by reading our Contributing guidelines.

This will result in your pull requests being merged faster and less overhead for maintainers.

2. Project Board

Look for issues labeled hacktoberfest in the OpenWISP Hacktoberfest Contributor's Board..

Feel free to ask question regarding points which are not clear, but please ensure your questions are specific.

Hacktoberfest

87

https://hacktoberfest.digitalocean.com/
https://hacktoberfest.digitalocean.com/
https://github.com/orgs/openwisp/projects/3?card_filter_query=label%3Ahacktoberfest

3. Announce you're working on something

When you are working on an issue you think you are going to solve, please let everyone know by leaving a
comment on the Github issue so we can avoid wasted efforts from multiple contributors working on the same patch.

However, if you stop working on it, please also let us know.

If you find somebody else has announced they're working on an issue you would like to do, you may want to double
check they're still working on it by leaving a comment on the issue.

4. Join the general chat

Join our general chat to better coordinate with the community.

5. Help us to grow

Caring for Open Source also means helping its communities grow.

Growing is important because it will allow us to have more mentors in the future so we will able to help out more
contributors to advance their skills.

Hint: try to do some of the easiest actions described in Help us to grow.

Main Rules

1. Stay on topic

The aim of this program is to help participants learn to contribute to open source meaningfully, which for us means
contributing to our mission and end goals. Since new contributors are not suited to work on critical tasks due to their
inherent complexity, we prepared a list of easier and well defined issues that can be used to get started, please refer
to our OpenWISP Hacktoberfest Contributor's Board.

2. Spammy pull requests won't be accepted

Spammy pull requests containing minor changes (fixing typos, grammars, etc.) that are aimed simply at increasing
your Hacktoberfest score will be flagged as invalid.

This behavior is not compatible with the spirit of the program, if you are doing this you are missing the point of
Hacktoberfest, Open Source and you are just wasting everyone's time (including yours, because you could be
learning something new instead of trying to naively trick the system).

3. Be constructive

Please try to be constructive and patient when interacting with maintainers and contributors.

If you feel you're not treated fairly, please refer to the instructions for reporting unacceptable behavior in our Code of
Conduct.

Hacktoberfest

88

https://openwisp.org/support.html
https://github.com/orgs/openwisp/projects/3?card_filter_query=label%3Ahacktoberfest

Hacktoberfest

89

	OpenWISP Documentation
	Quick Start
	1. Install the OpenWISP server application
	2. Install openwisp-config on your devices
	3. Install openwisp-monitoring on your devices
	4. Watch video demonstrations
	5. Look for help

	Connect OpenWRT to OpenWISP
	1. Install OpenWISP
	2. Flash OpenWRT on a device
	3. Install openwisp-config
	Installation
	Configuration

	Compile your own OpenWRT image

	Monitoring
	Deploy instructions
	Quick Start Guide
	Install monitoring packages on the device
	Make sure OpenWISP can reach your devices
	1. Public internet deployment
	2. LAN deployment

	Find out more about OpenWISP Monitoring
	OpenWISP Monitoring Python/Django module
	OpenWISP Monitoring OpenWrt packages

	Configuration Templates
	Template ordering and override
	Shared templates vs organization specific
	Default Templates
	Required Templates
	Template tags

	How to Use Configuration Variables
	Predefined device variables
	User defined device variables
	Template default values
	Global variables
	System defined variables
	Example usage of variables

	OpenVPN tunnel Automation
	Installing OpenVPN Server and importing the OpenVPN configuration
	1. Install Ansible and required Ansible roles
	2. Create hosts file and ansible playbook
	3. Run the Playbook
	4. Importing the CA and the Server Certificate
	4. Creating VPN Server

	Preparing the configuration template for VPN Clients
	Create VPN Template
	Auto Client Certificates
	Default Templates

	Wireguard and Wireguard over VXLAN tunnel automation
	How to setup WireGuard tunnels
	1. Create VPN server configuration for WireGuard
	2. Deploy Wireguard VPN Server
	3. Create VPN client template for WireGuard VPN Server
	4. Apply Wireguard VPN template to devices

	How to setup VXLAN over WireGuard tunnels
	1. Create VPN server configuration for VXLAN over WireGuard
	2. Deploy Wireguard VXLAN VPN Server
	3. Create VPN client template for WireGuard VXLAN VPN Server
	4. Apply Wireguard VXLAN VPN template to devices

	How to Configure Push Updates
	1. Generate SSH key
	2. Save SSH private key in OpenWISP (access credentials)
	3. Add the public key to your devices
	4. Test it

	Sending Commands to Devices
	Default command options
	How to define new options in the commands menu
	Command Configuration
	1. label
	2. schema
	3. callable

	Subnet division rules
	Enabling the subnet division rule app
	Configuring the automatic provisioning of subnets and IPs
	1. Create a Subnet and a Subnet Division Rule
	Device Subnet Division Rule
	VPN Subnet Division Rule

	2. Create a VPN Server
	3. Create a VPN Client Template
	4. Apply VPN Client Template to Devices

	Important notes for using Subnet Division
	Limitations of Subnet Division
	Size
	Number of Subnets
	Number of IPs

	Firmware Upgrades
	Deploy instructions
	Quick Start Guide
	1. Create a category
	2. Create the build object
	3. Upload images to the build
	4. Perform a firmware upgrade to a specific device
	5. Performing mass upgrades

	Find out more about OpenWISP Firmware Upgrader

	Network Topology
	Deploy instructions
	Quick Start Guide
	Creating a topology
	Sending data for topology with RECEIVE strategy

	Find out more about OpenWISP Network Topology

	RADIUS
	Deploy instructions
	Find out more about OpenWISP RADIUS

	WiFi Login Pages
	Screenshots
	Overview

	How to Edit Django Settings
	Modules (a.k.a Django Apps)
	Editing settings with the ansible role
	Editing settings with docker-openwisp

	Architecture, Modules, Technologies
	Architecture Overview
	OpenWISP Modules
	Deployment
	Server Side
	Network Device Side
	Website and Documentation

	Main Technologies Used
	Python
	Django
	Django REST Framework
	Celery
	OpenWrt
	Lua
	Node.js and React JS
	Ansible
	Docker
	NetJSON
	RADIUS
	Freeradius
	Mesh Networking
	InfluxDB
	Elasticsearch
	Networkx
	Relational Databases
	Other notable dependencies

	Values and Goals of OpenWISP
	What is OpenWISP?
	History
	Core Values
	1. Communication through electronic means is a human right
	2. Net Neutrality
	3. Privacy
	4. Open Source, licenses and collaboration
	5. Software reusability means long term sustainability

	Goals

	Help us to grow
	Are you using OpenWISP for your organization?
	How to help
	1. Open new discussion threads
	2. Send feedback
	3. Stars on github
	4. Documentation
	5. Social media
	6. Blogging
	7. Conferences & Meetups
	8. Participate
	9. Contribute technically
	10. Commercial support and funding development

	Press
	Presentations
	OpenWISP: a Hackable Network Management System for the 21st Century
	django-freeradius at PyCon Italia 2018
	OpenWISP 2: the modular configuration manager for OpenWrt
	Applying the Unix Philosophy to Django projects
	Opening Proprietary Networks with OpenWISP
	OpenWISP2 a self hosted solution to control OpenWrt/LEDE devices
	Do you really need to fork OpenWrt?
	OpenWISP GARR Conference 2011
	OpenWISP e Progetti WiFi Nazionali

	Blog Posts
	Google Summer of Code Blog Posts
	2023 Contributors
	2022 Contributors
	2021 Students
	2020 Students
	2019 Students
	2018 Students
	2017 Students

	Research and publications
	Logos and Graphic material

	Code of Conduct
	1. Purpose
	2. Open Source Citizenship
	3. Expected Behavior
	4. Unacceptable Behavior
	5. Consequences of Unacceptable Behavior
	6. Reporting Guidelines
	7. Addressing Grievances
	8. Scope
	9. Contact info
	10. License and attribution

	Contributing guidelines
	Introduce yourself
	Look for open issues
	Priorities for the next release
	Setup
	How to commit your changes properly
	1. Branch naming guidelines
	2. Commit message style guidelines
	3. Pull-Request guidelines
	4. Avoiding unnecessary changes

	Coding Style Conventions
	1. Python code conventions
	2. Javascript code conventions
	3. OpenWRT related conventions

	Thank You

	Useful Python & Django Tools for OpenWISP Development
	Why Python?
	Why Django?
	Why Django REST Framework?
	Useful Development Tools
	IPython and ipdb
	Django Extensions
	Django Debug Toolbar
	Using these Tools in OpenWISP

	Google Summer of Code
	How to run a successful Google Summer of Code
	Traits we look for in applicants
	How to become an OpenWISP star
	Time to start hacking
	Project ideas

	GSoC Project Ideas 2021
	General suggestions and warnings
	Project Ideas
	Improve resiliency and packaging of OpenWISP Monitoring on OpenWrt
	New General Navigation Menu and UX improvements
	OpenWISP REST API
	Revamp Netengine and add its SNMP capability to OpenWISP Monitoring
	Bring professional efficiency to OpenWISP WiFi Login Pages
	Improve netjsongraph.js for its new release
	Second release of OpenWISP Monitoring

	GSoC Project Ideas 2022
	General suggestions and warnings
	Project Ideas
	Adding support for automatic management of ZeroTier Tunnels
	Prerequisites to work on this project
	Expected outcomes

	Improve netjsongraph.js for its new release
	Prerequisites to work on this project
	Expected outcomes

	Add iperf bandwidth monitoring check to OpenWISP Monitoring
	Prerequisites to work on this project
	Expected outcomes

	Improve UX of OpenWISP Monitoring
	Prerequisites to work on this project
	Expected outcomes

	Add more timeseries database clients to OpenWISP Monitoring
	Prerequisites to work on this project
	Expected outcomes

	Google Code-in
	How to run a successful GCI
	How to become an OpenWISP star
	Evaluation criteria
	Be patient
	Progression of Skills
	Quality over Quantity
	Community
	Help us to grow
	Gradual Independence
	Learn to use OpenWISP
	Learn to use OpenWrt
	Full stack knowledge

	Time to start hacking
	FAQs
	Communication of sensitive issues
	How can I apply as mentor?
	Suspension of mentors

	Hacktoberfest
	How to get started
	1. Read the contributing guidelines
	2. Project Board
	3. Announce you're working on something
	4. Join the general chat
	5. Help us to grow

	Main Rules
	1. Stay on topic
	2. Spammy pull requests won't be accepted
	3. Be constructive

